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1 Introduction

LetM⊂ R+×R×R and ψ ∈ L2(R). The wave packet system WP(ψ,M) is
the collection

{
√

xe2πi(xt−y)zψ(xt− y) : (x, y, z) ∈M}. (1)

The elements ofM are called the parameters of the wave packet system. Let
I be an index set. A collection {xi : i ∈ I} of vectors in the Hilbert space H
is said to be a frame if there exist positive constants A and B such that for
each x ∈ H,

A‖x‖2 ≤
∑
i∈I

|〈x, xi〉|2 ≤ B‖x‖2. (2)

Positive constants A and B for which (2) holds are called lower and upper
frame bounds for {xi : i ∈ I}. When the second inequality in (2) holds, but
not necessarily the first inequality, then we call {xi : i ∈ I} a Bessel system.
Finally, a Riesz basis for H is the image of an orthonormal basis for H under
an invertible bounded linear operator on H. A wave packet system which is
a frame [resp. orthonormal basis, Riesz basis] for L2(R) will be called a wave
packet frame [resp. orthonormal basis, Riesz basis], and a wave packet system
which is a Bessel system will be called a wave packet Bessel system.

There are at least three well-studied special cases of wave packet systems
— Gabor systems, wavelet systems, and the Fourier transform of wavelet
systems. For example, when M1 = {(1, y, z) : y, z ∈ Z}, one obtains (the
Fourier transform of) a Gabor system WP(ψ,M1) = {e−2πiyze2πiztψ(t − y) :
y, z ∈ Z}. When M2 = {(2j, k, 0) : j, k ∈ Z}, one obtains a wavelet system
WP(ψ,M2) = {2j/2ψ(2jx− k) : j, k ∈ Z}. Similarly, whenM3 = {(2j, 0, k) :
j, k ∈ Z}, WP(ψ,M3) is the Fourier transform of a wavelet system. More
general wave packet systems have recently been successfully applied to prob-
lems in harmonic analysis and operator theory [7,13–15]. In addition, there
are some interesting partial results aimed at understanding wavelet systems
and Gabor systems as limiting cases of more general wave packet systems [6].

In this paper, we focus on a different aspect of wave packet systems. Notice
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thatM1 is a lattice of rank 2 in R3; that is, it is the image of Z3 under a linear
transformation of rank 2. The sets M′

2 = {(ln x, y, z) : (x, y, z) ∈ M2} and
M′

3 = {(ln x, y, z) : (x, y, z) ∈ M3} are also lattices of rank 2. In addition,
it is known that sets of parameters consisting of dilations, translations or
modulations alone will yield neither frames nor Riesz bases for L2(R) [3,8,18].
It is also known (and a consequence of the work in this paper) that forM4 =
{(2j, k, l) : (j, k, l) ∈ Z3},WP(ψ,M4) is not a Bessel system, unless ψ = 0. In
light of this, it is natural to ask whether all sets of parameters of wave packet
systems that form, say, frames for L2(R) must be two-dimensional in some
sense. This is the question that we address in this paper.

There have been several results which can be interpreted in terms of wave
packet systems and their parameters. A classical theorem of Wiener states
that for f ∈ L2(R), {f(x+c) : c ∈ R} is complete in L2(R) if and only if f̂ �= 0
almost everywhere. Several authors [1,17,19] have studied those sets Λ ⊂ R
such that {f(x+λ) : λ ∈ Λ} is complete in L2(R), which would be a first step
in constructing Schauder bases for L2(R) consisting of translates of a single
function. It remains open whether one can construct Schauder bases for L2(R)
using only translations, dilations or modulations of a single function [18].
Interpreted in view of wave packet systems, one could say that the research
program is to determine whether wave packet systems that have “almost” one-
dimensional parameters — for example, perturbations of {1}×Z×{0}— can
form bases for L2(R). In this paper, we will show that there are wave packet
systems that are arbitrarily close to being one dimensional (in a sense that
will be made precise in the paper) which are orthonormal bases for L2(R).

Another result that is related to the research in this paper was obtained in [4].
In that paper, it is shown that for Λ ⊂ R andM = {(x, y, 0) : x ∈ Λ, y ∈ Z},
if ψ̂ has a point of continuity and WP(ψ,M) is a frame for L2(R), then
Λ is the finite union of logarithmically separated sets. A similar result was
shown in the case that M = {(1, x, y) : x ∈ Λ, y ∈ Z). In this paper, we will
obtain similar results whenM = {(x, y, z) : (x, y) ∈ B, z ∈ Z}, where B is an
arbitrary subset of R+ × R. Our results do not seem to generalize to Rn as
readily as the results in [4].

In the next section, we introduce our notations and definitions. In Section 3 we
present general results about restrictions on the possible values of dimensions
for arbitrary sets. In Section 4 we state and prove our main result (Theorem
20) concerning the necessary conditions for existence of frames of wave packets.
We also provide large families of new, non-standard examples of wave packets.
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2 Preliminaries

Let Dx, Ty, and Mz be the unitary operators acting on L2(R) given by dila-
tions, translations, and modulations, respectively:

Dx(f)(t) =
√

xf(xt), Ty(f)(t) = f(t− y), Mz(f)(t) = e2πitzf(t).

With this notation, the definition of a wave packet system given in (1) can be
rewritten as WP(ψ,M) = {DxTyMzψ : (x, y, z) ∈M}.

Motivated by Beurling density for subsets of Rn and affine density for subsets
of the affine group (see [8]), we introduce a notion of density for subsets of
R

+ × R× R in the following way. First we observe that we can equip the set
R

+ × R× R with the group multiplication

(x, y, z) · (x′, y′, z′) = (xx′, x′y + y′, z
x′ + z′).

