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Abstract. In this paper we study the Feichtinger Conjecture in frame theory,
which was recently shown to be equivalent to the 1959 Kadison-Singer Problem
in C∗-Algebras. We will show that every bounded Bessel sequence can be
decomposed into two subsets each of which is an arbitrarily small perturbation
of a sequence with a finite orthogonal decomposition. This construction is then
used to answer two open problems concerning the Feichtinger Conjecture: 1.
The Feichtinger Conjecture is equivalent to the conjecture that every unit
norm Bessel sequence is a finite union of frame sequences. 2. Every unit norm
Bessel sequence is a finite union of sets each of which is ω-independent for
`2-sequences.

1. Introduction

The Kadison-Singer Problem [16] in C∗-Algebras has remained unsolved since
1959, thereby defying the best efforts of several of the most talented mathemati-
cians in our time. Recently, there has been a flurry of activity around this problem
due to a fundamental paper by the first and fourth author [11] (cf. also the longer
version joint with M. Fickus and E. Weber [8]), which connects the Kadison-Singer
Conjecture with many longstanding open conjectures in a variety of different re-
search areas – in Hilbert space theory, Banach space theory, frame theory, harmonic
analysis, time-frequency analysis, and even in engineering – by proving that these
conjecture are in fact equivalent to the Kadison-Singer Problem.

In this paper we focus on the equivalent version of the Kadison-Singer Problem
in frame theory, the so-called Feichtinger Conjecture. Before elaborating on the
history of this conjecture and the contribution of our paper, let us first recall the
basic definitions and notations in frame theory.

A countable collection of elements {fi}i∈I is a frame for a separable Hilbert space
H, if there exist 0 < A ≤ B < ∞ (the lower and upper frame bound) such that for
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all g ∈ H,

(1.1) A ‖g‖2 ≤
∑

i∈I

|〈g, fi〉|2 ≤ B ‖g‖2 .

A frame {fi}i∈I is bounded, if infi∈I ‖fi‖ > 0, and unit norm, if ‖fi‖ = 1 for
all i ∈ I. Note that supi∈I ‖fi‖ < ∞ follows automatically from (1.1) by [5,
Proposition 4.6]. If {fi}i∈I is a frame only for its closed linear span, we call it a
frame sequence. Those sequences which satisfy the upper inequality in (1.1) are
called Bessel sequences. A family {fi}i∈I is a Riesz basic sequence for H, if it is a
Riesz basis for its closed linear span, i.e., if there exist 0 < A ≤ B < ∞ such that
for all `2-sequences of scalars {ci}i∈I ,

A
∑

i∈I

|ci|2 ≤
∥∥∥∥∥
∑

i∈I

cifi

∥∥∥∥∥

2

≤ B
∑

i∈I

|ci|2.

Finally, a sequence (fi)i∈I is called ω-independent for `2-sequences, if, whenever
c = (ci)i∈I is an `2-sequence of scalars and

∑
i∈I cifi = 0, it follows that c = 0.

Having recalled the necessary definitions and notations, we can now state the
main conjecture we will be addressing in this paper.

Conjecture 1.1 (Feichtinger Conjecture). Every bounded frame can be written as
a finite union of Riesz basic sequences.

Much work has been done on the Feichtinger Conjecture in just the last few
years [15, 6, 12, 11, 8, 4]. In particular, by employing the equivalence of the Paving
Conjecture to the Kadison-Singer Problem shown by Anderson in 1979 [1] and
by using the Bourgain-Tzafriri Conjecture [3] which arose from the “restricted in-
vertibility principle” by Bourgain and Tzafriri from 1987 [2], the series of papers
[6, 12, 11, 8] proves the equivalence between the Kadison-Singer Problem and the
Feichtinger Conjecture. In [15] and [4] the Feichtinger Conjecture is considered for
special frames such as wavelet and Gabor frames and frames of translates. For sev-
eral classes of frames the Feichtinger Conjecture could indeed be verified, thereby
verifing parts of the Kadison-Singer Problem.

Let us now take a closer look at the Feichtinger Conjecture (Conjecture 1.1).
It is easily seen, by just normalizing the frame vectors, that we may assume in
Conjecture 1.1 that the frame is a unit norm frame. It also follows easily that we
only need to assume that the sequence is a bounded Bessel sequence. That is, by
adding an orthonormal basis to the Bessel sequence we obtain a bounded frame
which can be written as a finite union of Riesz basic sequences if and only if the
original Bessel sequence can be written this way. Thus the Feichtinger Conjecture
“reduces” to the conjecture that every unit norm Bessel sequence can be written
as a finite union of Riesz basic sequences.

