X. Dai, D. Larson and D. Speegle, Wavelet sets in $R^n$. {\it J. Fourier Anal. Appl.} {\bf 3}
(1997), no. 4, 451-456. pdf |
X. , D. Larson and D. Speegle, Wavelet sets in $R^n$, II. {\it Wavelets,
Multiwavelets, and Their Applications (San Diego, CA, 1997)}, 15-40, Contemporary
Mathematics {\bf 216}, Amer. Math. Soc., Providence, RI, 1998. |
The Wutam Consortium, Basic properties of wavelets. {\it J. Fourier Anal. Appl.} {\bf 4}
(1998), no. 4-5, 575-594. |
Speegle, D. M., Banach spaces failing the almost isometric
universal extension property. {\it Proc. Amer. Math. Soc.} {\bf 126} (1998),
no. 12, 3633-3637. |
Speegle, Darrin, The s-elementary wavelets are path-connected. {\it Proc. Amer. Math. Soc.}
{\bf 127} (1999) no. 1, 223-233. pdf |
G. Garrig\`os and D. Speegle, Completeness in the set of wavelets. {\it Proc. Amer. Math. Soc.},
{\bf 128} (2000), no. 4, 1157--1166. ps |
M. Bownik, Z. Rzeszotnik and D. Speegle, A characterization of the dimension function of
orthonormal wavelets, {\it Appl. Comput. Harmon. Anal.} {\bf 10}
(2001), no. 1, 71--92. pdf |
Bownik, Marcin; Speegle, Darrin. The wavelet dimension function for real dilations and
dilations admitting non-MSF wavelets. {\it Approximation theory, X (St. Louis, MO, 2001)}, 63--85,
{\it Innov. Appl. Math.,} Vanderbilt Univ. Press, Nashville, TN, 2002. pdf |
Bownik, Marcin; Speegle, Darrin. Meyer type wavelet bases in $R^2$. {\it J. Approx.
Theory} {\bf 116} (2002), no. 1, 49--75. pdf |
Rzeszotnik, Ziemowit; Speegle, Darrin. On wavelets interpolated from a pair of wavelet sets.
{\it Proc. Amer. Math. Soc.} {\bf 130} (2002), no. 10, 2921--2930 (electronic). pdf |
Speegle, Darrin. On the existence of wavelets for non-expansive dilation matrices.
{\it Collect. Math.} {\bf 54} (2003), no. 2, 163--179. pdf |
\'Olafsson, Gestur; Speegle, Darrin. Wavelets, wavelet sets, and linear actions on $R^n$.
{\it Wavelets, frames and operator theory,} 253--281, Contemp. Math., {\bf 345}, Amer. Math. Soc., Providence,
RI, 2004. pdf |
Wojciech Czaja, Gitta Kutyniok and Darrin Speegle, The geometry of sets of parameters of wave packet frames, {\it Applied and Computational Harmonic Analysis,} Volume 20, Issue 1, Computational Harmonic Analysis - Part 2, January 2006, Pages 108-125. pdf |
Pete Casazza, Gitta Kutyniok and Darrin Speegle, A redundant version of the Rado-Horn Theorem, Linear Algebra and its Applications, Volume 418, Issue 1, October 2006, 1--10. pdf |
Bownik, Marcin; Speegle, Darrin. The Feichtinger conjecture for wavelet frames, Gabor frames and frames
of translates.
{\it Canad. J. Math.} {\bf 58} (2006), no. 6, 1121--1143. pdf |
Larson, David; Schulz, Eckart; Speegle, Darrin; Taylor, Keith F. Explicit cross-sections of singly generated group actions.
Harmonic analysis and applications,
209--230, Appl. Numer. Harmon. Anal., Birkh\"auser Boston, Boston, MA, 2006.pdf |
Sikic, H.; Speegle, D. Dyadic PFW's and $W_0$-bases.
Functional analysis IX,
85--90, Various Publ. Ser. (Aarhus), {\bf {48}}, Univ. Aarhus, Aarhus, 2007. pdf |
Casazza, Peter G.; Kutyniok, Gitta; Speegle, Darrin; Tremain, Janet C. A decomposition theorem for frames and the Feichtinger conjecture.
{\it Proc. Amer. Math. Soc.} {\bf 136} (2008), no. 6, 2043--2053. pdf |
Czaja, Wojciech; Kutyniok, Gitta; Speegle, Darrin. Beurling dimension of Gabor pseudoframes for affine subspaces.
{\it J. Fourier Anal. Appl.} {\bf 14} (2008), no. 4, 514--537. pdf |
Sikic, H.; Speegle, D.; Weiss, G. Structure of the set of dyadic PFW's.
{\it Frames and operator theory in analysis and signal processing,}
263--291, Contemp. Math., {\bf 451}, Amer. Math. Soc., Providence, RI, 2008. pdf |
Speegle, Darrin. Uniform partitions of frames of exponentials into Riesz sequences.
{\it J. Math. Anal. Appl.} {\bf 348} (2008), no. 2, 739--745. pdf |
Bownik, Marcin; Speegle, Darrin. Linear independence of Parseval wavelets.
{\it Illinois J. Math.} {\bf 54} (2010), no. 2, 771--785. pdf |
Bownik, Marcin; Jasper, John; Speegle, Darrin. Orthonormal dilations of non-tight frames.
{\it Proc. Amer. Math. Soc.} {\bf 139} (2011), no. 9, 3247--3256. pdf |
Bodmann, Bernhard G.; Casazza, Peter G.; Paulsen, Vern I.; Speegle, Darrin. Spanning and independence properties of frame partitions.
{\it Proc. Amer. Math. Soc.} {\bf 140} (2012), no. 7, 2193--2207. pdf |
Casazza, Peter G.; Speegle, Darrin. Spanning and independence properties of finite frames. Finite frames,
109--139, Appl. Numer. Harmon. Anal., Birkh\"auser Springer, New York, 2013. pdf |
Bownik, Marcin; Speegle, Darrin. Linear independence of time-frequency translates of functions with
faster than exponential decay.
{\it Bull. Lond. Math. Soc.} {\bf 45} (2013), no. 3, 554--566. pdf |
Speegle, Darrin; Steward, Robert. A Bayesian approach to estimation of a statistical change-point in the mean parameter for high dimensional non-linear time series. {\it Proc. SPIE}, {\bf 9597}, 959717-959717-16, 2015. pdf |
Heil, Christopher; Speegle, Darrin. The HRT conjecture and the zero divisor conjecture for the Heisenberg group. Excursions in harmonic analysis. Vol. 3, 159--176, Appl. Numer. Harmon. Anal., Birkh\"auser/Springer, Cham, 2015. pdf |
Bownik, Marcin; Speegle, Darrin. Linear independence of time-frequency translates in $R^d$. {\it J. Geom. Anal.} {\bf 26} (2016), no. 3, 1678--1692. pdf |
Bownik, Marcin; Casazza, Peter; Marcus, Adam; Speegle, Darrin. Improved bounds in Weaver and Feichtinger Conjectures. {\it J. Reine. Angew. Math}, to appear. pdf |
Freeman, Dan; Speegle, Darrin. The discretization problem for continuous frames, submitted to {\it Adv. Math.} pdf |