Throughout the paper this group, which is sometimes referred to as the affine
Weyl-Heisenberg group, will be denoted by G. Now let h > 0 and let Qh be
the set

Qh = [e−h, eh]× [−h, h]× [−h, h].

For any (x, y, z) ∈ G, we let Qh(x, y, z) be the set Qh left-translated via the
group action so that it is “centered” at (x, y, z), i.e.,

Qh(x, y, z) = (x, y, z) ·Qh

=
{(

xx′, x′y + y′, z
x′ + z′

)
: x′∈ [e−h, eh], y′∈ [−h, h], z′∈ [−h, h]

}
.

The left-invariant Haar measure µ on G is dx
x

dy dz, and thus we have

µ(Qh(x, y, z)) = µ(Qh) =
∫ eh

e−h

∫ h

−h

∫ h

−h

dx

x
dy dz = 8h3.

Let M be a discrete subset of G, and let A > 0. Then the lower Beurling
density of M (with respect to A) is defined by

D−A(M) = lim inf
h→∞

inf
(x,y,z)∈G

#(M∩Qh(x, y, z))

hA
,

and the upper Beurling density of M (with respect to A) is defined by

D+
A(M) = lim sup

h→∞
sup

(x,y,z)∈G

#(M∩Qh(x, y, z))

hA
.
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The introduction of the parameter A is justified by the observation that for
M = {1}×aZ×bZ, a, b > 0, which is the set of parameters of an arbitrary reg-
ular Gabor system {MamTbng : m, n ∈ Z}, g ∈ L2(R), it can be easily checked
that D+

3 (M) = 0. Thus, using the Haar measure of the boxes Qh(x, y, z), as
it is done in the definition of Beurling density and affine density, would lead
to a notion which is useless for the most important Gabor systems. However,
D+

2 (M) = (ab)−1, which corresponds to the usual Beurling density in the
plane. In particular, the parameter A allows us to find densities of sets which
are embedded in larger dimensional spaces.

Now, motivated by the definition of the mass dimension of a discrete set (see,
for example [2,16]), we define the lower Beurling dimension of M⊂ G to be

dim−(M) = inf {A > 0 : D−A(M) <∞},

and the upper Beurling dimension of M⊂ G to be

dim+(M) = sup {A > 0 : D+
A(M) > 0}.

It immediately follows that dim−(M) ≤ dim+(M) for allM⊂ G. We remark
that in what follows, we will refer to the lower and upper Beurling dimensions
as lower and upper dimensions.

Notation. Throughout this paper we use 1A to denote the characteristic
function of the set A ⊂ R, and |A| to denote the Lebesgue measure of a
Lebesgue measurable set A in Rd.

3 General results

In this section we study the properties of the upper and lower (Beurling)
dimensions of arbitrary subsets of G.

First we give a useful reinterpretation of finite upper density when A = 3.

Proposition 1 Let M be a discrete subset of G.

(1) The following conditions are equivalent.
(a) D+

3 (M) <∞.
(b) There exists some h > 0 such that

sup
(x,y,z)∈G

#(M∩Qh(x, y, z)) <∞.

(2) Also the following conditions are equivalent.
(a) D−3 (M) > 0.
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(b) There exists some h > 0 such that

inf
(x,y,z)∈G

#(M∩Qh(x, y, z)) > 0.

PROOF. The implication (a) ⇒ (b) follows immediately in both cases.

To prove (b) ⇒ (a) for part (1), suppose there exists h > 0 such that R =
sup(x,y,z)∈G #(M∩Qh(x, y, z)) <∞. Let r > 1. It is easy to compute that Qrh

is contained in

r⋃
i=1

�e2h(r−1)�⋃
j,k=0

Qh(e
h(2i−1−r), ehh(1− r) + 2je−hh, ehh(1− r) + 2ke−hh).

Hence, for each (x, y, z) ∈ G, also Qrh(x, y, z) = (x, y, z) · Qrh is covered by
r�e2h(r − 1)�2 disjoint sets Qh(xl, yl, zl) with (xl, yl, zl) ∈ G chosen appropri-
ately. This implies

sup
(x,y,z)∈G

#(M∩Qrh(x, y, z))≤ r�e2h(r − 1)�2 sup
(x,y,z)∈G

#(M∩Qh(x, y, z))

≤ r�e2h(r − 1)�2R <∞.

Thus

D+
3 (M) ≤ lim sup

r→∞

r�e2h(r − 1)�2R
r3h3

=
e4hR

h3
<∞.

The argument that (b) ⇒ (a) for part (2) is very similar to part (1), where
here we use the fact that the disjoint unions

r⋃
i=1

�e−2h(r−1)	⋃
j,k=1

Qh(e
h(2i−1−r), e−hh(1− r) + 2jehh, e−hh(1− r) + 2kehh)

are contained in Qrh, and so we omit the details. ✷

Theorem 2 Let M be a subset of G. Then,

(1) dim+(M) ∈ [0, 3] ∪ {∞}, and
(2) dim−(M) ∈ {0} ∪ [3,∞].

PROOF. Assume that we have dim+(M) =: d > 3 and d <∞. This implies
D+

3 (M) = ∞. By Proposition 1 (1), sup(x,y,z)∈G #(M∩ Qh(x, y, z)) = ∞ for

all h > 0. Hence D+
d+1(M) =∞, a contradiction to d = sup{A : D+

A(M) > 0}.
This proves (1).
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To show (2) assume that dim−(M) =: d ∈ (0, 3). This implies D−3 (M) = 0.
By Proposition 1 (2), inf(x,y,z)∈G #(M∩ Qh(x, y)) = 0 for all h > 0. Hence
also D−d

2

(M) = 0, which contradicts d = inf{A : D−A(M) <∞}. ✷

Theorem 3 Let ψ ∈ L2(R) and M be a discrete subset of G. If WP(ψ,M)
is a Bessel system, then D+

A(M) <∞ for all A ≥ 3.

