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Abstract. We establish the linear independence of time-frequency translates for functions
f on Rd having one sided decay limx∈H, |x|→∞ |f(x)|ec|x| log |x| = 0 for all c > 0, which do

not vanish on an affine half-space H ⊂ Rd.

1. Introduction

The Heil-Ramanathan-Topiwala (HRT) conjecture [12] states that time-frequency trans-
lates of a non-zero square integrable function f on Rd are linearly independent.1 There
have been a few partial results on this conjecture, mostly focusing on finding conditions on
Λ ⊂ Rd × Rd which guarantee that time-frequency translates

G(f,Λ) := {MaTbf = e2πia·f(· − b) : (a, b) ∈ Λ}
along Λ are linearly independent [3, 5, 6, 7, 16]. Other interesting results related to the HRT
conjecture can be found in [1, 10, 11]. In [4], the authors found a one-sided decay condition
that guarantees that arbitrary time-frequency shifts are linearly independent.

The goal of this paper is to generalize the main result of the authors [4] to higher dimensions.
We point out that the generalization to higher dimensions of linear independence does not
always follow expectations. Using the Fourier transform it is easy to see that in R, translates
of Lp functions are linearly independent for 1 ≤ p < ∞. However, the situation in Rd is
quite different, as all translates of Lp functions in Rd are linearly independent if and only if
p ≤ 2d

d−1
, by the results of Edgar and Rosenblatt [8, 19].

The main theorem of this paper can be formulated as follows.

Theorem 1.1. Let H be an affine half-space in Rd, i.e., H = {x ∈ Rd : 〈x, v〉 > a} for some
v ∈ Rd \ {0} and a ∈ R. Let f : Rd → C be a Lebesgue measurable function which does not
vanish almost everywhere on H. Assume that for all c > 0,

(1.1) lim
x∈H, |x|→∞

|f(x)|ec|x| log |x| = 0.

Then, the set G(f,R2d) of time-frequency translates of f is linearly independent. That is,
G(f,Λ) is linearly independent for any Λ ⊂ R2d.
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Note that, unlike the one dimensional case, we must make the additional assumption that a
function f does not vanish on a half-space. This is because in one dimension, functions which
vanish on a tail trivially have linearly independent time-frequency shifts. However, if there is
a function f ∈ L2(R) with linearly dependent time-frequency shifts, then 1[−1,0]⊗f ∈ L2(R2)
vanishes on a half-space {(x1, x2) ∈ R2 : x1 > 0} and has linearly dependent time-frequency
shifts. However, it is possible to remove the assumption that f does not vanish on a half-space
in Theorem 1.1 provided we weaken the corresponding conclusion. This is shown in Theorem
3.5.

There are several new ingredients employed in extending the one dimensional result [4,
Theorem 1.1] to the higher dimensional Theorem 1.1. First, we prove a generalization of the
Montgomery-Vaughan inequality [17] to higher dimensions, Theorem 2.1, using the theory of
Beurling-Selberg extremal functions for Euclidean balls developed by Holt and Vaaler [13].
We also show a higher dimensional analogue of the Turán-Nazarov inequality, Theorem 2.2,
from the corresponding one dimensional result [18]. Using this we extend the lower bound
estimate on products of trigonometric polynomials from [4] to higher dimensions. Then, we
establish the key sufficient condition for the linear independence of time-frequency translates,
Theorem 3.1, using the concept of an extended half-space, which induces a total order on Rd.
We also introduce the notion of directional quasi-norm that enables us to prove Theorem 3.3,
which provides a sharper version of Theorem 1.1.

2. Useful Facts

In this section, we recall generalizations of the Montgomery-Vaughan inequality and the
Turán-Nazarov inequality to Rd. We will also provide proofs of the exact inequalities that
we need in our development. In Theorem 2.1 we assume that the dimension d is fixed; all
constants are allowed to (implicitly) depend on d.

Theorem 2.1 (Holt, Vaaler). Fix d ∈ N. For every δ > 0, there exists R > 0 such that
whenever a trigonometric polynomial

(2.1) u(x) =
m∑
j=1

cje
2πi〈aj ,x〉, cj ∈ C, aj ∈ Rd,

satisfies min{|aj − ak| : j 6= k} ≥ δ, we have

(2.2)
|BR(y)|

2

m∑
j=1

|cj|2 ≤
∫
BR(y)

∣∣u(x)
∣∣2 dx for all y ∈ Rd.

