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Abstract. We show that any wavelet, with the support of its Fourier transform small

enough, can be interpolated from a pair of wavelet sets. The interpolation procedure,

which was introduced by X. Dai and D. Larson in [DL], allows us also to prove the extension

property, a result already announced in [BGRW].

1. Introduction

The L2 theory of orthonormal wavelets is not fully developed yet. There are three
ways of understanding the whole set of wavelets in L2(R). The first one relies on char-
acterization equations introduced by Y. Meyer (see [Le], [BSW], [Gr], [HW]) or those
conjectured by G. Weiss (see [B], [WW]). The second one is based on the idea of a gen-
eralized multiresolution analysis introduced by L. Baggett, H. Medina and K. Merrill in
[BMM]. The final one, described by X. Dai and D. Larson in [DL], approaches wavelets
from operator theory point of view by treating them as wandering vectors. One of the
advantages of this approach is the interpolation procedure, which allows one for a con-
struction of “new” wavelets from “old” wavelets. The procedure is particularly simple
in the case when the “old” wavelets are of the MSF type. As a result, these elementary
MSF wavelets can be viewed as “building blocks” of a huge class of wavelets. Even the
situation when we use only two wavelet sets to construct new wavelets is very interest-
ing. [DL] contains a detailed study of this basic interpolation. For example, it is shown
that Meyer’s original construction of wavelets follows naturally from this point of view.
The construction of Meyer was based on characterization equations mentioned above.
In this paper we establish a further connection between these equations and wavelets
interpolated from a pair of wavelet sets. To be more precise, we use the equations to
prove that if the support of ψ̂ is “small”, then the wavelet ψ can be interpolated from a
pair of wavelet sets. To exhibit the usefulness of this basic interpolation we apply it to
prove that the local behaviour of the Fourier transform ψ̂ of a wavelet ψ is as arbitrary
as possible in any point on the real line, except the origin. This is closely related to
[BGRW], where it was shown, that the origin is a point of a special meaning for ψ̂.
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2. Interpolation pairs of wavelet sets

Following [DL] we shall define an interpolation pair of wavelet sets. Let E and F be
wavelet sets. Since both these sets partition R under translations by 2kπ, k ∈ Z, we can
consider a natural mapping σ : E → F , such that σ(ξ) = ξ + 2kπ, where k ∈ Z. The
interpolation map σF

E is the unique extension of σ to R, such that

(2.1) σF
E(ξ) = 2jσF

E(2−jξ) for ξ ∈ 2jE, j ∈ Z.

That the extension exists and is unique, follows from the fact, that both E and F partition
R under dilations by 2j , j ∈ Z. The ordered pair (E, F ) is called an interpolation pair if
(σF

E)2 is equal to identity. If that is the case, then every function ψ given by

ψ̂ = h11E + h21F ,

where h1 and h2 are 2–dilation–periodic, is an orthonormal wavelet1 provided that the
matrix

(2.2)
[

h1 h2

h2 ◦ σF
E h1 ◦ σF

E

]
is unitary a.e. on E. We refer to such wavelets as to wavelets interpolated from a pair
(E, F ).

The question we are concerned about is: “How big is the class of wavelets interpolated
from a pair of wavelet sets?” Although this question is pretty vague we shall try to give
a precise answer to it.

In [La] it is shown that if (E, F ) is an interpolation pair and ψ is a wavelet such that
the support of ψ̂ is contained in E ∪F , then ψ can be interpolated from the pair (E, F ).
Therefore, at least in the case of interpolation pairs, it is enough to concentrate on the
support of ψ̂ to find out if a given wavelet ψ comes from an interpolation; however, left
open is the question of how to know whether the support of ψ̂ is contained in the union
of an interpolation pair of wavelet sets. This motivates the following approach. Let
ψ ∈ L2(R) be a wavelet. Denote the support of ψ̂ by K and define two maps

TK(ξ) =
∑
k∈Z

1K(ξ + 2kπ)

and
DK(ξ) =

∑
j∈Z

1K(2jξ),

1We use the Fourier transform defined by

ψ̂(ξ) =

∫
R

ψ(x)e−ixξ dx.
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where ξ ∈ R. The maps are defined a.e. and the supremum norms ‖TK‖∞, ‖DK‖∞
determine the “size” of the set K. To see how this notion operates let us recall Meyer’s
equations characterizing wavelets (see [HKLS]):

(2.3)
∑
k∈Z

|ψ̂(ξ + 2kπ)|2 = 1,

(2.4)
∑
k∈Z

ψ̂(ξ + 2kπ)ψ̂(2j(ξ + 2kπ)) = 0 for j ≥ 1,

(2.5)
∑
j∈Z

|ψ̂(2jξ)|2 = 1,

(2.6) tq(ξ) :=
∞∑

j=0

ψ̂(2jξ)ψ̂(2j(ξ + 2qπ)) = 0, for q ∈ 2Z + 1 .

