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Abstract. We establish several results yielding linear independence of the affine system
generated by ψ in exchange for conditions on the space V (ψ) of negative dilates. A typical
assumption yielding linear independence is that the space V (ψ) is shift-invariant. In par-
ticular, the affine system generated by a Parseval wavelet is linearly independent. As an
illustration of our techniques, we give an alternative proof of the theorem of Linnell [14] on
linear independence of Gabor systems.

1. Introduction

A frame for a Hilbert space H is a collection of vectors {xi : i ∈ I} such that there exist
constants 0 < A ≤ B <∞ satisfying

(1.1) A‖x‖2 ≤
∑
i∈I

|〈x, xi〉|2 ≤ B‖x‖2

for all x ∈ H. The optimal constants A and B above are called the frame bounds . An unre-
solved conjecture due to Feichtinger states that every frame which is norm bounded below
can be decomposed into finitely many Riesz sequences. Recent progress on this problem has
been made in [8], where it was proven that every frame can be decomposed into dB/C2e
linear independent sets, where B is the upper frame bound in (1.1) and C ≤ ‖xi‖ for all
i ∈ I. By considering the example of H = R and {xi = 1 : 1 ≤ i ≤ N}, one can see that the
bound dB/C2e cannot be improved for general frames.

In this paper, we consider the problem of decomposing affine systems into linearly inde-
pendent sets. Let D : L2(R) → L2(R) denote the dilation operator given by (Df)(x) =√

2f(2x), and let Ty : L2(R) → L2(R) denote the translation operator by y ∈ R, given by
Tyf(x) = f(x− y). Recall that a Parseval wavelet is a function ψ ∈ L2(R) such that affine
system generated by ψ,

W(ψ) := {DjTkψ : j, k ∈ Z},
is a frame for L2(R) with frame bounds A = B = 1. Note that if ‖ψ‖ = 1, then W(ψ) is
linearly independent, since dB/C2e = 1 in this case. In fact, it can be shown that when
‖ψ‖ = 1, W(ψ) is an orthonormal basis for L2(R). The main result of this paper is that
whenever ψ is a Parseval wavelet, W(ψ) is linearly independent. Combining this with a
recent result in [9, Theorem 1.4], we obtain as a corollary that whenever W(ψ) is a Parseval
frame, it can be partitioned into two `2-linearly independent subsets.
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To achieve this goal we establish a series of results yielding linear independence of affine
systems in exchange for conditions on the shift-invariance (SI) of the space V of negative
dilates. A remarkable feature of our methods is that we do not need to assume that ψ is
a frame wavelet. Our main result, Theorem 1.1, guarantees linear independence of W(ψ)
in two disjoint cases: either the space V is Z-SI, or it lacks shift-invariance with respect to
lattices sparser than Z.

Theorem 1.1. Let V = V (ψ) = span{DjTkψ : j < 0, k ∈ Z} be the space of negative
dilates of some ψ ∈ L2(R). Assume either that:

(i) the space V is Z-SI, or
(ii) the space V is not 2jZ-SI for any integer j ≥ 1.

Then, the affine system W(ψ) is linearly independent.

The linear independence of affine systems should be compared with the Gabor case. The
Gabor system generated by g ∈ L2(R) with frequency and time shift parameters a, b > 0 is
given by

G(a, b, g) := {MakTblg : k, l ∈ Z}.
Here, My : L2(R) → L2(R) is the modulation operator by y ∈ R, given by Myf(x) =
e2πixyf(x). Linnell [14] showed that every non-zero Gabor system is linearly independent.
This solves a special case of the HRT Conjecture [13], which states that arbitrary time
frequency shifts of an L2 function are linearly independent, see [12] for details. In the affine
system case, it is clear that there are affine systems which are not linearly independent (such
as those generated by a compactly supported scaling function for an orthonormal wavelet), so
it is perhaps more surprising that affine systems generated by Parseval wavelets are linearly
independent. As an illustration of our methods, we finish the paper by giving a simple proof
of Linnell’s theorem [14] without using von Neumann algebra techniques. The connection
between linear independence of affine and Gabor systems has also been a subject of a recent
paper by Rosenblatt [17], albeit from a different perspective.