Here, |BR(y)| is d-dimensional Lebesgue measure of the Euclidean ball BR(y) of radius R
centered at y.

Proof. This is an immediate corollary to [13, Theorem 4]. We briefly include the relevant
facts for completeness; all references are to [13] and notation is from [13, Theorem 1]. Let ξ,
δ, and ν be real numbers with δ > 0 and ν > −1. Define uν(ξ, δ) to be the infimum of

1

2

∫ ∞
−∞

(
T (x)− S(x)

)
|x|2ν+1 dx,
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where the infimum is over all pairs of entire functions S and T of exponential type at most
2πδ such that

S(x) ≤ sgn(x− ξ) ≤ T (x) for all x ∈ R.
By the estimate [13, p. 204], there is a constant A, depending only on ν, such that

(2.3) uν(ξ, δ) ≤ δ−1ξ2ν+1

(
1 +

A

ξ2δ2

)
whenever ξδ ≥ 1.

By [13, Theorem 4] applied for ν = (d− 2)/2 we have

(2.4) ωd−1((2ν + 2)−1R2ν+2 − uν(R, δ))
m∑
j=1

|cj|2 ≤
∫
BR(y)

∣∣u(x)
∣∣2 dx.

Here, ωd−1 is the surface area of the unit sphere Sd−1 ⊂ Rd. We note that [13, Theorem 4]
requires balls to be centered at 0. However, in the special case when d = 2ν+2, it holds more
generally for every ball since the exponent in [13, (1.28)] vanishes and translations correspond
to unimodular modifications of coefficients cj, j = 1, . . . ,m.

Choose R > 0 such that δR ≥ 1 and

1

δR

(
1 +

A

R2δ2

)
<

1

2d
.

It follows by (2.3) that

(2ν + 2)−1R2ν+2 − uν(R, δ) ≥ (2ν + 2)−1R2ν+2 − δ−1R2ν+1

(
1 +

A

R2δ2

)
≥ R2ν+1

(
R

d
− R

2d

)
=
Rd

2d
.

Combining this with (2.4) and the fact that |BR(y)| = Rdωd−1/d yields (2.2). �

We will also need a higher dimensional analogue of the Turán-Nazarov inequality [18]. A
similar result for Zd-periodic trigonometric polynomials u, which corresponds to the case
when aj ∈ Zd in (2.1), was considered by Fontes-Merz [9]. Theorem 2.2 also appears in [2,
Lemma 12], but without a proof that we provide below.

Theorem 2.2 (Higher dimensional Turán-Nazarov inequality). Let u be a trigonometric
polynomial of order m as in (2.1). Let E be any measurable subset of positive measure of a
ball BR(y) ⊂ Rd, R > 0, y ∈ Rd. There exists an absolute and dimensionless constant A such
that

(2.5) sup
x∈BR(y)

|u(x)| ≤
(
d2dA

|BR(y)|
|E|

)m−1

sup
x∈E
|u(x)|.

Proof. Recall that one dimensional Turán-Nazarov inequality [18] guarantees the existence of
an absolute constant A such that for any univariate trigonometric polynomial

(2.6) ũ(r) =
m∑
j=1

c̃je
2πiãjr, c̃j ∈ C, ãj ∈ R,
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and any measurable subset Ẽ of positive measure of an interval I ⊂ R we have

(2.7) sup
r∈I
|ũ(r)| ≤

(
A|I|
|Ẽ|

)m−1

sup
r∈Ẽ
|ũ(r)|.

Let z0 ∈ BR(y) be a point that achieves the maximum of |u|, i.e.,

|u(z0)| = sup
x∈BR(y)

|u(x)|.

For any direction ω ∈ Sd−1 = {x ∈ Rd : |x| = 1} define a ray section of E by

Eω = {r ∈ [0,∞) : z0 + rω ∈ E}.

Let σ be (d−1)-dimensional Lebesgue measure on Sd−1. By the spherical integration formula
we have

|E| =
∫
Rd

1E(x)dx =

∫
Sd−1

∫ ∞
0

1E(z0 + rω)rd−1drdσ(ω) =

∫
Sd−1

∫ 2R

0

1Eω(r)rd−1drdσ(ω)

≤ (2R)d−1

∫
Sd−1

|Eω|dσ(ω) ≤ (2R)d−1σ(Sd−1) ess sup
ω∈Sd−1

|Eω|.