PROOF. Let us remark that the following proof will use ideas of the proof
of [8, Theorem 1(a)].

In the following we let π, which maps G into the unitary operators on L2(R),
be defined by π(x, y, z)f(t) = DxTyMzf(t). Let ψ ∈ L2(R) and letM⊂ G be
such that D+

3 (M) =∞. Fix some f ∈ L2(R) with ‖f‖2 = 1. Since (x, y, z) �→
〈f, π(x, y, z)ψ〉 is continuous and non-zero, there exists (r, s, t) ∈ G and h > 0
with

δ = inf
(x,y,z)∈Qh(r,s,t)

|〈f, π(x, y, z)ψ〉| > 0.

Now choose any N > 0. Since D+
3 (M) =∞, Proposition 1 (1) implies that

sup
(x,y,z)∈G

#(M∩Qh(x, y, z)) =∞.

Thus there exists (o, p, q) ∈ G with #(M∩ Qh(o, p, q)) > N . Defining g ∈
L2(R) by

g = π((o, p, q) · (r, s, t)−1)f

and using the fact that

(x, y, z) ∈ Qh(o, p, q) =⇒ (r, s, t) · (o, p, q)−1 · (x, y, z) ∈ Qh(r, s, t),

we obtain

∑
(x,y,z)∈M

|〈g, π(x, y, z)ψ〉|2

≥
∑

(x,y,z)∈M∩Qh(o,p,q)

∣∣∣〈π((o, p, q) · (r, s, t)−1)f, π(x, y, z)ψ
〉∣∣∣2

=
∑

(x,y,z)∈M∩Qh(o,p,q)

∣∣∣〈f, π((r, s, t) · (o, p, q)−1 · (x, y, z))ψ
〉∣∣∣2 > Nδ2.

Thus WP(ψ,M) does not possess a finite upper frame bound, i.e., it is not
a Bessel system. Since D+

3 (M) < ∞ implies D+
A(M) < ∞ for all A ≥ 3, the

proof is complete. ✷
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In other words, if WP(ψ,M) is a Bessel system, then zero and three are the
only two possible values for dim−(M). Wavelet frames and Gabor frames are
examples of wave packet frames that satisfy the condition dim−(M) = 0. For
some non-standard examples, we refer the reader to the next section. It is
still unknown to the authors if there can exist a general wave packet frame
WP(ψ,M) for which dim−(M) = 3. However, we can answer this question
when the sets of parameters of wave packet systems have a special form: i.e.,
M = B × Z, where B ⊂ R

+ × R. Wave packet systems with such sets of
parameters have been recently studied in [9–12].

We end this section by reinterpreting the definition of dimension. This result
will be used in the next section.

Proposition 4 Let M be a subset of G. Then,

(1) dim+(M) = inf {A > 0 : D−A(M) <∞}, and
(2) dim−(M) = sup {A > 0 : D+

A(M) > 0}.

PROOF. We provide here only the proof of the first claim. The proof of
the second equality follows in a similar way. Also, for the sake of brevity,
throughout this proof we shall use ν−h to denote inf(x,y,z)∈G #(M∩Qh(x, y, z)).

First, we note that if there exists 0 < A0 <∞ such that for all δ > 0 we have
either

lim inf
h→∞

ν−h
hA0

= 0 and lim inf
h→∞

ν−h
hA0−δ

=∞

or

lim inf
h→∞

ν−h
hA0

=∞ and lim inf
h→∞

ν−h
hA0+δ

= 0,

then our claim follows immediately.

Hence, we only need to consider the case where there exists 0 < A0 <∞ such
that

0 < a := lim inf
h→∞

ν−h
hA0

<∞. (3)

In such case, in order to finish the proof, it suffices to show that for each δ > 0
we have

lim inf
h→∞

ν−h
hA0+δ

= 0 and lim inf
h→∞

ν−h
hA0−δ

=∞. (4)
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By hypothesis (3), there exists a subsequence (hn)n with limn→∞
ν−

hn

h
A0
n

= a.

Now let ε > 0 and let N ∈ N be such that | ν
−
hn

h
A0
n

− a| < ε for all n ≥ N . This

yields ∣∣∣∣∣ ν−hn

hA0+δ
n

− a

hδ
n

∣∣∣∣∣ <
ε

hδ
n

∀ n ≥ N.

Without loss of generality we may assume that ε
hδ

n
< ε for all n ≥ N . Moreover,

we have limn→∞
a

hδ
n

= 0. This shows the first claim in (4).

For the proof of the second claim, let M > 0 be arbitrary. For each ε > 0, the

set {h > 0 :
ν−

h

hA0
< a−ε} is finite. Hence also the set {h > 0 :

ν−
h

hA0−δ < (a−ε)hδ}
is finite. Fix some ε > 0 and let h0 > 0 be defined by (a− ε)hδ

0 = M . Then we
have

{h > h0 :
ν−h

hA0−δ
< M} ⊆ {h > 0 :

ν−h
hA0−δ

< (a− ε)hδ}.

This implies that the set {h > h0 :
ν−

h

hA0−δ < M} is finite. Since M was chosen
arbitrarily, this proves the second claim in (4). ✷

4 Case of integer modulations

In this section, we restrict ourselves to the simpler situation where M ⊂ G
has the form M = B × Z, where B ⊂ R+ × R. This situation is still more
general for the types of problems we are considering than the most general
situation considered so far in [4].

First we introduce the notion of upper and lower dimension for subsets of R+×
R. In Lemma 8, we will then establish a relationship between the dimension
of B × Z and the dimension of B, when B ⊂ R+ × R.

Let A = R+ × R denote the affine group with multiplication given by

(x, y) · (x′, y′) = (xx′, x′y + y′).