From equations (2.3) and (2.5) it follows that the case ‖TK‖∞ = ‖DK‖∞ = 1 gives
us the most elementary wavelets, that is MSF wavelets (even if only one of the norms
is equal to 1, then ψ must be an MSF wavelet). We will prove that the second simplest
case, that is ‖TK‖∞ = ‖DK‖∞ = 2 corresponds exactly to wavelets interpolated from a
pair of wavelet sets. Of course, in light of [La], we can achieve this by focusing on the
support of the Fourier transform of a wavelet.

Theorem 2.1. Let ψ ∈ L2(R) be an orthonormal wavelet and K denote the support
of ψ̂. There exists an interpolation pair (E, F ) such that K = E ∪ F if and only if
‖TK‖∞ = ‖DK‖∞ = 2.

Proof. Only one implication of the above statement requires a proof (the other one follows
immediately from the fact that E and F are wavelet sets). The real task is to decompose
K into a sum of two wavelet sets, provided that K is the support of the Fourier transform
of a wavelet ψ and TK and DK are bounded by 2 (proving that these wavelet sets will
form an interpolation pair will not be difficult).

The proof consists of several, easy to justify, claims.

Claim A. TK(ξ) = DK(ξ) for a.e. ξ ∈ K.

Proof A. To prove Claim A we observe that TK and DK can only attain values 1 and
2 on K (value 0 is restricted because of (2.3) and (2.5)). From equation (2.3) it follows
that {ξ ∈ R : |ψ̂(ξ)| = 1} = {ξ ∈ K : TK(ξ) = 1}. Similarly, equation (2.5) asserts that
{ξ ∈ R : |ψ̂(ξ)| = 1} = {ξ ∈ K : DK(ξ) = 1}. Thus, Claim A is true. ♣A

Let R := {ξ ∈ K : TK(ξ) = DK(ξ) = 1} (we know already that R = {ξ ∈ R : |ψ̂(ξ)| =
1}). From Claim A it follows that if ξ ∈ K \R, then there is a unique integer k �= 0 such
that ξ + 2kπ ∈ K \ R and also a unique integer j �= 0 such that 2jξ ∈ K \ R. Thus, we
can define a map τK : K \ R → K \ R by setting

τK(ξ) = ξ + 2kπ,

where k ∈ Z \ {0} (k depends on ξ) and a map dK : K \ R → K \ R by setting

dK(ξ) = 2jξ,

where j ∈ Z \ {0} (j depends on ξ).
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Claim B. τK and dK commute.

Proof B. We prove Claim B by applying equation (2.6). Let ξ ∈ K \R, τK(ξ) = ξ + 2kπ
and dK(ξ) = 2jξ. Clearly, k = 2nq for some n ∈ N∪ {0} and q ∈ 2Z + 1. Since, by (2.6),
tq(2−nξ) = 0 we have

(2.7)
∞∑

l=0

ψ̂(2l−nξ)ψ̂(2l−n(ξ + 2kπ)) = 0.

It is easy to see that the above sum contains a non–zero term. Indeed, the term corre-
sponding to l = n is simply ψ̂(ξ)ψ̂(ξ + 2kπ), which can not be zero, since both ξ and
ξ + 2kπ are in K. Thus, to make the whole sum equal to 0 we need to have at least
one more non–zero term. On the other hand, since ξ ∈ K and DK ≤ 2, we conclude
that we can have at most one more non–zero term, the one corresponding to l = j + n.
Therefore, (2.7) reduces to

ψ̂(ξ)ψ̂(ξ + 2kπ) + ψ̂(2jξ)ψ̂(2j(ξ + 2kπ)) = 0.

