
                   

THE S-ELEMENTARY WAVELETS ARE PATH-CONNECTED

D. M. Speegle

Abstract. A construction of wavelet sets containing certain subsets of R is given.

The construction is then modified to yield a continuous dependence on the underlying
subset, which is used to prove the path-connectedness of the s-elementary wavelets.

A generalization to Rn is also considered.

0. Introduction

A function f ∈ L2(R) is a dyadic orthogonal wavelet (or simply a wavelet if no
confusion can arise) if {2n/2f(2nx + l)}l,n∈Z is an orthonormal basis for L2(R).

Alternatively, if we define D : L2(R) → L2(R) by D(f)(t) =
√

2f(2t) and T :
L2(R) → L2(R) by T (f)(t) = f(t − 1), then by definition f is a wavelet if and
only if f is a complete wandering vector for the unitary system U = {DnT l}l,n∈Z,
written f ∈ W(U). In operator theory, the set W(V) has been studied mostly in
the case that V is a singly generated infinite group of unitaries [H]. In our case,
however, U is not even a semigroup, and much less is known about the structure
of W(U). For example, while it is known that W(U) is not closed but still has
dense span, it is not known whether W(U) is connected, i.e. pathwise in the L2(R)
metric. However, Dai and Larson [DL] showed thatW(U) does not have any trivial
components.

Now, if we define D̂ = FDF−1 = D−1 and T̂ = FTF−1 = Me−is , where F is
the Fourier transform and Mg is multiplication by g, then f is a wavelet if and only

if f̂ ∈ W(Û) =W({D̂nT̂ l}l,n∈Z). One example of such a function is 1√
2π

1E , where

E = [−2π,−π) ∪ [π, 2π). It is not hard to see that when W is measurable, 1√
2π

1W
is the Fourier transform of a wavelet if and only if (modulo null sets)

∪∞i=−∞2iW = R ∪∞i=−∞ (W + 2πi) = R

with both unions disjoint. Following Dai and Larson, we call such a set W a wavelet
set and the inverse Fourier transform of 1√

2π
1W an s-elementary wavelet.

The importance of translations by 2π and dilations by 2 is such that we are led to
define maps τ̃ : R→ [−2π,−π)∪[π, 2π) and d̃ : R0 = (R\{0})→ [−2π,−π)∪[π, 2π)
by

τ̃(x) = x + 2πm(x) d̃(x) = 2n(x)x,
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where m and n are the unique integers which map x into [−2π,−π)∪ [π, 2π) under
translation and dilation respectively. In this notation, W is a wavelet set if and
only if d̃|W and τ̃ |W are bijections (modulo null sets). If d̃|W and τ̃ |W are injections
modulo null sets, then we say that W is a sub-wavelet set. It should be noted that
not every sub-wavelet set is a subset of a wavelet set; for example, it is not hard to
see that [2π, 4π) is such a set.

We say that measurable sets A and B are 2-dilation congruent if there is a mea-
surable partition {An}∞n=−∞ of A such that B = ∪∞n=−∞2nAn disjointly. Similarly,
A and B are 2π-translation congruent if there is a measurable partition {An}∞n=−∞
of A such that B = ∪∞n=−∞2πn + An disjointly.

In addition, we let λ denote Lebesgue measure on R and µ denote the measure
defined by µ(A) =

∫
1A(x) dλ|x| . Also, for any measurable subset A of R we letM(A)

denote the collection of all measurable subsets B of A such that λ(B) < ∞ and
µ(B) <∞. Then,

d : (M(R0), µ)→ (M([−2π,−π) ∪ [π, 2π)), µ) and

τ : (M(R), λ)→ (M([−2π,−π) ∪ [π, 2π)), λ)

defined by Ad = d(A) = d̃(A) and Aτ = τ(A) = τ̃(A) are locally measure preserving
injections (by this we mean that for any x [resp. x 6= 0], there is a neighborhood
U of x such that τ |M(U),λ [resp. d|M(U),µ] is a measure preserving injection). The
maps d and τ will be studied in more detail in section 2.

Dai and Larson showed that given two wavelet sets of a certain type, it is possible
to interpolate between the corresponding s-elementary wavelets. In this manner,
they were able to reconstruct Meyer’s wavelet. So, it is natural to ask whether it is
possible to connect any two given s-elementary wavelets by a path of wavelets. In
this paper we show that in fact, the collection of all s-elementary wavelets forms a
path-connected subset of L2(R) by showing that the collection of all wavelet sets
is path-connected in the symmetric difference metric. In particular, there is a path
connecting Shannon’s wavelet to Journe’s wavelet, so the collection of all MRA
wavelets does not form a connected component of the collection of all wavelets.
This answers a question Larson posed in a seminar at Texas A&M University in
the summer of 1994.