The first main result of our paper concerns a further reduction of the Feichtinger
Conjecture. For this, consider the following conjecture which intuitively seems to
be much weaker than Conjecture 1.1.

Conjecture 1.2. Every unit norm Bessel sequence can be written as a finite union
of frame sequences.

However, surprisingly, we will show that both conjectures are in fact equivalent.

Theorem 1.3. The Feichtinger Conjecture is equivalent to Conjecture 1.2.
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Part of the motivation of this result is a result by Casazza, Christensen, and
Kalton [7] concerning frames of translates, which shows that the set of translates
of a function in L2(R) with respect to an arbitrary subset of N is a frame sequence
if and only if it is a Riesz basic sequence.

It is generally expected that the Kadison-Singer Problem will turn out to be
false, which calls for positive partial results. Our second main result answers an
open problem concerning weakenings of the famous Paving Conjecture of Anderson
[1] which he showed is equivalent to KS. The main question has been whether every
unit norm Bessel sequence is a finite union of ω-independent sets. Recall that a
set of vectors {fi}∞i=1 is ω-independent if

∑∞
i=1 aifi = 0 implies ai = 0 for all

i = 1, 2, . . .. This concept was defined in the 1950’s by Marc Krein except that
he requested that the above implication hold for sequences {ai}i∈I ∈ `2. Since
it is known [6] that every unit norm Bessel sequence is a finite union of linearly
independent sets, our next main result gives that all unit norm Bessel sequences
can be decomposed into a finite number of sets having Krein’s ω-independence.

Theorem 1.4. Every unit norm Bessel sequence which is finitely linearly indepen-
dent is a union of two sets each of which is ω-independent for `2-sequences.

As a main ingredient for the proofs of Theorems 1.3 and 1.4, we will prove a
decomposition theorem for frames, which is interesting in its own right. By pro-
viding an explicit construction, we will show that each unit norm Bessel sequence
can be decomposed into two subsequences in such a way that both are small per-
turbations of “ideal” sequences. Our idea of an ideal sequence is a sequence for
which there exists a partition of its elements into finite sets such that the spans of
the elements of those sets are mutually orthogonal; thus, properties of the sequence
are completely determined by properties of its local components. This definition is
inspired by a more general notion called fusion frames [9, 10], which were designed
to model distributed processing applications.

This paper is organized as follows. In Section 2 we will give the definition
of ε-perturbation, formalize the notion of an ideal sequence, and state some basic
results. Section 3 contains the Decomposition Theorem and a discussion concerning
an improvement of its proof and concerning the necessity of decomposing into two
subsequences, whereas the proofs of Theorems 1.3 and 1.4 will be given in Section 4.

2. Definitions and basic results

For the remainder let H be a separable Hilbert space and let I be a countable
index set. Further, in the following we will write span {fi}i∈I to mean the closed
linear span of a set of vectors {fi}i∈I .

There exist many different definitions for a sequence being a perturbation of a
given sequence. In this paper we will use the following.

Definition 2.1. Let {fi}i∈I and {gi}i∈I be sequences in H satisfying {gi}i∈I ⊂
span i∈I{fi}, and let ε > 0. If

∑

i∈I

‖fi − gi‖2 ≤ ε,

then {gi}i∈I is called an ε-perturbation of {fi}i∈I .
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For finite frames, it is precisely the interaction of the frame vectors which makes
them interesting and applicable to a broad spectrum of applications. To employ
the various results which were already obtained in this setting, an ideal infinite
frame should allow its global properties to be determined locally by considering
finite frame sequences. We formalize this idea in the next definition in the more
general setting of an arbitrary sequence.

Definition 2.2. Let {fi}i∈I be a sequence in H. We say {fi}i∈I possesses a finite
orthogonal decomposition, if I can be partitioned into finite sets {Ij}∞j=1 so that

span i∈I{fi} =




∞∑

j=1

⊕ span i∈Ij
{fi}




`2

.

We wish to remark that the orthogonal family of finite dimensional subspaces
forms an orthonormal basis of subspaces and in this sense is a special case of a
Parseval fusion frame [9, 10].

The following lemma is well-known, but since the proof is short and it is funda-
mental to our construction, we include it for completeness.

Lemma 2.3. Let {fi}i∈I be a Bessel sequence in H, and let P be a finite rank
projection on H. Then ∑

i∈I

‖Pfi‖2 < ∞.