The above allows us to make two conclusions: 2j(ξ+2kπ) belongs to K \R and 2jk = 2lq
is a non–zero integer. Thus, we have

dK ◦ τK(ξ) = dK(ξ + 2kπ) = 2j(ξ + 2kπ) = 2jξ + 2lqπ = τK(2jξ) = τK ◦ dK(ξ),

which concludes the proof of the claim. ♣B

The fact that the maps τK and dK commute can be stated as: “the dilation brother of
my translation brother is the translation brother of my dilation brother” and represented
by the following diagram

(2.8)

ξ
τK−−−−→ ξ + 2kπ

dK

� dK

�
2jξ

τK−−−−→ 2j(ξ + 2kπ) ,

where 2jk ∈ Z\ {0}. The above diagram, or rather its simplicity, is the main reason why
we can decompose K into a sum of two wavelet sets. Of course, the set R must be a part
of these wavelet sets, thus we only need to investigate the remaining set K \ R.

For every j, k ∈ Z \ {0} we define Kj,k := {ξ ∈ K : ξ + 2kπ ∈ K, 2jξ ∈ K}, that is

(2.9) Kj,k = K ∩ (K − 2kπ) ∩ 2−jK.

Since TK and DK are bounded by 2, it follows that the sets Kj,k are mutually disjoint
and

(2.10)
⋃

j,k∈Z\{0}
Kj,k = K \ R.
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Claim C. We have the following equalities

Kj,k + 2kπ = Kj,−k ,

2jKj,k = K−j,2jk ,

2j(Kj,k + 2kπ) = K−j,−2jk .

Proof C. Let ξ ∈ Kj,k. By diagram (2.8) we have 2j(ξ + 2kπ) ∈ K. Therefore,

(2.11) Kj,k ⊂ 2−jK − 2kπ.

From (2.9) and (2.11) it follows that

(2.12) Kj,k = K ∩ (K − 2kπ) ∩ 2−jK ∩ (2−jK − 2kπ).

Thus,
Kj,k + 2kπ = (K + 2kπ) ∩ K ∩ (2−jK + 2kπ) ∩ 2−jK = Kj,−k,

which proves the first equality of the claim. Applying (2.12) in the same manner yields
two remaining equalities. ♣C

Claim C allows us to obtain an analogous version of diagram (2.8)

(2.13)

Kj,k
τK−−−−→

+2kπ
Kj,−k

dK

�·2j dK

�·2j

K−j,2jk
τK−−−−−→

+2j2kπ
K−j,−2jk ,

where 2jk ∈ Z \ {0}. Let Aj,k denote the sum of all the sets in the above diagram, that
is,

Aj,k := Kj,k ∪ Kj,−k ∪ K−j,2jk ∪ K−j,−2jk ,

where, to avoid redundancy, we consider only j, k ∈ N. (N does not contain 0).

Claim D. The sets Aj,k are mutually disjoint for all j, k ∈ N and⋃
j,k∈N

Aj,k = K \ R

Proof D. The disjointness follows from the fact that the sets Kj,k are mutually disjoint.
By (2.10) we have

(2.14) K \ R =
⋃

j,k∈N
Kj,k ∪

⋃
j,k∈N

Kj,−k ∪
⋃

j,k∈N
K−j,k ∪

⋃
j,k∈N

K−j,−k.

However, if we consider the set K−j,k, where j ∈ N and k ∈ Z \ {0}, then according to
diagram (2.13) we must have 2−jk ∈ Z \ {0}. Therefore, it follows that either K−j,k is
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empty or k = 2jk′ for some non–zero integer k′. This observation allows us to reduce
two last sums in (2.14), which leads to

K \ R =
⋃

j,k∈N
Kj,k ∪

⋃
j,k∈N

Kj,−k ∪
⋃

j,k′∈N
K−j,2jk′ ∪

⋃
j,k′∈N

K−j,−2jk′ =
⋃

j,k∈N
Aj,k

and proves our claim. ♣D

At this point we are ready to construct the wavelet sets. The intersection with K \R
of one of them is obtained by summing all the terms on the diagonal of diagram (2.13)
for j, k ∈ N and the intersection of the other one by summing all the terms on the
antidiagonal. Thus, we define

E′ :=
⋃

j,k∈N
(Kj,k ∪ K−j,−2jk) , F ′ :=

⋃
j,k∈N

(Kj,−k ∪ K−j,2jk).

and
E := E′ ∪ R , F := F ′ ∪ R .