2. Preliminaries

The main idea of this paper is to reduce the analysis of linear independence of an affine
system to the analysis of linear independence of translates of an L2 function. Hence, we will
need the following well-known lemma.

Lemma 2.1. If 0 6= ψ ∈ L2(Rn), then {Tkψ : k ∈ Zn} is linearly independent.

Lemma 2.1 is a folklore result and its standard proof uses the Fourier transform. One can
also give a more complicated proof of Lemma 2.1 for functions on the line using facts about
recurrence relations. This proof also holds for general spaces such as Lp(R), 0 < p < ∞.
The situation for Lp(Rn) is considerably more delicate, see [11, 16] for details.

2.1. Shift-invariant spaces. The general properties of SI spaces were studied by a number
of authors, see [2, 3, 15]. Here, we only list the results that will be used later on.

Definition 2.1. Suppose that Γ is a (full rank) lattice, i.e, Γ = PZn, where P is a real n×n
invertible matrix. We say that a closed subspace V ⊂ L2(Rn) is Γ-shift-invariant (Γ-SI), if

f ∈ V =⇒ Tγf ∈ V for all γ ∈ Γ.
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Given a countable family Φ ⊂ L2(Rn) and a lattice Γ we define the Γ-SI system by

EΓ(Φ) = {Tγϕ : ϕ ∈ Φ, γ ∈ Γ}.

When Γ = Zn, we often drop the superscript Γ, and we simply say that V is SI. Likewise,
E(Φ) means EZn

(Φ).

We will need the following two widely known lemmas regarding SI spaces. We include the
proof of Lemma 2.2 for completeness. The proof of Lemma 2.3 can be found in [2, 3].

Lemma 2.2. Let V be a shift invariant subspace of L2(Rn), and denote by PV the orthogonal
projection onto V. For every k ∈ Zn, TkPV = PV Tk.

Proof. Since V is a SI space, so is its orthogonal complement V ⊥ = L2(Rn) 	 V. Take any
f ∈ L2(Rn) and decompose it as f = f0 + f1, where f0 ∈ V and f1 ∈ V ⊥. Then,

TkPV (f) = Tkf0 = PV (Tkf0 + Tkf1) = PV Tk(f).

�

The Fourier transform F : L2(Rn)→ L2(Rn) is defined initially for f ∈ L1(Rn) by

f̂(ξ) =

∫
Rn

f(x)e−2πi〈x,ξ〉 dx.

Lemma 2.3. Suppose V is a Zn-SI space and ϕ ∈ V. If f ∈ L2(Rn) satisfies

f̂(ξ) = mf (ξ)ϕ̂(ξ) a.e. ξ ∈ Rn,

for some Zn-periodic measurable function mf , then f ∈ V.

The spectral function of SI spaces was introduced by Bownik and Rzeszotnik in [5]. The
following result, see [5, Lemma 2.5], can serve as its definition.

Lemma 2.4. If V ⊂ L2(Rn) is SI, then there exists a countable family Φ ⊂ V such that
E(Φ) = {Tkϕ : ϕ ∈ Φ, k ∈ Zn} is a Parseval frame for V . Then, the spectral function of V
satisfies

(2.1) σV (ξ) =
∑
ϕ∈Φ

|ϕ̂(ξ)|2 for a.e. ξ ∈ Rn,

In particular, the above sum does not depend (except on a set of measure zero) on the choice
of Φ as long as E(Φ) is a Parseval frame for V .

The dimension function (also called the multiplicity function) of a SI space V is a Zn-
periodic function dimV : Rn → N ∪ {0,∞}. It is given by

dimV (ξ) = dim span{(ϕ̂(ξ + k))k∈Zn : ϕ ∈ Φ},

where Φ ⊂ V is a countable set of generators of V , i.e., V = spanE(Φ). Alternatively, one
can use the spectral function to define the dimension function of V as

(2.2) dimV (ξ) =
∑
k∈Zn

σV (ξ + k).