Proof. Let K be the projection space of P with dimension d, and let S denote the
frame operator of {Pfi}i∈I , i.e., S(g) =

∑
i∈I 〈g, fi〉 fi for all g ∈ K. Further, let

{ej}d
j=1 be an orthonormal eigenvector basis for K with respect to S and respective

eigenvalues {λj}d
j=1. Then we obtain

∑

i∈I

‖Pfi‖2 =
∑

i∈I

d∑

j=1

|〈fi, ej〉|2 =
d∑

j=1

∑

i∈I

|〈fi, ej〉|2 =
d∑

j=1

λj < ∞.

¤

3. The Decomposition Theorem

The following theorem states that we can decompose each unit norm Bessel
sequence into two subsequences such that both are ε-perturbations of sequences
which possess a finite orthogonal decomposition. In fact, we will even derive an
explicit algorithm for generating this partition. The proof is inspired by blocking
arguments from Banach space theory [17]. The Decomposition Theorem will also
be the main ingredient for the proofs of Theorems 1.3 and 1.4 in Section 4.

Theorem 3.1 (Decomposition Theorem). Let {fi}i∈I be a unit norm Bessel se-
quence in H, and let ε > 0. Then there exists a partition I = I1 ∪ I2 such that, for
j = 1, 2, the sequence {fi}i∈Ij is an ε-perturbation of some sequence in H, which
possesses a finite orthogonal decomposition.

Proof. Let {fi}i∈I be a unit norm Bessel sequence in H, and let ε > 0. Without
loss of generality we may assume that I = N, since if I is finite we are done.

In the first step we will define a strictly increasing sequence {ni}∞i=1 in N by
an induction argument. In the second step, we show that by defining Ij :=
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⋃∞
i=0{n2i+(j−1) + 1, . . . , n2i+j}, for each j = 1, 2, the sequence {fi}i∈Ij is an ε-

perturbation of some sequence {gi}i∈Ij in H, which possesses a finite orthogonal
decomposition.

For the initial induction step, we set n1 := 1. Further, we define S1 by S1 :=
{n1}, and let P1 denote the orthogonal projection onto span i∈S1

{fi}. To construct
n2, observe that, by Lemma 2.3, we have

∞∑

i=1

‖P1fi‖2 < ∞.

Therefore we can choose n2 > n1 so that

(3.1)
∞∑

i=n2+1

‖P1fi‖2 <
ε

2
.

Using this new element of our sequence, we define T1 by T1 := {n1 +1, . . . , n2} and
let Q1 denote the orthogonal projection onto span i∈T1

{fi}.
We proceed by induction. Notice that in each induction step we will define

two new elements of our sequence. Let k ∈ N and suppose that we have already
constructed n1, . . . , n2k and defined {Sm}k

m=1, {Tm}k
m=1, {Pm}k

m=1, and {Qm}k
m=1.

In the following induction step we will construct n2k+1 and n2k+2, and define Sk+1,
Tk+1, Pk+1, and Qk+1. First, we employ Lemma 2.3, which implies that

∞∑

i=1

‖Qkfi‖2 < ∞.

Therefore we can choose n2k+1 > n2k so that

(3.2)
∞∑

i=n2k+1+1

‖Qkfi‖2 <
ε

22k
.

Now let Sk+1 be defined by Sk+1 := {n2k + 1, . . . , n2k+1}, and let Pk+1 denote the
orthogonal projection of H onto span i∈Sk+1

m=1 Sm
{fi}. Secondly, again by Lemma

2.3, we have
∞∑

i=1

‖Pk+1fi‖2 < ∞.

Thus there exists n2k+2 > n2k+1 such that

(3.3)
∞∑

i=n2k+2+1

‖Pk+1fi‖2 <
ε

22k+1
.

Hence we define the set Tk+1 by Tk+1 := {n2k+1+1, . . . , n2k+2}, and let Qk+1 denote
the orthogonal projection of H onto span i∈Sk+1

m=1 Tm
{fi}. Iterating this procedure

yields a sequence {ni}∞i=1 and, in particular, we obtain a partition {Sm}∞m=1 ∪
{Tm}∞m=1 of N.