Claim D simply assures, that

(2.14) K = E′ ∪ F ′ ∪ R

and that the sum is disjoint.

Claim E. E and F are wavelet sets.

Proof E. From diagram (2.13) it follows that both sets are translation and dilation equiv-
alent to each other, therefore, it is enough to prove that E is a wavelet set.

From diagram (2.13) it follows that

(2.15) K ∩
⋃

n∈Z\{0}
(E + 2nπ) = F ′ and K ∩

⋃
n∈Z\{0}

2nE = F ′ .

Since F ′ and E are disjoint, this proves that 2π–translations, as well as 2–dilations, of
E are disjoint. Moreover, by (2.14) and (2.15) we obtain

K ∩
⋃
n∈Z

(E + 2nπ) = K and K ∩
⋃
n∈Z

2nE = K .

Since TK and DK are bounded below by 1, this proves that 2π–translations, as well as
2–dilations, of E cover the real line. ♣E

Claim F. (E, F ) is an interpolation pair.

Proof F. We need to prove that the interpolation map σF
E composed with itself gives

us identity. From (2.1) it follows that it is enough to show, that (σF
E)2(ξ) = ξ for a.e.

ξ ∈ E. Since σF
E restricted to R is identity, we can focus on the case when ξ ∈ E′.

Clearly, σF
E(ξ) = τK(ξ) for ξ ∈ E′. Moreover, the same is true if ξ ∈ F ′. Indeed, from

diagram (2.13) it follows, that for such ξ’s we have σF
E(ξ) = dK ◦ τK ◦ dK(ξ) = τK(ξ).

Thus, σF
E restricted to K \ R is equal to τK , which shows that (σF

E)2 = id. ♣F

Since we proved that (E, F ) is an interpolation pair and, by (2.14), K = E ∪ F , this
concludes the proof of the theorem. ♣

As an immediate consequence of Theorem 2.1 we obtain the following characterization
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Corollary 2.2. If ψ ∈ L2(R) is an orthonormal wavelet and K denotes the support
of ψ̂ then ψ is interpolated from a pair of wavelet sets (E, F ) if and only if ‖TK‖∞ =
‖DK‖∞ = 2. Moreover, if this is the case, then K = E′ ∪ F ′, where (E′, F ′) is an
interpolation pair.

3. Extension property

The behaviour at the origin of the Fourier transform of wavelets was studied in
[BGRW]. The starting point of this investigation was an observation, that if ψ is a
wavelet and we set ψ̂(0) = 0, then the origin becomes a Lebesgue point of the function
ψ̂. It turns out that the origin is the only point on the real line at which the behaviour of
ψ̂ is limited. We shall prove that for any other point ξ0 ∈ R there exists its neighborhood
U such that every measurable function b on U with |b| ≤ 1 can be extended to the real
line in such a way that the extension is the Fourier transform of a wavelet (this result was
already announced in [BGRW] as Theorem (1.6), the case |b| = 1 was proven in [IP]).
This will be achieved by finding an open interval U � ξ0 small enough to be a subset of a
wavelet set E, which will form an interpolation pair with another wavelet set F . When
this is done, we shall use interpolation based on (E, F ) to find a wavelet ψ such that
ψ̂|U = b. This last step of the proof will be familiar to the reader who is accustomed
to Meyer’s construction of wavelets, which was mentioned before, or its generalizations,
presented both in [HWW] and [DL].

We start by exhibiting a special class of interpolation pairs which we shall use for our
construction; similar classes were considered in [Gu].

Proposition 3.1. Let T and U be measurable subsets of R and both n ∈ N and k ∈ Z
be given. If E := U ∪ (2−nU − 2kπ) ∪ T is a wavelet set and the sum is disjoint, then
F := 2−nU ∪ (U − 2n2kπ)∪T is a wavelet set and the sum is disjoint. Moreover, (E, F )
is an interpolation pair.