We refer the reader to [5] for the proof of this fact.
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2.2. Frame wavelets. Despite the fact that our results are motivated by the classical case
of dyadic dilations in R, we will adopt a more general setting of expansive integer-valued
dilations in Rn. More specifically, we shall assume that we are given an n×n integer-valued
matrix A that is expansive, i.e., all its eigenvalues have modulus greater than 1.

We say that ψ ∈ L2(Rn) is a frame wavelet if its associated affine system

W(ψ) = {DjTkψ : j ∈ Z, k ∈ Zn}

is a frame of L2(Rn). Here, the dilation operatorD = DA is given byDf(x) = | detA|1/2f(Ax)
and the translation operator Tkf(x) = f(x−k) for some k ∈ Zn. In the case when the affine
system is a tight frame with constant 1, we say that ψ is a Parseval wavelet. We say that a
frame wavelet φ is a canonical dual to a frame wavelet ψ ifW(φ) is the canonical dual frame
of W(ψ). That is,

DjTkφ = S−1(DjTkψ) for all j ∈ Z, k ∈ Zn,

where S is the frame operator of W(ψ) given by

Sf =
∑
j∈Z

∑
k∈Zn

〈f,DjTkψ〉DjTkψ.

Not every frame wavelet has a canonical dual, or even a dual frame wavelet, see [7]. But,
every Parseval wavelet is the canonical dual of itself, since its frame operator S is the identity
on L2(Rn).

For ψ ∈ L2(Rn) we define its space of negative dilates by

V (ψ) = span{DjTkψ : j < 0, k ∈ Zn}.

Later we will need the following result due to Weber and the first author [7].

Theorem 2.5. Suppose that ψ ∈ L2(Rn) is a frame wavelet which has a canonical dual
frame wavelet. That is, the canonical dual of W(ψ) is of the form W(φ) for some frame
wavelet φ. Then, the space V (ψ) of negative dilates of ψ is Zn-SI.

3. Linear independence of affine systems

In this section we establish a series of results yielding linear independence of affine systems
in exchange for conditions on the space of negative dilates. Note that we do not need to
assume that ψ is a frame wavelet in any of the results except Corollaries 3.8 and 3.9. We
start with the following basic result taking advantage of shift-invariance.

Theorem 3.1. Suppose ψ ∈ L2(Rn) and let

V = V (ψ) = span{DjTkψ : j < 0, k ∈ Zn}

be its space of negative dilates. If V is SI and DV 6= V , then W(ψ) is linearly independent.

Proof. On the contrary, assume that there exists a non-zero finitely supported sequence (cj,k)
such that ∑

j∈Z

∑
k∈Zn

cj,kD
jTkψ = 0.
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Applying the dilation operator we can assume that the largest scale j such that cj,k 6= 0 for
some k ∈ Zn is the zero scale. Hence,

(3.1)
∑
k∈Zn

c0,kTkψ +
∑
j<0

∑
k∈Zn

DjTkψ = 0.

Let PV be the orthogonal projection onto V . Then, applying I − PV to (3.1), we have∑
k∈Zn

c0,k(I − PV )Tkψ =
∑
k∈Zn

c0,kTk(I − PV )ψ = 0,

where we used that V is SI. Hence, by Lemma 2.1, (I − PV )ψ = 0. Therefore, Tkψ ∈ V
for all k ∈ Zn, since V is SI. This implies that DV = V , which is a contradiction with our
assumption. Hence, W(ψ) is linearly independent. �

Using a similar technique as in Theorem 3.1 we can prove an analogous result involving
the space of positive dilates.

Theorem 3.2. Suppose 0 6= ψ ∈ L2(Rn) and let

Z = Z(ψ) = span{DjTkψ : j > 0, k ∈ Zn}
be its space of positive dilates. If DZ 6= Z, then W(ψ) is linearly independent.