Further, let h > 0 and let Qh be the set Qh = [e−h, eh] × [−h, h]. For any
(x, y) ∈ A we define Qh(x, y) = (x, y) ·Qh.

Now let B be a discrete subset of A, and let A > 0. Then the upper (Beurling)
density of B (with respect to A) is defined by

D+
A(B) = lim sup

h→∞
sup

(x,y)∈A

#(B ∩Qh(x, y))

hA

9



and the lower (Beurling) density of B (with respect to A) is defined similarly.
Based on this definition the lower and upper dimensions of B ⊂ A are defined
in the same fashion as the corresponding dimensions ofM⊂ G.

Remark 5 Note that, if B ⊂ A, and we define M = B × {0} ⊂ G, then the
lower dimension of B andM are not in general the same. Indeed, in this case,
dim−(M) = 0, so one must be careful to specify which group one is considering
B to be contained in. To make the context clear, we will reserve B for subsets
of A, and M for subsets of G.

The following proposition and its proof are similar to Proposition 1.

Proposition 6 Let B be a discrete subset of A.

(1) The following conditions are equivalent.
(a) D+

2 (B) <∞.
(b) There exists some h > 0 such that

sup
(x,y)∈A

#(B ∩Qh(x, y)) <∞.

(2) Also the following conditions are equivalent.
(a) D−2 (B) > 0.
(b) There exists some h > 0 such that

inf
(x,y)∈A

#(B ∩Qh(x, y)) > 0.

Corollary 7 If B ⊂ A, then D−2 (B) = 0 implies D−A(B) = 0 for all 0 < A <
∞.

PROOF. By Proposition 6 (2), D−2 (B) = 0 implies that, for all h > 0, we
have inf(x,y)∈A #(B ∩ Qh(x, y)) = 0. This immediately proves D−A(B) = 0 for
all 0 < A <∞. ✷

Next, we show how the dimension of B ⊂ A is related to the dimension of
B × Z ⊂ G. Note that the notation D can refer to either the density of a
subset of A or a subset of G, depending on the context.

Lemma 8 Let B be a discrete subset of A. Then, for each 1 < A < ∞, we
have

D−A(B × Z) = 2D−A−1(B) and D+
A(B × Z) = 2D+

A−1(B).
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PROOF. Fix h > 0 and (x, y, z) ∈ G. For (r, s, t) ∈ B×Z, we have (r, s, t) ∈
Qh(x, y, z) if and only if

( r
x
, s− ry

x
, t− xz

r
) = (x, y, z)−1 · (r, s, t) ∈ [e−h, eh]× [−h, h]× [−h, h].

Hence, there are at least 2h and at most 2h + 1 integers t satisfying this
condition. Moreover,

( r
x
, s− ry

x
) ∈ [e−h, eh]× [−h, h] ⇐⇒ (r, s) ∈ Qh(x, y).

This shows

2h#(B ∩Qh(x, y)) ≤ #((B × Z) ∩Qh(x, y, z)) ≤ (2h + 1)#(B ∩Qh(x, y)).

Thus 2D−A−1(B) ≤ D−A(B × Z) ≤ 2D−A−1(B), and similarly D+
A(B × Z) =

2D+
A−1(B). ✷

The factor of 2 that appears in Lemma 8 is a consequence of choosing in our
considerations intervals of length 2h in the definition of Qh.

The following result shows that not all dimensions can be attained. Compare
to Theorem 2.

Theorem 9 Let B be a discrete subset of A. Then

(1) dim+(B) ∈ [0, 2] ∪ {∞}, and
(2) dim−(B) ∈ {0} ∪ [2,∞].

PROOF. We will only prove part (1). Part (2) follows in a similar way.

By Lemma 8, we have

dim+(B) = sup{A > 0 : 1
2
D+

A+1(B × Z) > 0} = dim+(B × Z)− 1.

Applying Theorem 2 yields the claim. ✷

Now, we turn to relating the existence of frames to the dimension of B. A first
necessary condition on the dimension is given by the following theorem.

Theorem 10 Let B be a discrete subset of A. If there exists a non-zero func-
tion ψ ∈ L2(R) such that WP(ψ,B × Z) has an upper frame bound, then
dim−(B) = 0.
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Lemma 11 Suppose B ⊂ A has the following property: for all A ⊂ R with
positive measure and all n ∈ N, there exist (x1, y1), . . . , (xn, yn) ∈ B such that

∣∣∣∣∣
n⋂

i=1

1

xi

(
A + yi

)∣∣∣∣∣ > 0.

Then, for every non-zero ψ ∈ L2(R),WP(ψ,B×Z) fails to be a Bessel system.

PROOF of Lemma 11. Let ψ ∈ L2(R), ψ �= 0. Then there exists a set
A ⊂ R of positive measure such that |ψ(x)| ≥ C > 0 for almost all x ∈ A. By
reducing to a subset, we may assume that there exists a constant K > 0 such
that, for every function f ∈ L2(R) with support in A, we have

∑
z∈Z
|〈f, Mzψ〉|2 ≥ K‖f‖2.

Since the operators Dx and Ty are unitary, for every (x, y) ∈ B and for all
functions f ∈ L2(R) with support in 1

x
(A + y), we obtain

∑
z∈Z
|〈f, DxTyMzψ〉|2 ≥ K‖f‖2. (5)

By hypothesis, for any n ∈ N, we can choose (x1, y1), . . . , (xn, yn) ∈ B such
that the set U =

⋂n
i=1

1
xi

(A + yi) has positive measure. Using (5), this implies

∑
(x,y)∈B,z∈Z

|〈1U , DxTyMzψ〉|2≥
n∑

i=1

∑
z∈Z
|〈1U , Dxi

Tyi
Mzψ〉|2

≥
n∑

i=1

K‖1U‖2 = nK‖1U‖2.