Proof. If the sets U , 2−nU − 2kπ and T are pairwise disjoint and their sum is a wavelet
set, then the sets 2−nU , U − 2n2kπ and T must be mutually disjoint as well. Therefore,
F is translation and dilation equivalent to E, which shows that F is a wavelet set. We
shall prove that (E, F ) is an interpolation pair. As we mentioned before, it is enough to
show that the interpolation map σF

E satisfies (σF
E)2(ξ) = ξ for ξ ∈ E. Computing σF

E on
E yields

σF
E(ξ) =


ξ for ξ ∈ T

ξ − 2n2kπ for ξ ∈ U

ξ + 2kπ for ξ ∈ 2−nU − 2kπ .

Therefore, on F , σF
E has the form

σF
E(x) =


ξ for ξ ∈ T

2−nσF
E(2nξ) = ξ − 2kπ for ξ ∈ 2−nU

2nσF
E(2−nξ) = ξ + 2n2kπ for ξ ∈ U − 2n2kπ

So, it is easily checked that for ξ ∈ E, (σF
E)2(ξ) = ξ. ♣
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Although k given in the above proposition can be any integer we will only need to
consider k = 1 to proceed with our construction. As a technical lemma we shall prove
that if ξ0 > 0, then there is a wavelet set E given as in Proposition 3.1, such that U is an
open interval containing ξ0. We also would like to point out that, according to [BGRW],
if ψ is an MRA wavelet and m is an arbitrary integer, then 4mπ is a Lebesgue point of
ψ̂, provided ψ̂(4mπ) = 0. This indicates, that the case when ξ0 = 4mπ may be harder
to consider. Indeed, as we will see, the most general case ξ0 �= 2mπ can be treated in
a simple way based on the approach offered in [S]. The special case ξ0 = 2mπ requires
more advanced techniques described in [IP]. Both of these methods rely on introducing
the maps τ : R → [−π, π) defined by τ(ξ) = ξ + 2kπ (where k is the unique integer such
that ξ+2kπ ∈ [−π, π)) and d : R\{0} → [−2π,−π)∪[π, 2π) defined by d(ξ) = 2jξ (where
j is the unique integer such that 2jξ ∈ [−2π,−π) ∪ [π, 2π)). Ionascu and Pearcy [IP]
proved that a measurable set V is a subset of a wavelet set E if and only if there exist
A ⊃ V and B ⊃ V such that τ |A, τ |B , d|A and d|B are injections, τ(A) = [−π, π) and
d(B) = [−2π,−π) ∪ [π, 2π). Moreover, in this case, the wavelet set E may be chosen as
a subset of A∪B. A sufficient condition for a set V to be contained in a wavelet set was
previously noted in [S], namely, τ |V and d|V are injective, d(V ) �= [−2π,−π) ∪ [π, 2π)
and there exists an δ > 0 such that τ(V ) ∩ [−δ, δ] = ∅. We shall use these two results to
prove the technical lemma.

Lemma 3.2. For every ξ0 > 0 there exists an open interval U � ξ0, a measurable set
T ⊂ R and some natural n, such that E := U ∪ (2−nU − 2π)∪T is a wavelet set and the
sum is disjoint.

Proof. Case 1: ξ0 �= 2mπ for any m ∈ N. Let U be an open neighborhood of ξ0 such
that 2U ∩ U = ∅ and 2kπ �∈ U for any k ∈ Z. Write U = (2kπ + ε1, 2(k + 1)π − ε2),
where ε1, ε2 > 0 and k ∈ Z. Pick n ∈ N such that 2−nU ⊂ [0, ε1]∩ [0, π/2] and denote the
disjoint sum U ∪ (2−nU − 2π) by V . Notice that τ |V is 1-1, d|V is 1-1, τ(V )∩ [−δ, δ] = ∅
for δ = min(2−n(2kπ + ε1), ε2), and d(V ) �= [−2π,−π) ∪ [π, 2π). Hence, by [S], there is
a T ⊂ R such that V ∪ T is a wavelet set, as desired.
Case 2: ξ0 = 2mπ for some m ∈ N. For m = 1 we can choose U = (4π/3, 8π/3), T = ∅
and n = 1. For m �= 1, choose n ∈ N such that 2−nξ ∈ (2π/3, 4π/3), and choose U such
that 2−nU ⊂ (2π/3, 4π/3) and U ⊂ (2mπ − π/3, 2mπ + π/3). Notice that τ(2−nU) ⊂
(2π/3, π) ∪ [−π,−2π/3) and τ(U) ⊂ (−π/3, π/3), so setting V = U ∪ (2−nU − 2π) we
have τ |V and d|V are 1-1.