In addition to the paper [DL], there have been two recent developments in the
theory of s-elementary wavelets. Hernandez, Wang and Weiss have considered the
smoothing of s-elementary wavelets in [HWW1] and [HWW2], while Fang and Wang
[FW] have considered properties of wavelet sets as subsets of R.

1. Subsets of Wavelet Sets

For motivation, we present a special case of the criterion in [DLS] for a set to be
contained in a wavelet set. The construction given will be modified in section 2 to
give continuity.

Theorem 1.1. Let A be a sub-wavelet set. Suppose

(1) there is an ε > 0 such that Aτ ⊂ [−2π + ε,−π) ∪ [π, 2π − ε) and
(2) S = ([−2π,−π) ∪ [π, 2π)) \Ad has non-empty interior.

Then, there is a wavelet set W ⊃ A.

For the proof of Theorem 1.1 we need two lemmas.
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Lemma 1.2. Let E be a subset of [−2π,−π)∪[π, 2π) which has non-empty interior.
Let F be any subset of [−2π,−π) ∪ [π, 2π). Then there is a set G such that the
following two conditions hold.

(i) G is 2-dilation congruent to a subset of E and
(ii) G is 2π-translation congruent to F .

Proof. Let x, ε be such that Bε(x) ⊂ E. Let n be an integer such that 2nε > 6π.
Then, there is an integer m such that ([−2π,−π) ∪ [π, 2π)) + 2πm is contained in
2nBε(x). Let G = F + 2πm and see that G satisfies conditions (i) and (ii). ¤
Lemma 1.3. Let ε > 0. The sets [−2π,−π)∪ [π, 2π) and [−ε,−ε/2)∪ [ε/2, ε) are 2-
dilation congruent. As a consequence, for any set E a subset of [−2π,−π)∪ [π, 2π),
there is a unique G ⊂ [−ε,−ε/2)∪ [ε/2, ε) such that G is 2-dilation congruent to E.

Proof. Since [−2π,−π) ∪ [π, 2π) and [−ε,−ε/2) ∪ [ε/2, ε) are sub-wavelet sets, by
Lemma 4.2 in [DL], it suffices to show

∪∞i=−∞2i([−2π,−π) ∪ [π, 2π)) = ∪∞i=−∞2i([−ε,−ε/2) ∪ [ε/2, ε)).

It is easy to see that

∪∞i=−∞2i([−2π,−π) ∪ [π, 2π)) = R = ∪∞i=−∞2i([−ε,−ε/2) ∪ [ε/2, ε)).

The second statement of the Lemma is now immediate. ¤
Proof of Theorem 1.1. Write S as the disjoint union of sets {Ei}∞i=1, each of which
has non-empty interior. Let F1 = ([−2π + ε,−π)∪ [π, 2π− ε))\Aτ . By Lemma 1.2,
there is a set G1 which is 2π-translation congruent to F1 and 2-dilation congruent
to a subset of E1.

Use Lemma 1.3 with E = E1\(G1∪A)d to get G2 contained in [−ε,−ε/2)∪[ε/2, ε)
which is 2-dilation congruent to E.

Note that by construction, A ∪ G1 ∪ G2 is a sub-wavelet set which satisfies
condition (1) of Theorem 1.1 with ε′ = ε/2 and condition (2) with S = ∪∞i=2Ei.

Let F2 = ([−2π + ε/2,−π) ∪ [π, 2π − ε/2)) \ (A ∪ G1 ∪ G2)
τ . By Lemma 1.2,

there is a set G3 which is 2π-translation congruent to F2 and 2-dilation congruent
to a subset of E2.

Use Lemma 1.3 with E = E2 \ (G3 ∪ G2 ∪ G1 ∪ A)d to get G4 contained in
[−ε/2,−ε/4) ∪ [ε/4, ε/2) which is 2-dilation congruent to E.

Continuing in this fashion, it is easy to see that W = A ∪ (∪∞i=1Gi) is a wavelet
set containing A. ¤

Note that A = [2π, 4π) is not a wavelet set since Ad = [π, 2π). (In fact, since
every wavelet set must have Lebesgue measure 2π, A is not even contained in
a wavelet set.) However, by Theorem 1.1 there are wavelet sets Wn containing
[2π + 1/n, 4π − 1/n) which necessarily converge to [2π, 4π). Since it is generally
easier to prove connectedness of closed sets, this partially explains why the next
section is technical.