To prove Theorem 3.2 one needs to follow the proof of Theorem 3.1 by observing that Z
is automatically SI. As a Corollary of Theorem 3.2 we obtain the following result.

Corollary 3.3. Suppose 0 6= ψ ∈ L2(Rn) is such that the affine system W(ψ) is complete.
If Z 6= L2(Rn), then W(ψ) is linearly independent.

Proof. Suppose first that DZ = Z. This implies that Z =
⋃
j∈ZD

j(Z) = L2(Rn) by the
completeness assumption, which is a contradiction. Hence, DZ 6= Z, and Theorem 3.2 can
be applied. �

The following theorem plays a key role in our considerations. Theorem 3.4 shows that
linear dependence of the affine system W(ψ) implies that the space of negative dilates V (ψ)
must possess certain shift-invariance with respect to a sublattice of Zn.

Theorem 3.4. Suppose ψ ∈ L2(Rn) and W(ψ) is linearly dependent. Then, the space of
negative dilates V = V (ψ) is AJZn-SI for some J ≥ 1. Moreover, V is finitely generated.

Proof. Suppose that W(ψ) is linearly dependent. Then, there exists a non-zero finitely
supported sequence (cj,k) such that∑

j∈Z

∑
k∈Zn

cj,kD
jTkψ = 0.

Applying the dilation operator we can assume that the smallest scale j such that cj,k 6= 0
for some k ∈ Zn is the zero scale. Hence, for some J ∈ N,

(3.2) ϕ :=
∑
k∈Zn

c0,kTkψ = −
J∑
j=1

∑
k∈Zn

cj,kD
jTkψ.

For any j1 ≤ j2 ∈ Z ∪ {−∞,∞}, define the spaces

(3.3) Vj1,j2 = span{DjTkψ : j1 ≤ j ≤ j2, k ∈ Zn}.
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Since DjTk = TA−jkD
j and the dilation A preserves the lattice Zn, the space Vj1,j2 is A−j1Zn-

SI. Taking the Fourier transform of (3.2) we have

ϕ̂(ξ) = m(ξ)ψ̂(ξ) ∈ F(V1,J), where m(ξ) =
∑
k∈Zn

c0,ke
−2πi〈k,ξ〉.

Since the zero set of the trigonometric polynomial m has null measure, we can define a
Zn-periodic function mf (ξ) = 1/m(ξ) for a.e. ξ. By (3.2) and (3.3), ϕ ∈ V1,J . Since V1,J is
A−1Zn-SI, and hence Zn-SI, by Lemma 2.3 we have that ψ ∈ V1,J . Again, using that V1,J is
Zn-SI we must have

(3.4) V0,J = V1,J .

Applying the dilation operator Dk, (3.4) yields

(3.5) Vk,k+J = Vk+1,k+J for any k ∈ Z,
We claim that

(3.6) Vr,J = V1,J for all r ≤ 0.

We shall proceed by induction. Suppose that (3.6) is true for some r ≤ 0. Then, by (3.5)

Vr−1,r−1+J = Vr,r−1+J ⊂ Vr,J = V1,J .

Hence,
Vr−1,J = span(Vr−1,r−1+J ∪ Vr,J) ⊂ V1,J .

Clearly, the last inclusion is the equality and (3.6) is established with r replaced by r − 1.
This proves (3.6). Consequently,

V−∞,J = span

(⋃
r≤0

Vr,J

)
= V1,J .

Applying the dilation operator D−J−1, we have that the space of negative dilates satisfies

V (ψ) = V−∞,−1 = V−J,−1.

Observe that V−J,−1 is a AJZn-SI space. It is also finitely generated. This is because the
affine system W(ψ) at the scale j ≥ −J is generated by AJZn-shifts of | detA|j+J functions.
Consequently, V (ψ) is a finitely generated AJZn-SI space. �

As an application of Theorem 3.4, we establish our main result on the linear independence
of affine systems. In particular, we will show that one can improve Theorem 3.1 by removing
the hypothesis that DV = V . To achieve this, we need the following result about SI spaces.