We wish to apply the theorem from [IP] which characterizes sets which are subsets of
wavelet sets. In order to do so, we must find sets T1 and T2 (both disjoint from V ) such
that the restrictions of τ and d to T1 ∪ V and T2 ∪ V are 1–1, τ(T1 ∪ V ) = [−π, π) and
d(T2 ∪ V ) = [−2π,−π) ∪ [π, 2π).

We simply note that T1 = [2(m− 1)π + π/3, 2mπ + π/3)∩U c ∩ (2−nU + 2(m− 1)π)c

and T2 = 1/2
(
[2π/3, 4π/3) ∩ (2−nU)c

)
∪ 1/2

(
[−4π/3,−2π/3) ∩ (2−nU − 2π)c

)
satisfy

the conditions above. Therefore, by Ionascu and Pearcy’s characterization, there is a set
T ⊂ T1 ∪ T2 such that the disjoint sum U ∪ (2−nU − 2π) ∪ T is a wavelet set. ♣

From Proposition 3.1 it follows that the set E = U ∪ (2−nU −2π)∪T from Lemma 3.2
and the set F = 2−nU ∪ (U − 2n2π)∪ T form an interpolation pair. The standard inter-
polation procedure allows us to prove the main result of this section, which generalizes
the special case |b| = 1 proven in [IP].
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Theorem 3.3. Suppose ξ0 �= 0 then there exists a neighborhood U of ξ0, with the property
that if b is any measurable function on U with |b| ≤ 1, then we can find a wavelet ψ such
that ψ̂(ξ) = b(ξ) for all ξ ∈ U .

Proof. First we observe that if ψ is a wavelet, then ψ̂(−·) is the Fourier transform of a
wavelet (this follows from Meyer’s equations). Therefore, we can restrict our attention
to the case ξ0 > 0.

Let U , T and n be as in Lemma 3.2. We will interpolate from the pair (E, F ), where
E = U ∪ (2−nU − 2π) ∪ T and F = 2−nU ∪ (U − 2n2π) ∪ T . In order to do so we define
b1, b2, b3 and b4 by

b1(ξ) =
√

1 − |b(2nξ)|2 for ξ ∈ 2−nU and 0 otherwise ,

b2(ξ) =
√

1 − b2
1(ξ + 2π) for ξ ∈ 2−nU − 2π and 0 otherwise ,

b3(ξ) =
√

1 − b2
2(2−nξ) for ξ ∈ U − 2n2π and 0 otherwise ,

b4(ξ) = 1 for ξ ∈ T and 0 otherwise .

A simple calculation shows that if we set h1(ξ) = eiξ/2(|b(ξ)| + b2(ξ) + b4(ξ)) on E and
h2(ξ) = eiξ/2(b1(ξ) + b3(ξ)) on F and extend 2–dilation–periodically, then matrix (2.2)
is unitary on E and, therefore, ψ given by ψ̂ = h11E + h21F is a wavelet. To finish
the proof we observe that there exists a unimodular function ν defined on U such that
b(ξ) = ν(ξ)eiξ/2|b(ξ)|. Moreover, since U is an open interval whose measure does not
exceed 2π we can extend ν to a 2π–periodic unimodular function ν̃. Then, by Meyer’s
equations, ν̃(ξ)ψ̂(ξ) is the Fourier transform of a wavelet and ν̃(ξ)ψ̂(ξ) = b(ξ) for all
ξ ∈ U , as desired. ♣

4. Conclusion

We answered the question: “How big is the class of wavelets interpolated from a pair
of wavelet sets?” in two ways. The proof of the extension property indicated that, at
least locally, every wavelet can be approximated by those wavelets in the frequency do-
main. The characterization theorem, presented as Corollary 2.2, asserted that a minimal
necessary condition on the support of the Fourier transform of an interpolated wavelet
is also sufficient to assure that a wavelet comes from interpolation. In this sense the
class is as big as possible. The main difficulty in proving this characterization was in
finding a wavelet set contained in the support of the Fourier transform of a given wavelet.
The problem of doing so in general was already formulated by D. Larson in [La] and its
solution does not follow immediately from the present L2 theory of wavelets.
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