Thus, there exists no finite upper frame bound, since n is arbitrary. ✷

The proof of the following lemma, which is just a version of Bonferroni’s
inequality, is obtained by induction on k and the inequality |B| ≥ ∑N

i=1 |Ai| −∑
i1<i2 |Ai1 ∩ Ai2|.

Lemma 12 If {Ai}Ni=1 are measurable subsets of the measurable set B and k
is a positive integer such that

∑N
i=1 |Ai| > k|B|, then there exist 1 ≤ i1 < i2 <

· · · < ik+1 ≤ N such that

∣∣∣∣∣∣
k⋂

j=1

Aij

∣∣∣∣∣∣ > 0.

PROOF of Theorem 10. To prove our claim we argue by contradiction and
assume that B is a discrete subset of A with dim−(B) > 0. In order to apply
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Lemma 11, let A be a set of positive measure. Without loss of generality we
can assume that it is contained in some interval [a, b]. Further we assume that
a > 0. The other cases can be dealt with in a similar way. Let x > 0 and note
that 1

x
(A + y) ⊂ [0, 1] whenever y ≥ −a and y ≤ x− b. Therefore, in view of

Lemmas 11 and 12, and since | 1
x
(A + y)| = 1

x
for all x > 0, y ∈ R, it suffices

to show that

∑
{(x,y)∈B:y≥−a,y≤x−b}

1
x

=∞. (6)

To prove this, let R = {(x, y) ∈ A : y ≥ −a, y ≤ x−b}. Since dim−(B) > 0, by
Theorem 9, it follows that dim−(B) ≥ 2. Applying Lemma 8 and Proposition
4 (1) now yields sup{A > 0 : D−A(B×Z) > 0} ≥ 3. Thus D−A(B×Z) > 0 for all
0 ≤ A < 3. Using Lemma 8 again, this implies D−A(B) > 0 for all 0 ≤ A < 2.
Consequently, there exists some h > 0 such that inf{#(Qh(x, y)∩B) : (x, y) ∈
A} ≥ 1. Fix x0 > 0, and define (xn, yk) ∈ A, k, n ≥ 0 by

xn = e2nhx0 and yk = (2k + 1)heh.

It is straightforward to check that the sets Qh(xn, yk), where n ≥ 0, 0 ≤ k ≤
xne−h−b

2h
− 3

2
are pairwise disjoint subsets of R. By choice of h, each of these

sets contains at least one element of B. In particular, for each n ≥ 0 and
0 ≤ k ≤ xne−h−b

2h
− 3

2
, there exist distinct elements (zn, wk) ∈ B such that

0 < zn ≤ e(2n+1)hx0, ∀ n ≥ 0.

If we let Kn := !xne−h−b
2h

− 3
2
", we obtain

∑
(x,y)∈B∩R

1

x
≥
∞∑

n=0

Kn

e(2n+1)hx0

.

Since

lim
n→∞

Kn

e(2n+1)hx0

=
1

2he2h
> 0,

(6) is established, which finishes the proof. ✷

Now, we wish to construct examples of wave packet frames with specified
dimension. A useful tool is the following proposition.

Proposition 13 Let (xn)n∈N be a sequence of positive numbers converging to
0 such that xn

xn+1
≥ K > 1 for some constant K. Then, there exist a real

sequence (yn)n∈N and some constant M > 0 such that |yn| ≤M for all n ∈ N

13



and

WP(1[0,1], {(xn, yn) : n ∈ N} × Z)

is an orthonormal basis for L2(R).

PROOF. It suffices to prove the existence of a real bounded sequence (yn)n∈N
such that if we define En = 1

xn
([0, 1] + yn), then {En : n ∈ N} is a measurable

tiling of R. In the following we will construct a sequence (yn)n∈N so that
{En : n ∈ N} tiles R+. Then R− can be dealt with in a similar way.

First we choose y1 = 0 so that we obtain E1 = [0, 1
x1

]. Now we define the
sequence (yn)n∈N by

yn =
n−1∑
i=1

xn

xi

, ∀ n > 1.

To prove the boundedness of the sequence (yn)n∈N, for each n ∈ N, we compute

yn =
n−1∑
i=1

xn

xi

=
xn

xn−1

+
xn

xn−1

xn−1

xn−2

+ . . . +
xn

xn−1

xn−1

xn−2

xn−2

xn−3

· . . . · x2

x1

≤K−1 + K−2 + . . . + K−n+1

≤
∞∑
i=1

K−i,

which is finite.

As defined above we have En = [ yn

xn
, yn

xn
+ 1

xn
]. Since by definition of (yn)n∈N

yn

xn

+
1

xn

=
n−1∑
i=1

1

xi

+
1

xn

=
yn+1

xn+1

,

it follows that the set {En : n ∈ N} tiles R+. ✷

Theorem 14 Let ψ = 1[0,1]. For every 0 < a ≤ 1, there exists a discrete
subset B ⊂ A such that dim+(B) = a and WP(ψ,B × Z) is an orthonormal
basis for L2(R).

PROOF. For a = 1, one can choose the Gabor system, i.e., B = {1} × Z.

Now suppose that 0 < a < 1 and consider the sequence (xn)n∈N defined by

xn = e−2n
1
a . It is easy to check that this sequence satisfies the conditions

14



of Proposition 13. Thus there exists a sequence (yn)n∈N, which is bounded
by some constant M > 0, such that WP(ψ, {(xn, yn) : n ∈ N} × Z) is an
orthonormal basis for L2(R). Let B = {(xn, yn) : n ∈ N}. By inspection, for

all k ∈ N such that k
1
a > M , we obtain

sup
(x,y)∈A

#(Q
k

1
a
(x, y) ∩ B)≥#(Q

k
1
a
(e−k

1
a , 0) ∩ B)

≥#([e−2k
1
a , 1] ∩ {xn : n ∈ N}) = k.