Since |BR(y)| = Rdσ(Sd−1)/d, there exists ω0 ∈ Sd−1 such that Eω0 is Lebesgue measurable
and

(2.8)
|Eω0|
2R

≥ 1

d2d
|E|
|BR(y)|

.

Define a univariate trigonometric polynomial ũ by

ũ(r) = u(z0 + rω0) =
m∑
j=1

c̃je
2πiãjr, where c̃j = cje

2πi〈aj ,z0〉, ãj = 〈aj, ω0〉.

Applying (2.7) for ũ and Ẽ = Eω0 ⊂ [0, 2R], by (2.8) we have

sup
x∈BR(y)

|u(x)| = |u(z0)| ≤ sup
r∈[0,2R]

|ũ(r)| ≤
(
A

2R

|Eω0|

)m−1

sup
r∈Eω0

|ũ(r)|

≤
(
d2dA

|BR(y)|
|E|

)m−1

sup
x∈E
|u(x)|.

This proves (2.5). �

As a consequence of Theorems 2.1 and 2.2 we obtain the following generalization of [3,
Proposition 2.2].

Proposition 2.3. Let u be a non-zero trigonometric polynomial as in (2.1). Let R > 0.
Then there exists a constant C > 0, depending only on u and R, such that

(2.9) sup
x∈BR(y)

|u(x)| ≥ C for all y ∈ Rd.



LINEAR INDEPENDENCE OF TIME-FREQUENCY TRANSLATES IN Rd 5

Proof. Let δ = min{|aj − ak| : j 6= k} > 0. Let R0 > 0 be the corresponding radius as in
Theorem 2.1. Then,

(2.10)
1

2

m∑
j=1

|cj|2 ≤
1

|BR0(y)|

∫
BR0

(y)

∣∣u(x)
∣∣2 dx ≤ sup

x∈BR0
(y)

|u(x)|2.

This shows (2.9) when R ≥ R0. If R < R0, then by Theorem 2.2, there exists a constant
c > 0 such that

sup
x∈BR(y)

|u(x)| ≥ c sup
x∈BR0

(y)

|u(x)|.

By (2.10) this again shows (2.9). �

3. Proof of the main theorem

We start by introducing a technical sufficient condition (3.1) for the linear independence
of time-frequency translates of a measurable function, which generalizes the one dimensional
condition in [4]. This is a main ingredient in the proof of our main result, Theorem 1.1.
Define the space of all Lebesgue measurable functions on the real line by

M = {f : Rd → C is Lebesgue measurable}.
As it is customary, we shall identify functions in M which are equal almost everywhere.

Definition 3.1. Given an orthonormal basis {vj}dj=1 of Rd define an extended half-space by

H{vj} =
d⋃
j=1

{x ∈ Rd : 〈x, vj〉 > 0 and 〈x, vi〉 = 0 for all i = 1, . . . , j − 1}.

Note that the extend half-space H{vj} essentially coincides with the open half-space

H = {x ∈ Rd : 〈x, v1〉 > 0} ⊂ H{vj} ⊂ H̄ = {x ∈ Rd : 〈x, v1〉 ≥ 0}.
Indeed, H{vj} \H ⊂ {x ∈ Rd : 〈x, v1〉 = 0} has measure zero.

Theorem 3.1. Let H{vj} be an extended half-space, and H = {x ∈ Rd : 〈x, v1〉 > a}, a ∈ R,
be an affine half-space, and f ∈M. Suppose that for any non-zero trigonometric polynomial
u, any finite subset B = {b1, . . . , bn} ⊂ H{vj}, and any M > 0, the set

(3.1) E = Eu,M,B =

{
x ∈ H : |u(x)f(x)| > M

n∑
i=1

|f(x+ bi)|
}

has positive measure. Then, G(f,R2d) is linearly independent.

Proof. Suppose for the sake of contradiction that there exist b1, . . . , bN ∈ Rd and trigonometric
polynomials u1, . . . , uN such that

N∑
i=1

ui(x)f(x− bi) = 0 for a.e. x ∈ Rd.

The extended half-space H{vj} induces a total order ≺ on Rd given by

x ≺ y ⇐⇒ y − x ∈ H{vj}.
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This is a consequence of the observation that two extended half-spaces H{vj} and −H{vj} =
H{−vj} form a partition of Rd \ {0}. Hence, without loss of generality we can assume that

(3.2) b1 ≺ . . . ≺ bN .