2. Paths of Wavelet Sets

It is shown that the wavelet sets are path-connected under the metric dλ(A, B) =
λ(A4B), where λ is Lebesgue measure on R, which is equivalent to the L2(R) metric
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restricted to the s-elementary wavelets. The idea is to first connect any two wavelet
sets by a path of sub-wavelet sets, then for each sub-wavelet set in the path, we will
construct a containing wavelet set which depends continuously on the underlying
sub-wavelet set. In order to do so, we will have to construct continuous analogues
of Lemma 1.2 and Lemma 1.3.

Given a measure m, dm will denote the metric dm(A, B) = m(A4B). We note
here that neither the identity map

I : (M(R), dλ)→ (M(R), dµ)

nor its inverse is continuous. We do, however, have the following lemma.

Lemma 2.1. Let V be a measurable subset of R0 such that λ(V ), µ(V ) <∞. Then
I : (M(V ), dλ)→ (M(V ), dµ) is a homeomorphism.

Proof. The statement follows from the absolute continuity of the integral, but we
give a proof from first principles to familiarize the reader with the type of argument
used below.

For the continuity of I, it suffices to show that for every ε > 0, there is a δ > 0
such that whenever λ(U) < δ, µ(U) < ε. So, fix ε > 0 and note that for all c > 0,
the set which maximizes {µ(S) : λ(S) ≤ c} is of the form (−a, a) ∩ V for some
positive a. Now, since µ(V ) < ∞ and µ is non-atomic, there is some b > 0 such
that µ((−b, b)∩ V ) < ε. Let δ = λ((−b, b)∩ V ). Then, whenever λ(U) < δ, we have
µ(U) ≤ µ((−b, b) ∩ V ) < ε as desired.

For the continuity of I−1, note that for all d > 0, the set which maximizes {λ(T ) :
µ(T ) ≤ d} is of the form ((−∞,−N ]∪ [N,∞))∩V for some nonnegative N . Pick N
such that λ(((−∞,−N ]∪ [N,∞))∩V ) < ε and let δ = µ(((−∞,−N ]∪ [N,∞))∩V ).
Then, whenever µ(U) < δ, we have λ(U) < ε as desired. ¤

An immediate consequence of Lemma 2.1 is the following lemma.

Lemma 2.2. Let W be a sub-wavelet set. Then, the functions d|W and τ |W :
(M(W ), dλ) → (M([−2π,−π) ∪ [π, 2π)), dλ) are continuous with continuous in-
verses.

Proof. The function τ |W is an isometry. On the other hand, d|W is an isometry
from (M(W ), dµ) → (M([−2π,−π) ∪ [π, 2π)), dµ); hence, it is a homeomorphism.
So, the lemma as stated follows from Lemma 2.1. ¤

The following two lemmas are continuous analogues of Lemma 1.2 and 1.3.

Lemma 2.3. Let A ⊂ ([−2π,−π) ∪ [π, 2π)), s > 0, and let N = N(A, s) be the
unique subset of ([−s,−1/2s) ∪ [1/2s, s)) which is 2-dilation congruent to A. Then
N depends (jointly) continuously on A and s with respect to the metric dλ.

Proof. The uniqueness follows from Lemma 1.3.
Write Fr = [−r,− 1

2r) ∪ [ 1
2r, r). Then, F d

r = [−2π,−π) ∪ [π, 2π).

Claim. For s, t > 0,
(1) N(A ∩ (Fs ∩ Ft)

d, s) = N(A ∩ (Fs ∩ Ft)
d, t) and

(2) N(A ∩ (Fs \ Ft)
d, s) ⊂ Fs \ Ft.

Proof of Claim. (1) N(A∩(Fs∩Ft)
d, s) is the unique subset of Fs which is 2-dilation

congruent to A∩ (Fs ∩ Ft)
d. Since N(A∩ (Fs ∩ Ft)

d, t) is also 2-dilation congruent
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to A∩ (Fs∩Ft)
d, it suffices to show that N(A∩ (Fs∩Ft)

d, t) is a subset of Fs. This
follows since N((Fs ∩ Ft)

d, t) = Fs ∩ Ft ⊂ Fs.
(2) It suffices to show that N((Fs \ Ft)

d, s) = Fs \ Ft. To see this, note that
Fs \ Ft is 2-dilation congruent to (Fs \ Ft)

d and is a subset of Fs. Therefore, since
N((Fs \Ft)d, s) is the unique set satisfying the conditions in the previous sentence,
it follows N((Fs \ Ft)

d, s) = Fs \ Ft.