For the second step let {Sm}∞m=1 and {Tm}∞m=1 be defined as in the induction
argument. Then we define I1 and I2 by

I1 :=
∞⋃

m=1

Sm and I2 :=
∞⋃

m=1

Tm.
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It remains to prove that, for j = 1, 2, we can construct a sequence {gi}i∈Ij inH such
that {gi}i∈Ij

has a finite orthogonal decomposition and {fi}i∈Ij
is an ε-perturbation

of it.
In the following we will prove the claim only for j = 1. The case j = 2 can be

dealt with in a similar manner. Using the sequence {Pm}∞m=1 from the induction
argument, we define {gi}i∈I1 by

gi :=
{

fi : i ∈ S1,
fi − Pm−1fi : i ∈ Sm, m > 1.

Since by construction we have

gi ∈
{

P1H : i ∈ S1,
(Pm − Pm−1)H : i ∈ Sm, m > 1,

hence

span 1≤i<∞{gi} =

( ∞∑
m=1

⊕ span i∈Sm
{gi}

)

`2

,

it follows that {gi}i∈I1 possesses a finite orthogonal decomposition. Further, for all
m ∈ N and i ∈ Sm, we have

Pm−1fi ∈ span k∈Sm−1
l=1 Sl

{fk},
which implies that span i∈I1

{gi} = span i∈I1
{fi}. Finally, applying (3.1) and (3.3)

yields

∑

i∈I1

‖gi − fi‖2 =
∞∑

m=1

∑

i∈Sm

‖gi − fi‖2 =
∑
m>1

∑

i∈Sm

‖Pm−1fi‖2 ≤
∞∑

m=2

ε

2m
< ε.

Thus {fi}i∈I1 is an ε-perturbation of {gi}i∈I1 . ¤

Remark 3.2. The decomposition argument can be done simultaneously on two
frames at once — for example on a frame {fi}i∈I and its dual frame, which is
{S−1fi}i∈I , S being the frame operator of {fi}i∈I . We will not address this here,
since we do not have any serious application at this time.

Next we observe that it is necessary to divide our index set into two subsets in
Theorem 3.1. That is, the Bessel sequence itself need not be an ε-perturbation of
any sequence with a finite orthogonal decomposition.

Example 3.3. The unit norm Bessel sequence {fi}∞i=1 defined by fi = ei+ei+1√
2

is
not an ε-perturbation of any sequence with a finite orthogonal decomposition for
small ε > 0.

Proof. If we partition N into finite sets {Ij}∞j=1, then there exists a natural number
i0 ∈ N so that i0 ∈ Ij and i0+1 ∈ Ik where j 6= k. Assume, by way of contradiction,
that {gi}∞i=1 is an ε-perturbation of {fi}∞i=1 and {gi}∞i=1 has a finite orthogonal
decomposition given by {Ij}∞j=1. Then ‖fi0‖ = 1 and ‖fi0 − gi0‖ <

√
ε, which

implies
‖gi0‖ ≥ ‖fi0‖ − ‖fi0 − gi0‖ ≥ 1−√ε.

Similarly, ‖gi0+1‖ ≥ 1−√ε. Since span i∈Ij
{gi} is orthogonal to span i∈Ik

{gi}, we
have

‖gi0 − gi0+1‖2 = ‖gi0‖2 + ‖gi0+1‖2 ≥ 2(1−√ε)2.
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Using this estimate and the fact that ‖fi0 − fi0+1‖2 = 1 and ‖fi0 − gi0‖+ ‖fi0+1 −
gi0+1‖ < 2

√
ε, it follows that

√
2(1−√ε) ≤ ‖gi0 − gi0+1‖

≤ ‖fi0 − fi0+1‖+ ‖fi0 − gi0‖+ ‖fi0+1 − gi0+1‖
≤ 1 + 2

√
ε.

This is a contradiction for small ε > 0. ¤

Remark 3.4. Our proof of the Decomposition Theorem relies on the ordering of
the elements of the sequence. This can sometimes cause problems as we will see
below. However, it is possible to do an optimal construction which removes this
assumption. We first choose i0 ∈ I and let S1 = {i0}. Now, following the proof,

∑

i∈I\S1

‖P1fi‖2 < ∞.

So choose T1 ⊂ I\S1 with |T1| minimal and
∑

i∈I\(T1∪S1)

‖P1fi‖2 <
ε

2
.

So we have put the fi, i ∈ I\S1 with ‖P1fi‖ maximal into T1. In the induction
step (equation (3.2)), choose

Sk+1 ⊂ I \
(

k⋃
m=1

Sm ∪
k⋃

m=1

Tm

)

with |Sk+1| minimal and
∑

i∈I\(Sk+1
m=1 Sm∪

Sk
m=1 Tm)

‖Qkfi‖2 <
ε

22k
.

Similarly, we now construct the next Tk+1 and then iterate the procedure.