Moreover, we can also assume that ||ui||∞ ≤ 1 for all i = 1, . . . , N .
We shall prove that our hypothesis (3.1) implies that there exist sets of positive measure

Q1, . . . , QN ⊂ H such that the matrix

MN =


u1(x1)f(x1 − b1) u2(x1)f(x1 − b2) · · · uN(x1)f(x1 − bN)
u1(x2)f(x2 − b1) u2(x2)f(x2 − b2) · · · uN(x2)f(x2 − bN)

...
...

u1(xN)f(xN − b1) u2(xN)f(xN − b2) · · · uN(xN)f(xN − bN)


has non-zero determinant for almost all (x1, . . . , xN) ∈ Q1 × · · · ×QN . This contradicts our
hypothesis that the sum of the rows of M are zero almost everywhere.

For each 1 ≤ n ≤ N , and (x1, . . . , xn) ∈ (Rd)n, we consider the principal n× n submatrix
of MN given by

Mn = Mn(x1, . . . , xn) =

u1(x1)f(x1 − b1) · · · un(x1)f(x1 − bn)
...

...
un(xn)f(xn − b1) · · · un(xn)f(xn − bn)

 .

We will show by induction the existence of sets of positive measure Q1, . . . , Qn ⊂ Rn and
positive constants c1, . . . , cn and δ1, . . . , δn such that

|f(x− bj)| ≤ cn for a.e. x ∈
n⋃
i=1

Qi, j = 1, . . . , n,(3.3)

| detMn(x1, . . . , xn)| ≥ δn for a.e. (x1, . . . , xn) ∈ Q1 × · · · ×Qn.(3.4)

The base case n = 1 follows trivially from the presence of strict inequality in (3.1). Suppose
that (3.3) and (3.4) hold for some 1 ≤ n < N . Let Σ be the set of all permutations of
{1, . . . , n+1} such that σ(n+1) 6= n+1. Then, for any (x1, . . . , xn, xn+1) ∈ Q1×. . .×Qn×Rd,

(3.5)

| detMn+1(x1, . . . , xn, xn+1)|

≥ |un+1(xn+1)f(xn+1 − bn+1) detMn(x1, . . . , xn)| −
∣∣∣∣∑
σ∈Σ

n+1∏
k=1

uσ(k)(xk)f(xk − bσ(k))

∣∣∣∣
≥ δn|un+1(xn+1)f(xn+1 − bn+1)| − n!(cn)n

n∑
i=1

|f(xn+1 − bi)|.

The last estimate is a consequence of breaking the sum over σ ∈ Σ with σ(n+ 1) = i, where
1 ≤ i ≤ n. By our hypothesis (3.1), the set

E =

{
xn+1 ∈ H : |un+1(xn+1 + bn+1)f(xn+1)| > M

n∑
i=1

|f(xn+1 + (bn+1 − bi))|
}
,

where M = 2n!(cn)n/δn, has positive measure. This is because bn+1 − bi ∈ H{vj} for i =
1, . . . , n by (3.2). We momentarily set Qn+1 = bn+1 + E. Then, by (3.5) we have that for
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almost every (x1, . . . , xn+1) ∈ Q1 × . . .×Qn+1,

| detMn+1(x1, . . . , xn+1)| ≥ δn
2
|un+1(xn+1)f(xn+1 − bn+1)| > 0.

Thus, by restricting to a (positive measure) subset of Qn+1 if necessary, we can find two
constants cn+1, δn+1 > 0 such that (3.3) and (3.4) hold, as desired. This completes the proof
of Theorem 3.1. �

In order to establish Theorem 1.1 we will need the following lemma about products of
trigonometric polynomials, which is a consequence of the Turán-Nazarov inequality. Lemma
3.2 is a straightforward generalization of the one-dimensional result [4, Lemma 3.5].

Lemma 3.2. Let u be a non-zero trigonometric polynomial, let B = {b1, . . . , bn} ⊂ Rd be a
finite set, and let R > 0. Then, there exists a constant η = η(u, n,R) > 0 such that for any
y ∈ Rd and any k ≥ 2, there exists a measurable subset E ⊂ BR(y) with |E| > |BR(y)|/2
such that

(3.6) sup
x∈E

n∑
i(1)=1

. . .
n∑

i(k)=1

∣∣∣∣ k∏
j=1

u

(
x+

j∑
l=1

bi(l)

)∣∣∣∣−1

≤ eηk log k.