Therefore,

lim sup
h→∞

sup
(x,y)∈A

#(Qh(x, y) ∩ B)

ha
≥ lim sup

k→∞
sup

(x,y)∈A

#(Q
k

1
a
(x, y) ∩ B)

k
> 0. (7)

It remains to show that the first term in (7) is also finite. To prove this, we
first compute an upper bound for supx∈R+ #([xe−h, xeh] ∩ B1), where h > 0,

B1 = {xn : n ∈ N} and k ∈ N is chosen in such a way that k
1
a < h ≤ (k + 1)

1
a .

We obtain

sup
x∈R+

#([xe−h, xeh] ∩ B1)

≤ sup
x∈R+

#([xe−(k+1)
1
a , xe(k+1)

1
a ] ∩ B1)

≤ sup
m∈Z

#([e−2m
1
a−2(k+1)

1
a , e−2m

1
a ] ∩ B1)

= sup
m∈Z

#({j ∈ Z : e−2m
1
a−2(k+1)

1
a ≤ e−2(m+j)

1
a ≤ e−2m

1
a })

= sup
m∈Z

#({j ≥ 0 : −2(m + j)
1
a ≥ −2m

1
a − 2(k + 1)

1
a})

= sup
m∈Z

#({j ≥ 0 : j ≤ (m
1
a + (k + 1)

1
a )a −m}) ≤ k + 2,

where the second inequality is due to the fact that we can move the right hand
endpoint to the left so that it touches a point in B1, and the last inequality is
because 1

a
≥ 1 and (m1/a + (k + 1)1/a)a ≤ m + k + 1 (the triangle inequality

in 42
1
a

). This yields

sup
x∈R+

#([xe−h, xeh] ∩ B1)

ha
≤ k + 2

k
. (8)

Since Qh(x, y) ⊂ [xe−h, xeh] × R and #(B1 ∩ ({z} × R)) ≤ 1 for all z ∈ R+,
we obtain

#(Qh(x, y) ∩ B) ≤ #([xe−h, xeh] ∩ B1). (9)
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By (8) and (9), it follows that

lim sup
h→∞

sup
(x,y)∈A

#(Qh(x, y) ∩ B)

ha
≤ lim sup

h→∞
sup
x∈R+

#([xe−h, xeh] ∩ B1)

ha
<∞.

(10)

Finally, combining (7) and (10) yields dim+(B) = a. ✷

The most difficult examples to construct are for large dimensions. Thus, let
1 < a ≤ 2 be fixed. Then, for each pair (w, k) with w > 0 and k > 1

2
, we define

xn = xn(w, k) = we−k

(
k + 1

2

k − 1
2

)n
2
a

, n ≥ 0.

Further, for each k ∈ N, we choose wk > 0 and Nk > 0 as

wk = eek+k and Nk = 2k

ln

(
k+1

2
k− 1

2

) .

Now, let the subset B0 ⊂ A be defined (for K > 0 to be chosen later) by

B0 = B0(a) =
{
(xn(wk, k), k) : k ≥ K, 0 ≤ n

2
a ≤ Nk, k, n ∈ N

}
. (11)

Lemma 15 Let 1 < a ≤ 2 and ψ = 1[− 1
2
, 1
2
]. Then WP(ψ,B0×Z) is a Bessel

system for L2(R) (with Bessel constant 1).

PROOF. It suffices to show that the set{
1
x
([−1

2
, 1

2
] + y) : (x, y) ∈ B0

}
(12)

is a pairwise disjoint collection of subsets of R. For this, we observe that

1

xn(wk, k)
([−1

2
, 1

2
] + k) = e−ek


(k − 1

2
)n

2
a +1

(k + 1
2
)n

2
a

,
(k − 1

2
)n

2
a

(k + 1
2
)n

2
a−1


 . (13)

First we consider the case when k ∈ N is fixed. Then it is sufficient to prove
that

(k − 1
2
)(n+1)

2
a

(k + 1
2
)(n+1)

2
a−1
≤ (k − 1

2
)n

2
a +1

(k + 1
2
)n

2
a

,

which is equivalent to

(k + 1
2
)n

2
a−(n+1)

2
a +1 ≤ (k − 1

2
)n

2
a−(n+1)

2
a +1.
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This in turn follows immediately from 1 < a ≤ 2 and n
2
a − (n + 1)

2
a + 1 < 0.

In order to deal with the general situation when k varies, for each k ∈ N, we
define a subset Ak ⊂ R by

Ak =
⋃

0≤n
2
a≤Nk

1

xn(wk, k)
[−1

2
+ k, 1

2
+ k].

Using (13), it is easy to check that

Ak ⊂
[

(k − 1
2
)Nk+1

(k + 1
2
)Nkeek ,

k + 1
2

eek

]
.

Therefore, in order to see that the collection of sets in (12) is disjoint, it suffices
to show that

k + 3/2

eek+1 <
(k − 1

2
)Nk+1

(k + 1
2
)Nkeek . (14)

To prove this, note that for large k, the sequence (Nk)k∈N behaves like (k2)k∈N
— in fact, it is not difficult to verify that

Nk ≤ 2k(k + 1/2). (15)

Hence, for k large enough, we obtain

(k + 3/2)

(
k + 1

2

k − 1
2

)Nk

≤ kek2

< eek ≤ eek+1−ek

.

This implies that there exists some K > 0 such that equation (14) is satisfied
for all k ≥ K. Such a K shall be used for the definition of the set B0 (see
(11)). ✷

The next result is a technical lemma which will be needed in the proof of
Theorem 17.