This stronger form of the decomposition construction is useful because it elim-
inates the ordering of the elements. For example, if we work with the {fi}∞i=1 in
Example 3.3, then for any permutation of {fi}∞i=1, as long as fi0 = f1 the decompo-
sition we obtain from this stronger form of the proof of the Decomposition Theorem
is {

e2i−1 + e2i√
2

}∞

i=1

and
{

e2i + e2i+1√
2

}∞

i=1

both of which are orthonormal bases for their spans. But, if we reorder the sequence
{fi}∞i=1 by taking {fi}2

k+1−1
i=2k into

{f2k+1, f2k+2, . . . , f2k+1−1, f2k} for each 0 ≤ k < ∞,

the proof of the Decomposition Theorem produces the partition

I1 = {22k, 22k+1, . . . , 22k+1 − 1 : 0 ≤ k < ∞},
and

I2 = {22k+1, 22k+1 + 1, . . . , 22k+2 − 1 : 0 ≤ k < ∞}.
Now, {fi}i∈Ij is not even a frame sequence for j = 1, 2. To see this for I1, we note
that the sets

Jk = {22k, 22k+1, . . . , 22k+1 − 1} (0 ≤ k < ∞)
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give a finite orthogonal decomposition of {fi}i∈I1 into linearly independent sets.
So if {fi}i∈I1 would be a frame sequence, then, since {fi}i∈I1 is ω-independent if
and only if for each k ∈ N the sequence {fi}i∈Jk

is linearly independent and by [5,
Proposition 4.3], it would also be a Riesz basic sequence. Let

a22k+i =
(−1)i

√
22k

, i = 0, 1, . . . , 22k − 1.

Then,
22k−1∑

i=0

|ai|2 = 1,

while ∥∥∥∥∥∥

22k−1∑

i=0

a22k+if22k+i

∥∥∥∥∥∥

2

=
∥∥∥∥

1√
22k

(e1 − e22k+1−1)
∥∥∥∥

2

=
1

22k−1
.

This implies that {fi}i∈I1 is not a Riesz basic sequence. Thus {fi}i∈I1 is not a
frame sequence.

4. Proofs of Theorems 1.3 and 1.4

First we will prove Theorem 1.4. For this, we require a small change in the
construction of Theorem 3.1, which can also be regarded as a strengthening due
to the stronger conditions the decomposition has to satisfy. However, notice that
this modification can only be made provided we have a finitely linearly independent
sequence.

Remark 4.1. We will alter the construction in the proof of Theorem 3.1 for finitely
linearly independent sequences in the following way:

In the kth-step, instead of choosing n2k+1 ≥ n2k such that
∞∑

i=n2k+1+1

‖Qkfi‖2 <
ε

22k
,

we choose n2k+1 ≥ n2k so that
∞∑

i=n2k+1+1

‖Qkfi‖2 <
ε

22k
δk,

where δk denotes the lower Riesz basis bound of {fi}n2k
i=1. The choice of n2k+2 ≥

n2k+1 in the same step by (3.3) will be adapted similarly.

This now enables us to prove Theorem 1.4.

Proof of Theorem 1.4. Let {fi}i∈I be a unit norm Bessel sequence which is
finitely linearly independent. Further, let {Tm}∞m=1, {Qk}∞k=1, and {nk}∞k=1 be
chosen as in the proof of Theorem 3.1 modified by Remark 4.1. We assume that
there exists an `2-sequence of scalars {ai} ∞

i∈Tm,m=1 such that

∞∑
m=1

∑

i∈Tm

aifi = 0.
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Fix k ∈ N and define gk by

gk :=
k∑

m=1

∑

i∈Tm

aifi = −
∞∑

m=k+1

∑

i∈Tm

aifi.

Recalling that Qk denotes the orthogonal projection of H onto
span i∈Sk

m=1 Tm
{fi}, by the definition of gk, we have Qkgk = gk. Employing this

fact, we compute

‖gk‖2 = −
∞∑

m=k+1

∑

i∈Tm

ai〈gk, fi〉

≤
( ∞∑

m=k+1

∑

i∈Tm

|ai|2
)1/2 ( ∞∑

m=k+1

∑

i∈Tm

|〈gk, fi〉|2
)1/2

≤
( ∞∑

m=k+1

∑

i∈Tm

|ai|2
)1/2

‖gk‖
( ∞∑

m=k+1

∑

i∈Tm

‖Qkfi‖2
)1/2

.