Proof. Recall that BR(y) denotes a ball centered at y ∈ Rd with radius R > 0. For any
b ∈ Rd and t > 0 we define

(3.7) Eb(t) = {x ∈ BR(y) : |u(x+ b)| < t}.

By Proposition 2.3 we have (2.9). Combining this with Theorem 2.2 yields

t ≥ sup
x∈Eb(t)

|u(x+ b)| ≥ C(d2dA)1−m
(
|Eb(t)|
|BR(y)|

)m−1

.

Thus,

(3.8) |Eb(t)| ≤ C ′|BR(y)|t1/(m−1) for all t > 0,

where the constant C ′ depends on d, R and u, but not on b or y.
For fixed k ∈ N define the set

Σ =

{ n∑
i=1

αibi :
n∑
i=1

αi ≤ k, αi ∈ N0

}
.

Since the sequence (α1, . . . , αn, k − (α1 + . . . + αn)) represents a partition of k into n + 1
blocks, we have

(3.9) #|Σ| ≤
(
k + n

k

)
≤ Ckn.

For any subset σ = {σ(1), . . . , σ(k)} ⊂ Σ of size k, define the function

fσ(x) =
k∏
i=1

1

|u(x+ σ(i))|
.
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Let t > 0. Suppose that for some x ∈ BR(y) we have

(3.10)
n∑

i(1)=1

. . .

n∑
i(k)=1

∣∣∣∣ k∏
j=1

u

(
x+

j∑
l=1

bi(l)

)∣∣∣∣−1

> t.

By taking averages, this implies that there exists a subset σ ⊂ Σ of size k such that fσ(x) >
t/nk. Since fσ is a product of k functions, at least one of them must take value greater than
(t/nk)1/k. That is,

x ∈
k⋃
i=1

Eσ(i)

(
n

t1/k

)
⊂
⋃
b∈Σ

Eb

(
n

t1/k

)
,

where Eb(t) is given by (3.7). Thus, using (3.8) and (3.9), the Lebesgue measure of the set
of points x ∈ BR(y) satisfying (3.10) is bounded by∣∣∣∣ ⋃

b∈Σ

Eb

(
n

t1/k

)∣∣∣∣ ≤ #|Σ|max
b∈Σ

∣∣∣∣Eb( n

t1/k

)∣∣∣∣ ≤ CknC ′|BR(y)| n
1/(m−1)

t1/k(m−1)
≤ C ′′|BR(y)|knt−

1
k(m−1) .

If we wish that the measure of this set does not exceed |BR(y)|/2, we are led to the inequality

t > (2C ′′)(m−1)kkn(m−1)k.

Thus, there exists a constant η > 0, which is independent of the choice of k ≥ 2, such that
t = eηk log k satisfies the above bound. Consequently, the set E of points x ∈ BR(y) such
that the inequality (3.10) fails has measure at least |BR(y)|/2. This completes the proof of
Lemma 3.2. �

We are now ready to state Theorem 3.3. As we will see, the main result of the paper,
Theorem 1.1, follows immediately from it.

Theorem 3.3. Let {vj}dj=1 be an orthonormal basis of Rd. Define the corresponding direc-

tional quasi-norm as a mapping N : Rd → [0,∞) given for x ∈ Rd by

(3.11) N(x) =
d∑
j=1

〈x, vj〉+, where y+ = max(y, 0).

Let f : Rd → C be a Lebesgue measurable function that does not vanish almost everywhere on
an affine half-space H = {x ∈ Rd : 〈x, v1〉 > a}, a ∈ R. Assume that f satisfies for all c > 0,

(3.12) lim
t→∞

ect log t sup
x∈H,N(x)>t

|f(x)| = 0.

Then, the set G(f,R2d) of time-frequency translates of f is linearly independent.

In the proof of Theorem 3.3 we will need the following lemma.