Returning to the proof of lemma 2.3, write U ′ = U ∩ (Fs ∩ Ft)
d for U = A, B.

Then, A′ ∪ (A ∩ (Fs \ Ft)
d) = A. So, using the definition of N and property (2)

above, we have

N(A, s) =N(A′ ∪ (A ∩ (Fs \ Ft)
d), s)

=N(A′, s) ∪N(A ∩ (Fs \ Ft)
d, s)

and
N(B, t) = N(B′, t) ∪N(B ∩ (Ft \ Fs)

d, t).

So, since N(A ∩ (Fs \ Ft)
d, s) ∩ N(B ∩ (Ft \ Fs)

d, t) = ∅, we have (writing T =
N(A, s)4N(B, t))

T = ((N(A′, s) ∪N(A ∩ (Fs \ Ft)
d, s))4(N(B′, t) ∪N(B ∩ (Ft \ Fs)

d, t))

⊂ (N(A′, s)4N(B′, t)) ∪N(A ∩ (Fs \ Ft)
d, s) ∪N(B ∩ (Ft \ Fs)

d, t)

⊂ (Fs4Ft) ∪ (N(A′, s)4N(B′, t))

= (Fs4Ft) ∪ (N(A′, s)4N(B′, s)).

Therefore, N(A, s)4N(B, t) → ∅ as A → B and s → t since Fs4Ft → ∅ as
s → t (by definition of Fr) and N(A′, s)4N(B′, s) → ∅ as A → B by Lemma 2.2
with W = Fs. Therefore, the map (A, s)→ N(A, s) is continuous. ¤
Lemma 2.4. Let A be a subset of [−2π,−π) ∪ [π, 2π), and let (xn) be a sequence
of real numbers which decreases to −2π and is bounded above by −π. In addition,
let s > 0 and let k = k(s) be the smallest integer such that xk(s) < −2π + s. Then,
there is a function M = M(A, s) such that

(i) M is 2π-translation congruent to A
(ii) M is 2-dilation congruent to a subset of [xk(s)+1,−2π + s)
(iii) M is a (jointly) continuous function of A and s with respect to the metric

dλ, and
(iv) if A1 ∩A2 = ∅ and s1, s2 > 0 then M(A1, s1)

d ∩M(A2, s2)
d = ∅.

Proof. We give an explicit construction of M . For each n, choose the smallest
integer mn such that λ(2mn [xn+1, xn)) ≥ 6π and the smallest integer rn such that
([−2π,−π)∪ [π, 2π)) + 2πrn is a subset of 2mn [xn+1, xn). Note that mn, rn and xn
depend neither on A nor s.

Let M1 = M1(A, s) = (A + 2πrk(s)−1) ∩ 2mk(s)−1 [xk(s),−2π + s). Let B =
B(A, s) = A \Mτ

1 , and let M2 = M2(A, s) = B + 2πrk(s). Then, we claim that
M = M1 ∪M2 satisfies (i) through (iv) of Lemma 2.4.

Conditions (i) and (ii) are immediate. Indeed, B + 2πrk(s) ⊂ ([−2π,−π) ∪
[π, 2π)) + 2πrk(s) ⊂ 2mk(s) [xk(s)+1, xk(s)). Therefore, (ii) follows from the fact
[xk(s)+1, xk(s)) ∩ [xk(s),−2π + s) = ∅.
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To prove (iii), let An → A and tn → t. There are two cases to consider. First,
suppose that k(tn)→ k(t) (since k is integer valued, this says k(tn) = k(t) for large
n). It suffices to show that M1(An, tn) → M1(A, t) and M2(An, tn) → M2(A, t).
To see this, we have

M1(An, tn) =(An + 2πrk(tn)−1) ∩ 2mk(tn)−1 [xk(tn),−2π + tn)

→(A + 2πrk(t)−1) ∩ 2mk(t)−1 [xk(t),−2π + t)

=M1(A, t).

So, B(An, tn) = An \M1(An, tn)
τ → A \M1(A, t)τ = B(A, t). Thus, M2(An, tn) =

B(An, tn) + 2πrk(tn) → B(A, t) + 2πrk(t) = M2(A, t), as desired.
Now suppose that k(tn) 6→ k(t). By definition of k, this can only occur when

−2π + t = xm for some m. In addition, if tn increases to t, then k(tn) → k(t), so
we can assume that tn decreases to t. Note that then k(tn)→ k(t)− 1, so we may
assume that k(tn) = k(t)− 1. Then,

M1(An, tn) =(An + 2πrk(tn)−1) ∩ 2mk(tn)−1 [xk(tn),−2π + tn)

=(An + 2πrk(t)−2) ∩ 2mk(t)−2 [xk(t)−1,−2π + tn)

→(A + 2πrk(t)−2) ∩ 2mk(t)−2 [xk(t)−1,−2π + t) = ∅.