This implies

(4.1) ‖gk‖ ≤
( ∞∑

m=k+1

∑

i∈Tm

|ai|2
)1/2 ( ∞∑

m=k+1

∑

i∈Tm

‖Qkfi‖2
)1/2

.

Now let δk denote the lower Riesz basis bound of {fi}n2k
i=1. Employing (4.1) and

Remark 4.1, we obtain

δk

k∑
m=1

∑

i∈Tm

|ai|2 ≤ ‖gk‖2

≤
( ∞∑

m=k+1

∑

i∈Tm

|ai|2
)( ∞∑

m=k+1

∑

i∈Tm

‖Qkfi‖2
)

≤
( ∞∑

m=k+1

∑

i∈Tm

|ai|2
)

ε

22k
δk.

Thus,
k∑

m=1

∑

i∈Tm

|ak|2 ≤ ε

22k

∞∑

m=k+1

∑

i∈Tm

|ai|2

Since {ai} ∞
i∈Tm,m=1, the left-hand-side of our inequality converges to the `2 norm

of this sequence of scalars while the right-hand-side converges to zero. It follows
that ai = 0 for all i = 1, 2, . . .. ¤

Theorem 1.4 will now serve as the main ingredient in the proof of Theorem 1.3.

Proof of Theorem 1.3. Obviously, Conjecture 1.1 implies Conjecture 1.2.
To prove the converse implication suppose that Conjecture 1.2 holds. If {fi}i∈I

is a unit norm Bessel sequence, it is in particular a finite union of linearly inde-
pendent sets [6]. Therefore, by Theorem 1.4, it is a finite union of sets which are
ω-independent for `2-sequences. If {fi}i∈J is one of these families, by our assump-
tion it is a finite union of frame sequences. But each of these frame sequences is
ω-independent for `2-sequences, hence it is a Riesz basic sequence. ¤



10 PETER G. CASAZZA, GITTA KUTYNIOK, DARRIN SPEEGLE, AND JANET C. TREMAIN

Acknowledgments

The majority of the research for this paper was performed while the second
and third author were visiting the Department of Mathematics at the University
of Missouri. These authors thank this department for its hospitality and support
during this visit. We also thank the American Institute of Mathematics for hosting
the workshop “The Kadison-Singer Problem” which gave us additional inspirations
and also the possibility to work out the last details of the results presented in this
paper together.

References

1. J. Anderson, Extensions, restrictions, and representations of states on C∗-algebras, Trans.
Amer. Math. Soc. 249 (1979), 303–329.

2. J. Bourgain and L. Tzafriri, Invertibility of “large” submatrices with applications to the ge-
ometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), 137–224.

3. J. Bourgain and L. Tzafriri, On a problem of Kadison and Singer, J. Reine Angew. Math.
420 (1991), 1–43.

4. M. Bownik and D. Speegle, The Feichtinger conjecture for wavelet frames, Gabor frames and
frames of translates, Canad. J. Math. 58 (2006), 1121–1143.

5. P. G. Casazza, The art of frame theory, Taiwanese J. of Math. 4 (2000), 129–201.
6. P. G. Casazza, O. Christensen, A. Lindner, and R. Vershynin, Frames and the Feichtinger

conjecture, Proc. Amer. Math. Soc. 133 (2005), 1025–1033.
7. P. G. Casazza, O. Christensen, and N. Kalton, Frames of translates, Collect. Math. 52 (2001),

35–54.
8. P. G. Casazza, M. Fickus, J. C. Tremain, and E. Weber, The Kadison-Singer problem in

mathematics and engineering: a detailed account, in: Operator Theory, Operator Algebras,
and Applications, D. Han, P. Jorgensen, and D. R. Larson, eds., Contemp. Math. 414, Amer.
Math. Soc., Providence, RI (2006), 299–356.

9. P. G. Casazza and G. Kutyniok, Frames of subspaces, in: Wavelets, Frames, and Operator
Theory, C. Heil, P. E. T. Jorgensen, and D. R. Larson, eds., Contemp. Math. 345, Amer.
Math. Soc., Providence, RI (2004), 87–113.

10. P. G. Casazza, G. Kutyniok, and S. Li, Fusion Frames and Distributed Processing, preprint
(2006).

11. P. G. Casazza and J. C. Tremain, The Kadison-Singer problem in mathematics and engineer-
ing, Proc. Natl. Acad. Sci. USA 103 (2006), 2032–2039.

12. P. G. Casazza and R. Vershynin, Kadison-Singer meets Bourgain-Tzafriri, preprint (2005).
13. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.
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