Lemma 3.5. Suppose that a non-zero space V ⊂ L2(Rn) is SI and DV ⊂ V . Then,
dimV (ξ) =∞ for a.e. ξ. In particular, V is not finitely generated.

Proof. In general, if V is SI, then DV is also SI since the dilation A preserves the lattice Zn.
Moreover, by [5, Corollary 3.5], the dimension functions V and DV are related by

(3.7) dimDV (ξ) =
∑
d∈D

dimV (B−1ξ + d) for a.e. ξ,

where B = AT and D is a collection of distinct coset representatives of (B−1Zn)/Zn. Indeed,
(3.7) is an immediate consequence of (2.2) and the identity σDV (ξ) = σV (B−1ξ), which was
shown in [5].
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To finish the proof we use a standard ergodic argument. Since the linear map B : Rn → Rn

preserves the lattice Zn, it induces a measure preserving endomorphism B̃ : Tn → Tn, where
Tn = Rn/Zn. Moreover, B̃ is ergodic by [19, Corollary 1.10.1] since B is expansive. Let
E = {ξ ∈ Tn : dimV (ξ) ≥ 1}. Since

(3.8) dimV (ξ) ≥ dimDV (ξ) =
∑
d∈D

dimV (B−1ξ + d),

we have that E ⊂ B̃−1E. Thus, B̃−1E = E (modulo null sets) since B̃ is measure preserving.
Thus, by the ergodicity of B̃, we have either |E| = 0 or |E| = 1. Since the space V is non-
zero, we must have E = Tn. Since D has | detA| elements, we can apply repeatedly (3.8) to
obtain that dimV (ξ) ≥ | detA|N a.e. for any N ≥ 1. This implies that dimV (ξ) =∞ a.e. �

Theorem 3.6. Suppose ψ ∈ L2(Rn) and its space of negative dilates V = V (ψ) is SI. Then,
W(ψ) is linearly independent.

Proof. We need to consider two possible scenarios. If DV 6= V , then W(ψ) is linearly
independent by Theorem 3.1, and we are done.

Hence, it remains to deal with the case when DV = V . By Lemma 3.5, the Zn-SI space
V is not finitely generated. Therefore, by the contrapositive of Theorem 3.4, W(ψ) must be
linearly independent. Hence, in either case we have the linear independence of W(ψ). �

Combining Theorems 3.4 and 3.6 we can prove our main result on linear independence
of affine systems in terms of the space of negative dilates. Roughly speaking, Theorem 3.7
guarantees linear independence if this space is either Zn-SI or lacks any SI with respect to
lattices sparser than Zn.

Theorem 3.7. Let V (ψ) be the space of negative dilates of some ψ ∈ L2(Rn). Let

J = inf{j ∈ Z : V (ψ) is AjZn-SI}.

If −∞ ≤ J ≤ 0 or J =∞, then W(ψ) is linearly independent.

Proof. The case J = ∞ means that the space V is not AjZn-SI for any j ∈ Z. Hence, by
the contrapositive of Theorem 3.4, W(ψ) must be linearly independent. On the other hand,
J ≤ 0 implies that V is Zn-SI, since AjZn ⊂ Aj−1Zn for all j ∈ Z. Thus, by Theorem 3.6,
W(ψ) must be linearly independent as well. �

Remark 3.1. The idea of defining the parameter J corresponding to the shift-invariance of
the space V (ψ) is due to Behera [1]. If ψ is an orthogonal wavelet, then J is easily seen to
be an integer ≤ 0 or −∞. A result of Behera [1, Theorem 3.4] says that each of these values
can be attained by some orthogonal wavelet ψ.

As a corollary of Theorems 2.5 and 3.6 we obtain the linear independence of Parseval
wavelet frames.