(Since k(t) is the smallest natural number such that xk(t) < −2π + t, we have
xk(t)−1 ≥ −2π + t. Therefore, [xk(t)−1,−2π + t) = ∅ modulo a null set.) So,
M(An, tn) = M2(An, tn) = (An \Mτ

1 ) + 2πrk(tn) → A + 2πrk(t)−1. On the other
hand,

M1(A, t) =(A + 2πrk(t)−1) ∩ 2mk(t)−1 [xk(t),−2π + t)

=A + 2πrk(t)−1.

Indeed, since −2π + t = xm for some m, ([−2π,−π) ∪ [π, 2π)) + 2πrk(t)−1 ⊂
[xk(t),−2π + t). Therefore, M(A, t) = M1(A, t) = A + 2πrk(t)−1. So, we have
M(An, tn)→M(A, t) and (iii) is proved.

To prove (iv), note that by construction we can write M(A1, s1) = ∪∞n=02
mnGn

and M(A2, s2) = ∪∞n=02
mnHn with Gn, Hn ⊂ [xn+1, xn) and x0 = −π. Then,

M(A1, s1)
d = ∪∞n=0Gn and M(A2, s2)

d = ∪∞n=0Hn, so M(A1, s1)
d ∩M(A2, s2)

d =
∪∞n=0(Hn ∩ Gn). Therefore, it suffices to show that Gn ∩ Hn = ∅ for all n. But,
this follows from the fact that 2mnGn − 2πrn ⊂ A1, 2mnHn − 2πrn ⊂ A2 and
A1 ∩A2 = ∅. ¤

We are now ready for the main result of this paper.

Theorem 2.5. The wavelet sets are path-connected in the symmetric difference
metric.

Proof. It is shown that every wavelet set W is path-connected to [−2π,−π)∪[π, 2π).
The first step is to construct a path of subsets of wavelet sets, then for each set
in the path, we will find a wavelet superset which depends continuously on the
subset. So, for 0 ≤ t ≤ π let Rt be the subset of W which is 2π-translation
congruent to [−π − t,−π) ∪ [π, π + t), i.e. Rτ

t = [−π − t,−π) ∪ [π, π + t). Let Pt
be the subset of W 2-dilation congruent to [−2π,−2π + t) ∪ [2π − t, 2π) and let
Qt = [−2π + t,−π − t) ∪ [π + t, 2π − t). Then the path of sets defined by
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St =

{
[(Qt ∪Rt) \ (Rd

t ∩Qt)] \ Pt if 0 ≤ t ≤ π/2

Rt \ Pπ−t, if π/2 ≤ t ≤ π

is a path of subsets of wavelet sets which connect E to W and which are of the
type mentioned in Proposition 1.1 for 0 < t < π. Note that the path is continuous
by the continuity of dilations, translations and set operations with respect to dm.

The second step is a recursive construction of sets Mi, continuous functions of
t, such that St ∪ (∪∞i=0Mi) is a wavelet set for each t. Fix xn and the function k
as in Lemma 2.4. Also, define Ci = Ci(t) to be [−2π + t/2i,−2π + t/2i−1) ∪ [2π −
t/2i, 2π − t/2i−1) for i = 1, 2, 3, ... and C0 to be [−2π + t,−π) ∪ [π, 2π − t). For
notational convenience in what follows, we denote

t′ =

{
t if 0 ≤ t ≤ π/2

π − t if π/2 ≤ t ≤ π.

Finally, recall the definitions of the functions N and M from Lemma 2.3 and 2.4
respectively.

Notice that we have the following relations.

(1) C0(t
′) ⊃ Sdt

(2) C0(t
′) ⊃ Sτt .

Now, let A0 = A0(t) = C0(t
′) \ Sdt , s0 = s0(t) = t′ and define M0 = N(A0, s0),

which is a continuous function of t by Lemma 2.3. Note that

(1) [xk(t′)+1,−π) ∪ [π,−xk(t′)) ⊃ (M0 ∪ St)
d ⊃ C0(t

′), and
(2) C0(t

′) ∪ C1(t
′) ⊃ (M0 ∪ St)

τ .