Lemma 3.4. Let B = {b1, . . . , bn} be a finite subset of an extended half-space H{vj}. Then,
there exists δ > 0 such that for any k ∈ N and any choice of i(l) ∈ {1, . . . , n}, l = 1, . . . , k
we have

N

( k∑
l=1

bi(l)

)
> δk.
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Proof. We shall proceed by induction on the dimension d. Lemma 3.4 is trivially true when
d = 1. Assume by inductive hypothesis that it is true in the dimension d − 1. Without loss
of generality, we can assume that elements of B are arranged in increasing order ≺ as in the
proof of Theorem 3.1, i.e., b1 ≺ . . . ≺ bn. Let s = 1, . . . , n be the largest index such that
〈bs, v1〉 = 0. If such s does not exist, then we let s = 0. Observe that

(3.13) 0 < 〈bs+1, v1〉 ≤ . . . ≤ 〈bn, v1〉.
On the other hand, the elements {b1, . . . , bs} lie in the subspace span{v2, . . . , vd}, which we

can identify with Rd−1. Since H{vj}
d
j=2 is an extended half-space in Rd−1, by the inductive

hypothesis there exists δ > 0 such that

(3.14) N

( k∑
l=1, i(l)≤s

bi(l)

)
> δ(k − k0),

where k0 is the number of l = 1, . . . , k such that i(l) > s. Moreover, we have

(3.15) N

( k∑
l=1

bi(l)

)
≥ N

( k∑
l=1, i(l)≤s

bi(l)

)
− k0dC,

where C = max{|bi| : i = 1, . . . , n}. Indeed, (3.15) follows easily from〈 k∑
l=1

bi(l), vj

〉
+

≥
〈 k∑
l=1, i(l)≤s

bi(l), vj

〉
+

− k0C for all j = 1, . . . , d.

Combining (3.14) and (3.15) we have

(3.16) N

( k∑
l=1

bi(l)

)
> δ(k − k0)− k0dC ≥

δ

2
k, if k0 ≤ εk,

where ε = δ/(2δ + 2dC). However, if k0 > εk, then by (3.13) we have

(3.17) N

( k∑
l=1

bi(l)

)
≥
〈 k∑

l=1

bi(l), v1

〉
+

≥
〈 k∑
l=1, i(l)>s

bi(l), v1

〉
≥ k0〈bs+1, v1〉 ≥ ε〈bs+1, v1〉k.

Combining (3.16) with (3.17) completes the proof of Lemma 3.4. �

Proof of Theorem 3.3. Let H = {x ∈ Rd : 〈x, v〉 > a} be an affine half-space, where v ∈
Rd \ {0} and a ∈ R. Choose any orthonormal basis {vj}dj=1 ⊂ Rd such that v1 = v/|v|. By
Theorem 3.1 it suffices to show that for any trigonometric polynomial u 6= 0, any finite subset
B = {b1, . . . , bn} ⊂ H{vj} and any M > 0, the set Eu,M,B given by (3.1) has positive measure.

On the contrary, suppose that for some choice of u, B, and M > 0 we have

(3.18) |f(x)| ≤M
n∑
i=1

|f(x+ bi)|
|u(x)|

for a.e. x ∈ H.

By recursion, (3.18) implies that

(3.19) |f(x)| ≤Mk

n∑
i(1)=1

. . .
n∑

i(k)=1

∣∣∣∣f(x+
k∑
l=1

bi(l)

)∣∣∣∣ k∏
j=1

∣∣∣∣u(x+

j−1∑
l=1

bi(l)

)∣∣∣∣−1

.
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By the non-vanishing hypothesis on f , there exists a constant ε > 0, such that the set
{x ∈ H : |f(x)| > ε} has positive measure. By the Lebesgue differentiability theorem applied
to that set, there exists a ball BR(y) ⊂ H and such that

(3.20) |{x ∈ BR(y) : |f(x)| > ε}| > |BR(y)|/2.

Observe that the quasi-norm N defined by (3.11) satisfies the triangle inequality N(x+z) ≤
N(x) +N(z). Thus, for any x ∈ BR(y) and z ∈ Rd,

N(x+ z) ≥ N(z)−N(−x) ≥ N(z)−
√
d(R + |y|).

By Lemma 3.4 and the Cauchy-Schwarz inequality

(3.21) N(x) ≤
d∑
j=1

|〈x, vj〉| ≤
√
d

( d∑
j=1

|〈x, vj〉|2
)1/2

=
√
d|x|,

there exists δ > 0 such that

N

(
x+

k∑
l=1

bi(l)

)
≥ δk −

√
d(R + |y|) ≥ δk/2 for k ≥ k0 := 2

√
d(R + |y|)/δ.