Lemma 16 Let Bk denote the intersection of B0 with the line y = k. There
exists a constant C > 0 such that for all l ∈ N large enough and for all k ≥ l,

sup(p,q)∈A # (Ql(p, q) ∩ Bk)

la
< C. (16)

PROOF. Fix l ∈ N. We compute

sup
k≥l

#(Ql(wke
l−k, (k − l)el) ∩ Bk).
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There are two cases to consider: e2l(k − l) > k + l and e2l(k − l) ≤ k + l.
(Geometrically, these conditions correspond to whether the line y = k hits the
bottom edge of Ql or the right edge of Ql, respectively.) However, since we
may assume that l is integer valued, there exists an integer L0 such that for
l ≥ L0, e2l(k− l) > k + l is always true for integers k ≥ l + 1. In this case, the
largest possible x value in Ql(wke

l−k, (k − l)el) ∩ Bk is given by

x =
(k + l)wk

(k − l)ek
.

Hence, we need to estimate

wk

ek

(
k + 1

2

k − 1
2

)n
2
a

≤ (k + l)wk

(k − l)ek
.

For large l we obtain

n
2
a ≤

ln
(

k+l
k−l

)
ln

(
k+ 1

2

k− 1
2

) ≤ 2l(l + 1). (17)

Thus

sup
k>l

#(Ql(wke
l−k, (k − l)el) ∩ Bk) =


sup

k>l

 ln
(

k+l
k−l

)
ln

(
k+ 1

2

k− 1
2

)





a
2

≤
(
2l(l + 1)

)a
2

(18)

for large l.

In the other case, k = l, instead of (17) we obtain an estimate

n
2
a ≤ 2l

ln
(

l+ 1
2

l− 1
2

) = Nl.

We may now combine this with our earlier observation that Nl ∼ l2 for large
l (cf., (15)) and with (18), to obtain the claimed inequality (16). ✷

The next result, Theorem 17, proves the existence of wave packet frames with
dimensions a ∈ (1, 2]. For this purpose we define the set B = B(a) = B0 ∪
({1} × Z), where B0 was defined in (11).

Theorem 17 Let 1 < a ≤ 2 and ψ = 1[− 1
2
, 1
2
]. Then the set B defined in (??)

has dimension dim+(B) = a and WP(ψ,B × Z) is a frame for L2(R).
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PROOF. Let 1 < a ≤ 2 be fixed. We start with an observation that the
systemWP(ψ,B×Z) is a frame for L2(R) (with frame bounds A = 1, B = 2).
This follows from the fact that WP(ψ, {1} × Z2) is an orthonormal basis for
L2(R) and that WP(ψ,B0 × Z) is a Bessel system (with Bessel constant 1),
which in turn is a consequence of Lemma 15.

It remains to prove that dim+(B0) = a.

Step 1. First, we will show that dim+(B0) ≥ a. We compute

lim sup
h→∞

sup
(p,q)∈A

#(Qh(p, q) ∩ B0)

ha
≥ lim sup

k→∞

#(Qk(wk, 0)) ∩ B0)

ka

≥ lim sup
k→∞

#
{
n ∈ Z : 0 ≤ n

2
a ≤ Nk

}
ka

= lim sup
k→∞

N
a
2
k

ka
= lim

k→∞

(k2)
a
2

ka
= 1.

This implies dim+(B0) ≥ a.

Step 2. The most difficult part of the proof is showing that dim+(B0) ≤ a.
Note that for the extreme case a = 2, this follows immediately from Theorem
3. Let, as before, Bk denote the intersection of B0 with the line y = k. Note that
B0 = ∪k≥KBk. We begin by fixing an integer l and getting an upper estimate
on #(Ql(p, q) ∩ Bk) for any k ≥ l. A first observation is that the equations of
the top and bottom lines of Ql(p, q) are y = q

p
x± l. So, by increasing p and/or

decreasing q to 0, we decrease the slopes of the top and bottom lines. Therefore,
in order to get an upper estimate, we may assume that p ≥ wke

l−k. In fact,
since Bk is most concentrated at wk/e

k, we may assume that p = wke
l−k.

Finally, by decreasing q and/or replacing (p, q) with (cp, cq), we may assume
that q = (k− l)el, which positions the leftmost element of Bk at the upper-left
corner of Ql(p, q) and thus maximizes the length of Bk ∩Ql(p, q). We omit the
routine (but tedious) formal verification of the above reductions.

Next we note that, due to our construction, the set B0 has the following
property: if l is large enough and if there exists k ≥ l such that the set
Ql(p, q)∩Bk is non-empty then, for all j �= k (including j < k), Ql(p, q)∩Bj =
∅. (Here p and q are arbitrary.)

This last observation allows us, in particular, to rewrite (16) of Lemma 16, as

lim sup
l→∞

sup(p,q)∈A #
(
Ql(p, q) ∩

⋃
k≥l Bk

)
la

<∞, (19)

and, in view of (19), this also means that now we only need to estimate
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sup(p,q)∈A #(Ql(p, q) ∩ Bk) for k < l, when l is large enough.

The next step in our proof is the observation that in order to show that
dim+(B0) ≤ a, it is enough to obtain the following estimate for each ε > 0:

lim sup
l→∞

sup(p,q)∈A #(Ql(p, q) ∩ B0)

la+ε
<∞. (20)

Consider now the case k < l. First we ask — how many k’s are there such that
Bk ⊂ Ql(p, q)? If the left edge of Ql(p, q) is not at the leftmost point of some
set Bk, we may move the edge to the right so that the left endpoint of the
first Bk contained in Ql(p, q) is the same as the left edge of Ql(p, q). This can
allow us to include more sets Bk in Ql(p, q), but certainly not fewer. Thus, we
may assume that pe−l = wje

−j for some j (recall that wk = eek+k). From the
construction of the set B0 (see the choice of K in the proof of Lemma 15) it
follows that in this case Ql(p, q)∩Bk = ∅ for all k < j. On the other ha nd for
k > ln ln(wje

2l−j), we have that wk

ek ≥ pel, and so Ql(p, q)∩Bk = ∅. Moreover,

ln ln(wje
2l−j) ≤ j + ln(2l + 1).