Then let B0 = B0(t) = C0(t
′) \ (M0 ∪ St)

τ , r0 = t′ and define M1 = M(B0, r0),
which is a continuous function of t by Lemma 2.4. Note that

(1) [xk(t′)+1,−π) ∪ [π,−xk(t′)+1) ⊃ (M0 ∪M1 ∪ St)
d ⊃ C0(t

′), and
(2) C0(t

′) ∪ C1(t
′) ⊃ (M0 ∪M1 ∪ St)

τ ⊃ C0(t
′).

For the recursive definition, suppose we have M0, ..., M2p−1 defined such that
each is a continuous function of t and for all r between 0 and p − 1 the following
two conditions hold.

(1a) [xk(t′/2r)+1,−π) ∪ [π,−xk(t′/2r)+1) ⊃ (∪2r
i=0Mi ∪ St)

d ⊃ ∪ri=0Ci(t
′), and

(1b) ∪r+1
i=0 Cia(t′) ⊃ (∪2r

i=0Mi ∪ St)
τ ⊃ ∪r−1

i=0 Ci(t
′)

(2a) [xk(t′/2r)+1,−π) ∪ [π,−xk(t′/2r)+1) ⊃ (∪2r+1
i=0 Mi ∪ St)

d ⊃ ∪ri=0Ci(t
′), and

(2b) ∪r+1
i=0 Ci(t

′) ⊃ (∪2r+1
i=0 Mi ∪ St)

τ ⊃ ∪ri=0Ci(t
′).

Then, we need to define M2p, M2p+1 having the same properties. Let Ap =

Cp(t
′) \ (∪2p−1

i=1 Mi ∪ St)
d, sp = t′/2p and define M2p = N(Ap, sp), which is a con-

tinuous function of t. Let Bp = Cp(t
′) \ (∪2p

i=1Mi ∪ St)
τ , rp = t′/2p, and define

M2p+1 = M(Bp, rp), which is a continuous function of t. Note that Md
2p+1 has

empty intersection with Md
i for i ≤ 2p by Lemma 2.4 when i is odd and by con-

struction when i is even. Thus, we have defined wavelet sets Wt = ∪∞i=0Mi ∪ St.
In order to see that this is a continuous construction, note that

m(∪∞i=2r+1Mi) ≤ t′/2r



               

8 D. M. SPEEGLE

by condition (2) and the definition of Ci. This estimate together with the continuity
of the pieces gives the continuity of Wt. ¤

Corollary 2.6. The s-elementary wavelets form a path-connected subset of L2(R).

Proof. This follows immediately from Theorem 2.5 and the fact that dλ is equivalent
to the L2(R) metric restricted to the s-elementary wavelets. ¤

3. Generalizations to Rn

We begin with the definition of an n-dimensional wavelet set. Let D : Rn → Rn
be a bijective linear transform whose inverse has norm less than 1, and let {Ti : i =
−∞...∞} be the translations by multiples of 2π in every coordinate direction, i.e.
Ti(x1, ..., xn) = (x1 + 2πk1,i, ..., xn + 2πkn,i). Then, we say a measurable set W is

an n-dimensional wavelet set if (2π)−n/21W is the Fourier transform of a wavelet
f , i.e. {(det (D))m/2f(Dmx + (k1, ..., kn) : m, k1, ..., kn ∈ Z} is an orthonormal
basis for Rn. We call this inverse Fourier transform an n-dimensional s-elementary
wavelet, where D is understood.

As was shown in [DLS], a set W is an n-dimensional wavelet set if and only if

∪∞i=−∞Di(W ) = Rn and ∪∞i=−∞Ti(W ) = Rn,

with both unions disjoint. The proof of the existence of such sets is given in [DLS],
and the idea is similar to the proof of Theorem 1.1.

The proof that the n-dimensional wavelet sets are path-connected is largely a
matter of developing the correct analogues to the 1-dimensional case. Therefore,
we will omit some details when convenient. (The full proof appears in the author’s
dissertation [S].) For sets A, B ⊂ Rn with conv(A) ⊂ conv(B), we define the annulus
A(A, B) to be conv(B) \ conv(A). As suggested by the name, we will be mostly
concerned with the case that A and B are ellipsoids.