Corollary 3.8. Suppose ψ ∈ L2(Rn) is a frame wavelet which has a canonical dual frame
wavelet. In particular, ψ could be any Parseval wavelet. Then,W(ψ) is linearly independent.

Proof. By Theorem 2.5, the space of negative dilates V = V (ψ) is automatically SI. Hence,
Theorem 3.6 applies and yields the linear independence of W(ψ). �
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Remark 3.2. Note that the case of DV = V in Corollary 3.8 is purely hypothetical, since
no examples of canonical dual frame wavelets ψ with “large” space V = V (ψ) of negative
dilates are known. In fact, Baggett’s conjecture states that the space of negative dilates V
of any Parseval wavelet ψ satisfies

⋂
j∈ZD

jV = {0}, see [4, 6]. Consequently, if Baggett’s
conjecture is true, then necessarily DV 6= V . We also note that for general frame wavelets
it might happen that V is very “large”. For an example of a frame wavelet ψ such that
V = L2(Rn), see [4, 6]. Hence, the case of DV = V in the proof of Theorem 3.6 can indeed
happen. In this case, Theorem 3.6 guarantees that the affine system W(ψ) is necessarily
linearly independent. This might seem counter-intuitive since the fact that space of negative
dilates V = L2(Rn) means that W(ψ) is highly overcomplete.

Remark 3.3. Suppose that φ satisfies a refinement equation

φ(x) =
∑
k∈Zn

ckφ(Ax− k),

where only finitely many of the coefficients ck are non-zero. In particular, φ could be a
compactly supported scaling function of some multiresolution analysis such as Haar-type
scaling function. In the notation of Theorem 3.4, this implies that φ ∈ V1,1 and consequently,
V0,0 ⊂ V1,1. Therefore, the space of negative dilates V (φ) = V−1,−1 is AZn-SI. Note that this
is consistent with Theorem 3.7. Indeed, to conclude that the affine system W(φ) is linearly
independent we would need to know that V (φ) is Zn-SI and not merely AZn-SI as in this
example.

Example 3.1. Given ε > 0, define the function ψ = ψ0 + εψ1, where

ψ̂0 = 1[−1/4,−1/8]∪[1/8,1/4], ψ̂1 = 1[−1/2,−1/4]∪[1/4,3/4].

By [7, Theorem 2(i)], ψ is a frame wavelet for sufficiently small ε > 0. Moreover, the space
of negative dilates is

V (ψ) = {f ∈ L2(R) : supp f̂ ⊂ [−1/4, 3/8], f̂(ξ − 1/2) = f̂(ξ) for a.e. ξ ∈ [1/4, 3/8]}.

Consequently, V (ψ) is 2Z-SI, but not Z-SI. Thus, Theorem 3.7 does not apply. Despite this,
one can easily see that the affine system W(ψ) is linearly independent. Indeed, take any
non-trivial finite linear combination of functions in W(ψ). Without loss of generality, we
can assume that the largest scale j with non-zero coefficients is j = 0. Then, the fact that
K = supp ψ̂ is bounded immediately implies that there will be no cancelations on K \(K/2).
Thus, any such linear combination yields a non-zero function. Therefore, Theorem 3.7 gives
only a sufficient, but not a necessary condition for linear independence of affine systems.

We now move to the problem of `2-linear independence of affine systems. Recall that a
sequence {xj : j ∈ N} in a Banach space is said to be `2-linearly independent if

(3.9) {αj} ∈ `2 ,
∞∑
j=1

αjxj = 0 ⇒ αj = 0 , ∀j ∈ N.

Note that the order of the indexing set matters in general; we do not assume that the
convergence in the sum is unconditional. However, if {xj : j ∈ N} is a Bessel sequence in a
Hilbert space, then the ordering is irrelevant.
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Corollary 3.9. Suppose ψ ∈ L2(Rn) is a frame wavelet which has a canonical dual frame
wavelet. In particular, ψ could be any Parseval wavelet. Then, W(ψ) can be partitioned into
two `2-linearly independent sets.