Now, we notice that the number of k’s for which Bk ∩Ql(p, q) �= ∅ is no more
than two plus the number of k’s such that Bk ⊂ Ql(p, q), which follows from
the fact that we were estimating the x-values of the sets.

So, for fixed, large enough, l, we have that, for ε > 0,

lim sup
l→∞

sup(p,q)∈A #(Ql(p, q) ∩
⋃

k<l Bk)

la+ε

≤ lim sup
l→∞

1

la+ε
sup
j≤l

j+ln(2l+1)+1∑
i=j−1

(
2i(i +

1

2
)
)a

2

≤ lim sup
l→∞

3 + ln(2l + 1)

la+ε

(
2(l + ln(2l + 1) + 1)(l + ln(2l + 1) +

3

2
)
)a

2 = 0.

Here, we used (15) and the observation preceding (19).

Now, combining the said observation with the above calculation and with (19),
we obtain (20), and so dim+(B0) ≤ a, as desired. ✷

Remark 18 If one is more careful in the construction of B0, one can ob-
tain a set B such that WP(ψ,B × Z) is an orthonormal basis for L2(R) and
dim+(B) = 2. Since this is even more complicated than the above argument,
and we are unable to generalize it to 1 < dim+(B) < 2, we choose not to
include the argument here.
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We are now able to obtain a full description of which values the upper and
lower dimension associated with a wave packet frame can attain in the case
M = B × Z under consideration.

Theorem 19 (1) For each 0 ≤ a ≤ 2, there exists a ψ ∈ L2(R) and B ⊂
A with dim+(B) = a such that WP(ψ,B × Z) is a frame for L2(R).
Moreover, these are all possible values.

(2) If there exists a ψ ∈ L2(R) and B ⊂ A such that WP(ψ,B × Z) is a
frame for L2(R), then dim−(B) = 0.

PROOF. (1): For 0 < a ≤ 2, this follows from Theorems 14 and 17.

Next we study the case a = 0. For this, consider the sequence (xn)n∈N defined
by xn = e−en

, and let h, n, x > 0. Then we obtain

xn ∈ [xe−h, xeh] ⇐⇒ − ln x− h ≤ en ≤ − ln x + h.

For each h > 3, this yields

max
y>0

#(n ∈ N0 : en ∈ [− ln y − h,− ln y + h])≤#(n ∈ N : en ∈ [1, 2h + 1])

≤ 1 + ln(2h + 1).

It is an easy calculation to check that (xn)n∈N satisfies the conditions of Propo-
sition 13. Hence there exists a bounded sequence (yn)n∈N such that the set
WP(1[1,2], {(xn, yn) : n ∈ N} × Z) is an orthonormal basis. Now we choose
ψ = 1[1,2] and B = {(xn, yn) : n ∈ N}. It remains to prove that dim+(B) = 0.
For each A > 0, using the boundedness of (yn)n∈N, we compute

D+
A(B) = lim sup

h→∞
sup

(x,y)∈A

#(B ∩Qh(x, y))

hA

= lim sup
h→∞

sup
x∈R+

#({n ∈ N0 : xn ∈ [xe−h, xeh])

hA

≤ lim sup
h→∞

1 + ln(2h + 1)

hA
= 0.

Thus dim+(B) = 0.

By Theorem 9, the only values which dim+(B) can attain are elements of
[0, 2] ∪ {∞}. So it remains to deal with the case a =∞.

We claim that for all B ⊂ A with dim+(B) = ∞ and for all functions ψ ∈
L2(R), the setWP(ψ,B×Z) is not a frame for L2(R). Towards a contradiction,
we assume there exist some B ⊂ A with dim+(B) = ∞ and a function ψ ∈
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L2(R) such that the set WP(ψ,B × Z) is a Bessel system. By definition,
dim+(B) =∞ implies that D+

1 (B) =∞. However, by Theorem 3,WP(ψ,B×
Z) can only be a Bessel system if D+

2 (B × Z) < ∞. Using Lemma 8, this
implies D+

1 (B) <∞, a contradiction.

(2): Let B ⊂ A be such that there exists a wave packet frame for B × Z. By
Theorem 10, we have D−2 (B) = 0. Hence, by Corollary 7, D−A(B) = 0 for all
0 < A <∞. This implies that dim−(B) = 0. ✷

The last theorem is a summary of the main results in this section.

Theorem 20 Let ψ ∈ L2(R) and B be a discrete subset of A.

(1) If WP(ψ,B × Z) is a frame for L2(R), then dim−(B × Z) = 0, and
dim+(B × Z) ≤ 3.

(2) For each 1 ≤ a ≤ 3, there exists a function ψ ∈ L2(R) and a set B ⊂ A
such that WP(ψ,B × Z) is a frame and dim+(B × Z) = a.

PROOF. For part (1), let WP(ψ,B × Z) be a frame for L2(R). Then, by
Theorem 19 (2), D−A(B) = 0 for all 0 < A < ∞. Now Lemma 8 implies that
D−A(B × Z) = 0 for all 1 < A <∞, and hence dim−(B × Z) ≤ 1. But this can
only happen if dim−(B × Z) = 0 by Theorem 2.

Concerning the upper dimension, again by Theorem 2, it suffices to prove that
dim+(B × Z) < ∞. But this follows immediately from Theorem 19 (1) and
Lemma 8.

Part (2) is an immediate application of Theorem 17, Theorem 14 and Lemma
8. ✷
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