Let Sn denote the unit sphere in Rn and consider A(Sn, D(Sn)). (Note that since
‖D−1‖ < 1, A(Sn, D(Sn)) is not empty.) Now, let (w1, . . . , wn) be orthonormal
axes of D(Sn); in other words, there exist constants (a1, . . . , an) such that ai > 1

and D(Sn) = {(x1, . . . , xn) :
∑n
i=1

x2
i

a2
i

= 1}, where (x1, . . . , xn) is the coordinati-

zation of a point in Rn with respect to the orthonormal basis (w1, . . . , wn). Define
fi : [1, 2] → [1, ai] by fi(s) = (2 − s) + (1 − s)ai, and for 1 ≤ s ≤ 2, let Ps be the

ellipsoid defined by Ps = {(x1 . . . , xn) :
∑n
i=1

x2
i

fi(s)2 = 1}.
We extend Ps to the positive axis as follows. Let s > 0 and let n be the unique

integer such that 2nt ∈ (1, 2]. Define Ps = D−n(P2ns). Finally, we define P0 = {0}.
As in the one dimensional case, we say that E, F ⊂ Rn are D-congruent if there

is a partition {Ei}∞i=−∞ of E such that

∪∞i=−∞Di(Ei) = F.

Similarly, we say E, F ⊂ Rn are T -congruent if there is a partition {Ei}∞i=−∞ of E
such that

∪∞i=−∞Ti(Ei) = F.

Also, given wavelet sets W and E ⊂ W , we define Eτ to be the subset of [−π, π]n

which is T -congruent to E and Ed to be the subset of A(Sn, D(Sn)) which is
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D-congruent to E. One can check that since D and D−1 are bounded, and all
wavelet sets have finite Lebesgue measure, the functions E → Ed and E → Eτ are
continuous with continuous inverses when restricted to subsets of a given wavelet
set.

We now give the n-dimensional analogues to Lemmas 2.3 and 2.4.

Lemma 3.1. Let A ⊂ A(Pπ, P2π), s > 0. Then there is a unique subset N(A, s)
of A(Ps/2, Ps) which is D congruent to A. Furthermore, N is a jointly continuous
function of A and s.

Proof. The uniqueness follows from the fact that A(Ps/2, Ps) is a D-dilation gen-

erator of Rn. (By this, we mean that ∪∞i=−∞Di(A(Ps/2, Ps)) = Rn, with the union
disjoint.) We will, however, need the explicit formula for N , so we give it here. Let
n = n(s) be the unique integer such that π ≤ 2ns < 2π. Then,

N(A, s) = D−(n+1)(A(P2ns, P2π) ∩A) ∪D−n(A(Pπ, P2ns) ∩A).

To prove continuity, let Am → A and sm → s. Then, there are two cases to
consider. First, suppose n(sm)→ n(s). Then, we may assume that n(sm) = n(s) =
n. So, the continuity follows from the continuity of unions, intersections, Ps and D.

The second case is that n(sm) 6→ n(s). By passing to a subsequence if necessary,
we may assume π ≤ 2n(sm)s < 2π and 2n(sm)s→ 2π. Then, for all m, 2n(sm)s = 2π,
n(s) = n(sm)− 1 and 2n(s) = π. We write n = n(s). So,

N(Am, sm) =D−n−2(A(P2n+1sm , P2π) ∩Am) ∪D−n−1(A(Pπ, P2nsm) ∩Am)

→∅ ∪D−(n+1)(A(Pπ, P2π) ∩A)

=N(A, s),

as desired. ¤
Lemma 3.2. Let A be a subset of [−π, π)n and let {xm}∞m=1 be a sequence of
real numbers which decreases to π and is bounded above by 2π. In addition, let
π > s > 0, and let k = k(s) be the smallest integer such that xk(s) < π + s Then,
there is a function M = M(A, s) such that

(i) M is T -congruent to A,
(ii) M is D-congruent to a subset of A(Pxk(s)+1

, Pπ+s),

(iii) M is a jointly continuous function of A and s, and
(iv) if A1 ∩A2 = ∅ and s1, s2 > 0 then M(A1, s1)

d ∩M(A2, s2)
d = ∅.

Proof. We define M explicitly as in the proof of Lemma 2.4. For each natural
number j, let mj be a large enough integer such that there is an rj with

Trj ([−π, π)n) ⊂ Dmj (A(Pxj+1 , Pxj )).

To define M , let M1 = M1(A, s) = Trk(s)−1
(A) ∩Dmk(s)−1(A(Pxk(s)

, Pπ+s)). Let

E be the subset of A which is T -congruent to M1(A, s). Define B = B(A, s) = A\E.
Let M2 = M2(A, s) = Trk(s)

(B). Then M = M1∪M2 satisfies conditions (i) through

(iv) of Lemma 3.2.
The proof that M satisfies the above conditions is identical to the proof of

Lemma 2.4 with T playing the role of translation, D playing the role of dilation,
and Pxn playing the role of xn, so we omit the details. ¤
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Theorem 3.3. The collection of all n-dimensional wavelet sets is path-connected
in the symmetric difference metric.