Proof. In [9], it was shown that a linearly independent Bessel sequence can be partitioned
into two `2-linearly independent sequences. The result follows now from Corollary 3.8. �

Example 3.2. Let ψ ∈ L2(R) be a Parseval wavelet defined by ψ̂ = 1[−1/2,−1/4]∪[1/4,1/2]. It is
easy to see that {Tkψ : k ∈ Z} is not `2-linearly independent. In particular, the Parseval
frame W(ψ) is not `2-linearly independent as well. Further information on this and related
examples can be found in [18].

We close this section by giving another application of Theorem 3.4. We show how to
obtain a result of Christensen and Lindner [10, Theorem 3.2] with some improvements in
the constants.

Corollary 3.10. Let a ∈ N, a > 1, b > 0 and assume that ψ ∈ L2(R) has compact support.
Define

c := sup suppψ − inf suppψ,

and suppose that there is an interval of positive length d on which ψ 6= 0 a.e. For any choice
of integers m and n such that

bm > c and an(bm− c) > 2bm− c,
W(ψ) = {ψj,k = Dj

aTkbψ : j, k ∈ Z} can be partitioned into mn linearly independent sets. In
particular, for any r ∈ {0, . . . ,m− 1} and s ∈ {0, . . . , n− 1}, the set {ψnj+s,mk+r : j, k ∈ Z}
is linearly independent.

Proof. We begin with the case s = r = 0. In the notation of the proof of Theorem 3.4, we
show that V−∞,0 is not equal to V−J,0 for any non-negative integer J . Since the support of ψ
contains an interval, it suffices to show that for each J , there is a set E = E(J) of positive
measure and a positive number M = M(J) such that every interval of length M intersects
E and and such that every ψ ∈ V−J,0 vanishes on E. For then, there is some j sufficiently
large so that anjd > M , which implies that the set where D−njψ is nonzero intersects the
set where every function in V−J,0 vanishes.

We proceed by induction on J , and we will show that M(J) can be chosen to be anJ(2mb−
c). For J = 0, it is clear from the condition bm > c that all ψ ∈ V0,0 vanish on the bmZ
periodization of a set with length at least bm− c. Hence, any interval of length greater than
or equal to bm+ (bm− c) = M(0) will contain a sub-interval of length bm− c on which all
ψ ∈ V0,0 vanish.

Assume the above is true for 0, . . . , J − 1. Note that all D−nJTmbkψ vanish on an interval
I of length anJ(mb− c). By periodicity, all D−nJTmbkψ vanish on Ik = I + anJmbk as well.
Since anJ(bm − c) = an(J−1)an(bm − c) > an(J−1)(2bm − c), it follows that each interval Ik
has non-trivial intersection with E(J − 1). Therefore, for each k ∈ Z and ψ ∈ V−J,0, ψ
vanishes on a subset of Ik of positive measure. Finally, by the anJmbZ periodicity of the
Ik’s, it follows that any interval of length anJ(mb − c) + anJmb = M(J) must contain one
of the Ik’s, and in particular, contain a set of positive measure on which every ψ ∈ V−J,0
vanishes.

To finish the proof, replace ψ by ψ̃ = ψ0,r and see that {ψnj+s,mk+r : j, k ∈ Z} is linearly

independent if and only if {ψ̃nj,mk : j, k ∈ Z} is linearly independent. �
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4. Linear independence of Gabor systems

The goal of this section is to give an alternative proof of Linnell’s theorem [14] on the
linear independence of the Gabor system G(a, b, g). Since Linnell’s proof uses von Neumann
algebra techniques, it was not previously known whether the same result can be obtained
using other techniques. We will show that the techniques of the previous section, especially
Theorem 3.4, achieve this goal in the one dimensional case. The higher dimensional case is
not readily accessible with these methods.

Lemma 4.1. Suppose that a non-zero space V ⊂ L2(R) is SI and V ⊂ Ma(V ) for some
a > 0. Then,

(4.1)

∫ 1

0

dimV (ξ)dξ =∞.