Thus, for any x ∈ BR(y) and k ≥ k0,

(3.22)

∣∣∣∣f(x+
k∑
l=1

bi(l)

)∣∣∣∣ ≤ sup
z∈H, N(z)>δk/2

|f(z)|.

Here, we used the following fact: x ∈ H and b ∈ H{vj} =⇒ x+ b ∈ H.
Combining (3.19) and (3.22) with Lemma 3.2 yields a subset Ek ⊂ BR(y) with |Ek| >
|BR(y)|/2 such that

(3.23) |f(x)| ≤Mkeηk log k sup
z∈H, N(z)>δk/2

|f(z)| for x ∈ Ek.

By (3.20) the set Ek must non-trivially intersect with the set {x ∈ BR(y) : |f(x)| > ε}.
Hence, we conclude that

sup
z∈H, N(z)>δk/2

|f(z)| ≥ εM−ke−ηk log k for k ≥ k0.

This contradicts our decay hypothesis (3.12) and completes the proof of Theorem 3.3. �

As an immediate consequence of Theorem 3.3 we can deduce Theorem 1.1.

Proof of Theorem 1.1. Suppose that a function f satisfies the decay condition (1.1). That is,
for all c > 0,

lim
t→∞

ect log t sup
x∈H,|x|>t

|f(x)| = 0.

Combining this with (3.21) implies the weaker decay condition (3.12). Consequently, Theorem
3.3 yields the desired conclusion. �
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We end by presenting a decay condition that is a more direct generalization of the main
theorem in [4]. Indeed, the condition (3.24) is automatically satisfied on the real line since
any finite subset B ⊂ R can be arranged in increasing order. Then, depending on the sign
of v ∈ R, the decay condition (3.25) corresponds to one-sided limit as x → ∞ or x → −∞.
Thus, Theorem 3.5 implies the main result in [4].

Theorem 3.5. Let B = {b1, b2, . . . , bn} be a finite subset of Rd. Suppose there exists a vector
v ∈ Rd and 1 ≤ j0 ≤ n such that

(3.24) 〈v, bj0〉 < 〈v, bj〉 for all 1 ≤ j ≤ n, j 6= j0.

Let f : Rd → C be a non-zero Lebesgue measurable function satisfying the directional decay
condition

(3.25) lim
x∈Rd, 〈x,v〉→∞

|f(x)|ec〈x,v〉 log(〈x,v〉) = 0 for all c > 0.

Then, if u1, . . . , un are trigonometric polynomials such that

(3.26)
n∑
j=1

uj(x)f(x+ bj) = 0 for a.e. x ∈ Rd,

then uj0 = 0. In particular, if 〈v, bi〉 6= 〈v, bj〉 for all i 6= j, then G(f,Rd × (−B)) is linearly
independent.

Remark 3.1. Note that unlike Theorem 1.1 we do not assume that f does not vanish on a
half-space. Moreover, the decay condition (1.1) is weakened by the condition (3.25) that does
not impose any decay in directions perpendicular to a vector v ∈ Rd. As a consequence,
the conclusion of Theorem 3.5 must also be weakened. Indeed, the following simple example
shows that we can not expect that the remaining polynomials satisfy u1 = . . . = un = 0.
Define f : R2 → R by

f(x1, x2) =

{
ex2 if x1 ∈ [0, 1],

0 otherwise.

Then, f satisfies the hypothesis of Theorem 3.5 with B = {(0, 0), (0, 1), (−1, 0)} and v =
(1, 0), but G(f, {0} ×B) is linearly dependent.

Proof of Theorem 3.5. On the contrary suppose that there exists a solution to (3.26) with a
non-zero uj0 . Then,

|f(x)| ≤M

n∑
j=1, j 6=j0

|f(x+ bj − bj0)|
|uj0(x)|

for a.e. x ∈ Rd,

where M = max(||u1||∞, . . . , ||un||∞). Hence, the same inequality as in (3.18) holds true.
Define a directional quasi-norm Ñ(x) = 〈x, v〉+. By the assumption (3.24), Lemma 3.4 holds
for the set B̃ = {bj − bj0 : 1 ≤ j 6= j0 ≤ n} and quasi-norm Ñ in place of B and N , resp.

Moreover, the same argument as in the proof of Theorem 3.3 works for the quasi-norm Ñ
in place of the original one given by (3.11). As a result we obtain a contradiction with our
hypotheses that uj0 6= 0, thus completing the proof of Theorem 3.5. �
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