Proof. Let W1, W2 be wavelet sets. The first step is to construct a path of sub-
wavelet sets which connects W1 to W2. Let 0 < t0 ≤ π/2 be small enough so that
Pt0 ⊂ [−π, π]n. (This is possible since ‖D−1‖ < 1.) Let Bt = [−t, t]n. For 0 ≤ t ≤ π,
we have the following definitions.

Ot is the subset of W1 such that Oτ
t = Bπ \Bt,

Qt is the subset of W2 such that Qτ
t = Bt,

Rt is the subset of W1 such that Rd
t = A(Pπ, Pπ+min(t,t0)),

Xt is the subset of W2 such that Xd
t = A(Pπ, Pπ+min(t,t0)),

Ut is the subset of W1 such that Ud
t = Od

t ∩Qd
t , and

Vt is the subset of Ot ∪Qt such that V τ
t = A({0}, Pmin(t,t0)).

Then, we have that St defined by

St =

{
(Ot ∪Qt) \ (Rt ∪Xt ∪ Ut ∪ Vt) if 0 ≤ t ≤ π/2

(Ot ∪Qt) \ (Rπ−t ∪Xπ−t ∪ Ut ∪ Vπ−t) if π/2 ≤ t ≤ π

is a path of sub-wavelet sets connecting W1 to W2 by the continuity of E → Ed

and E → Eτ , Lemma 3.1 and Lemma 3.2.
Now, we will construct sets {Mi}∞i=0 which are continuous functions of t such

that St ∪∞i=0 Mi(t) is a wavelet set for each t.
Fix {xn}∞n=1 and the function k as in Lemma 3.2. Define Ci = Ci(t) to be

A(Pπ+t/2i , Pπ+t/2i−1) for i a natural number and C0 to be A(Pπ+t, P2π). Define t′

by

t′ =





t if t ≤ t0

t0 if t0 ≤ t ≤ π − t0

π − t if π − t0 ≤ t ≤ π.

Finally, recall the definitions of N and M in Lemma 3.1 and Lemma 3.2.
Now, let A0 = A0(t) = C0(t

′) \ Sdt , s0 = s0(t) = t′ and define M0 = M0(t) =
N(A0, s0), which is a continuous function of t by Lemma 3.1. Note

(1) A(Pπ+t′ , P2π) ⊃ (M0 ∪ St)
d = C0(t

′), and

(2) [−π, π]n \ A(0, Pt′/2) ⊃ (M0 ∪ St)
τ .

Then let B0 = B0(t) = ([−π, π]n \ A(0, Pt′/2)) \ (M0 ∪ St)
τ , r0 = t′ and define

M1 = M(B0, r0), which is a continuous function of t by Lemma 3.2. Note that

(1) A(Pk(t′)+1, P2π) ⊃ (M0 ∪M1 ∪ St)
d ⊃ C0(t

′), and

(2) (M0 ∪M1 ∪ St)
τ = [−π, π]n \ A(0, Pt′/2).

Now, let A1 = C1(t
′) \ (M0 ∪M1 ∪ St)

d and s1 = t′/2. Define M2 = N(A1, s1).
Then,

(1)A(Pk(t′/2)+1, P2π) ⊃ (∪2
i=0Mi ∪ St)

d ⊃ C0(t
′) ∪ C1(t

′), and

(2)[−π, π]n \ A(0, Pt′/4) ⊃ (∪2
i=0Mi ∪ St)

τ ⊃ [−π, π]n \ A(0, Pt′/2).

Let B1 = ([−π, π]n \ A(0, Pt′/4)) \ (∪2
i=0Mi ∪ St)

τ and r1 = t′/2. Define M3 =
M(B1, r1). Note that



                  

THE S-ELEMENTARY WAVELETS ARE PATH-CONNECTED 11

(1) A(Pk(t′/2)+1, P2π) ⊃ (∪3
i=0Mi ∪ St)

d ⊃ C0(t
′) ∪ C1(t

′), and

(2) (M0 ∪M1 ∪ St)
τ = [−π, π]n \ A(0, Pt′/4).

Note that Md
3 ∩Md

i = ∅ for i < 3 by construction when i is even, and by Lemma 3.2
(v) when i is odd.

Continuing in this fashion, one can check as in the one-dimensional case that the
resulting sets Lt = ∪∞i=0Mi ∪St forms a path of wavelet sets connecting W1 to W2.
¤
Acknowledgments. The author would like to thank W. B. Johnson and D. R. Larson
for their many helpful comments, and G. Garrigos for his careful proofreading.
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