In particular, V is not finitely generated.

Proof. In general, when V is SI, then Ma(V ) is also SI and the spectral functions are related
by

(4.2) σMa(V )(ξ) = σV (ξ − a).

Indeed, (4.2) is an immediate consequence of Lemma 2.4, see also [5]. Thus, V ⊂ Ma(V )
implies that σV (ξ − a) ≥ σV (ξ) by [5, Proposition 2.6]. Let E =

⋃
k∈Z(ak + suppσV ) be the

aZ-periodization of the support of σV . Thus,∑
k∈Z

σV (ξ + ak) =

{
∞ ξ ∈ E,
0 otherwise.

Hence, using (2.2),∫ 1

0

dimV (ξ)dξ =

∫ 1

0

(∑
k∈Z

σV (ξ + k)

)
dξ =

∫
R
σV (ξ)dξ =

∫ a

0

(∑
k∈Z

σV (ξ + ak)

)
dξ =∞.

�

Theorem 4.2. Suppose that g ∈ L2(R) and a, b > 0. Then, G(a, b, g) is linearly independent.

Proof. For simplicity we shall assume that time shift parameter b = 1. Indeed, applying a
standard dilation argument one can always reduce to the special case where a > 0 and b = 1.

On the contrary, suppose that G(a, 1, g) is linearly dependent. Then, there exists a non-
zero finitely supported sequence (cj,k) such that∑

j∈Z

∑
k∈Z

cj,kMajTkg = 0.

Applying the modulation operator we can assume that the smallest j such that cj,k 6= 0 for
some k ∈ Z is j = 0. Hence, for some J ∈ N,

(4.3) ϕ :=
∑
k∈Z

c0,kTkg = −
J∑
j=1

∑
k∈Z

cj,kMajTkg.

For any j1 ≤ j2 ∈ Z ∪ {−∞,∞}, define the SI spaces

(4.4) Vj1,j2 = span{MajTkg : j1 ≤ j ≤ j2, k ∈ Z}.
10



Taking the Fourier transform of (4.3) we have

ϕ̂(ξ) = m(ξ)ĝ(ξ) ∈ F(V1,J), where m(ξ) =
∑
k∈Z

c0,ke
−2πikξ.

Since the zero set of the trigonometric polynomial m is finite, we can define a Z-periodic
function mf (ξ) = 1/m(ξ) for a.e. ξ. By (4.3) and (4.4), ϕ ∈ V1,J . Since V1,J is SI, by Lemma
2.3 we have that g ∈ V1,J . Again, using that V1,J is SI we must have

(4.5) V0,J = V1,J .

Applying the modulation operator Mak, (4.5) yields

(4.6) Vk,k+J = Vk+1,k+J for any k ∈ Z,
We claim that

(4.7) Vr,J = V1,J for all r ≤ 0.

We shall induct on r. Suppose that (4.7) is true for some r ≤ 0. Then, by (4.6)

Vr−1,r−1+J = Vr,r−1+J ⊂ Vr,J = V1,J .

Hence,
Vr−1,J = span(Vr−1,r−1+J ∪ Vr,J) ⊂ V1,J .

Clearly, the last inclusion is the equality and (4.7) is established. Consequently,

V−∞,J = span

(⋃
r≤0

Vr,J

)
= V1,J .

In particular, V−∞,J must be finitely generated. On the other hand, applying the modulation
operator Ma, we have

V−∞,J ⊂ V−∞,J+1 = Ma(V−∞,J).

By Lemma 4.1, V−∞,J is not finitely generated, which is a contradiction. Thus, G(a, 1, g) is
linearly independent. �

Remark 4.1. Using metaplectic transforms, see [12, Section 5.1], one can immediately gen-
eralize Theorem 4.2 to Gabor systems corresponding to any lattice Λ ⊂ R2, i.e.,

G(Λ, g) := {MxTyg : (x, y) ∈ Λ}.
Hence, we recover Linnell’s result [14] in one dimension.
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