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ABSTRACT

We propose a semiparametric approach to infer the existence of and estimate the location of a statistical change-
point to a nonlinear high dimensional time series contaminated with an additive noise component. In particular,
we consider a p−dimensional stochastic process of independent multivariate normal observations where the mean
function varies smoothly except at a single change-point. Our approach first involves a dimension reduction of
the original time series through a random matrix multiplication. Next, we conduct a Bayesian analysis on the
empirical detail coefficients of this dimensionally reduced time series after a wavelet transform. We also present a
means to associate confidence bounds to the conclusions of our results. Aside from being computationally efficient
and straight forward to implement, the primary advantage of our methods is seen in how these methods apply to
a much larger class of time series whose mean functions are subject to only general smoothness conditions.

Keywords: wavelet, random matrix, posterior distribution, Schwarz Information Criteria

1. INTRODUCTION

In this article we demonstrate how a technique involving a Bayesian analysis of wavelet detail coefficients from a
multivariate time series may be applied in a high dimensional setting to detect and estimate the location of a
statistical change-point in mean. The approach involves both a presentation of the so called Bayesian-wavelet
change-point estimation equation, p(τ |D∗), and pertinent random matrix dimensionality reduction techniques.
Unlike other proposed methods in the multivariate case for the statistical change-point problem,1–4 we relax the
usual assumption that each element of the time series on common sides of the change-point location is identically
distributed.

The multivariate change-point in high dimensions has applications in such areas as finance,5 surveillance
video,6 and network traffic analysis.7 Computational challenges increasingly complicate the change-point problem
in high dimensional settings preventing direct applications of low dimensional techniques. While less work has
been done on the change-point problem in the high dimensional setting Aston and Kirch,8 Cho and Fryzlewicz,9

and Xie et al.10 have all proposed methods of detecting change-points in the high dimensional setting. As in
the lower dimensional case, however, these proposed high dimensional change-point techniques generally do not
apply without rather strict assumptions on the time series generating mean function. In particular our approach
generalizes to the case where the true underling mean varies smoothly except possibly at a change-point location.

Consider a p-dimensional time series, X, of independent observations {xi}
N

i
for N ∈ N where xi is a

p-dimensional vector, such that
xi ∼ Np(µi,Σ). (1)

The mean parameter, µi, is assumed to be generated by a p-dimensional mean function, g(·), smoothly changing
except possibly at a single point in time where the shift occurs. Let the symbol, τ , represent the change-point
location where τ ∈ [1, N − 1]. The question becomes does a statistical change-point exist in the time series? If
so, how closely can we estimate the location of this change-point? We assume Σ is an unknown but constant
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p× p covariance matrix throughout our time series. When considered in conjunction with its mean function, a
particular observation of the time series may alternatively be expressed as

xi = g(i) + εi (2)

where
εi ∼Np(0,Σ). (3)

The important point is that the usual assumption of the data being independently and identically distributed
is relaxed. Instead we assume only independence between time series elements and the rather mild regularity
condition that g be piecewise smooth. Finally, we conclude this article by presenting examples from both simulated
and real world data that demonstrate the effectiveness of this method to a wide range of practical problems.

2. BACKGROUND

In this section we review necessary background material that we later apply in our study of the statistical
change-point problem in high dimensions. Firstly, we discuss important statistical properties of the discrete
wavelet transform when applied to a multivariate time series contaminated with an additive multivariate normal
noise component. Secondly, we also present known results from the literature on random matrix theory that will
be the key tool in our dimensionality reduction of high dimensional data.

2.1 Discrete Wavelet Transform (DWT) Observations

The discrete wavelet transform11–13 is a remarkable tool in signal analysis that has been the subject of extensive
research in the past 25 years. Given a discrete noisy signal, our objective is to extract information about the
true underling signal apart from the additive noise component. As Donoho14 showed, the detail coefficients
from smooth functions have sparse representation in the wavelet domain. In particular, the contribution of the
signal to the high level detail coefficient magnitudes should be close to zero leaving the energy of the true signal
concentrated in a relatively sparse number of low level detail coefficients representing overall signal change.15

Since detail coefficients represent signal change at different scales, on a localized scale we expect high level detail
coefficients from smooth functions to have similar representations.16

Observe Figure 1 which displays two examples of a smooth one dimensional time series mean function except
at a change-point at time point 81 (top) along with the respective detail coefficient values (bottom). Notice that
the detail coefficient values are essentially identical for the finest three resolution levels despite the fact that the
mean functions are quite different. Even resolution levels 4 closely compare. While the coefficient values at the
lowest three resolution levels do begin to diverge, 118 of the total 127 detail coefficients in this 128 element time
series closely agree. The property in Figure 1 illustrates the sparsity property of the DWT and is a phenomena
that we find holds in general for any smoothly varying mean functions sharing a common change-point.

Next we consider the statistical properties of the detail coefficients for multivariate time series with an additive
noise component as in equation (2). Suppose we observe a p-dimensional time series, X, of N elements where
each row represents a distinct element of the time series. We may transform X to the wavelet domain by taking a
1-dimensional DWT of X column by column and collecting the resulting vectors of detail coefficients, d∗

jk, into a
matrix D∗. The dual subscript notation of each detail coefficient vector denotes the usual detail level (j) and
translation (k) index12 while the * denotes that this is an empirical detail coefficient vector that we actually
observe. By the linearity of the DWT we may express each detail coefficient vector as the sum

d∗
jk = djk + ηjk (4)

where djk is the true (but unknown) detail coefficient of the mean function and ηjk is the DWT of the additive
noise component, εi. In the case of a Gaussian additive noise component, the statistical properties of random
process is retained by the high level detail coefficients after a DWT. That is, if we assume εi is generated from a
Gaussian process as in (3), then ηjk in equation (4) will also be Gaussian.12,17 Alternatively, we may express
each empirical detail coefficient vector as a random variable from the distribution



d∗
jk ∼ Np(djk,Σ). (5)

Now let H be a multivariate step function, also p-dimensional and of N elements in length, with a change-point
at precisely the same time point as X. Taking the DWT of H column by column and storing each resulting detail
coefficient vector, qjk, we obtain the matrix Q. By the properties of the DWT and as illustrated in Figure 1, we
expect the true higher level detail coefficient vectors, djk, to closely correspond to qjk so long as g(·) is smooth.
If g(·) is a multivariate step function these detail coefficient values will exactly correspond for all detail levels to
within a multiplicative factor ∆ = [δ1, δ2, . . . , δp] corresponding to the size of the shift at the change-point. In
particular, we model each empirical detail coefficient vector as

djk ∼ Np(∆qjk,Σ). (6)

where ∆qjk = [δ1qjk,1, δ2qjk,2, . . . , δpqjk,p]. This final representation as given by (6) will be the fundamental
model assumption we make when developing the Bayesian-wavelet change-point estimation equation in section 3
below.
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2.2 Dimensionality reduction by way of random matrix multiplication

When encountering a time series of high dimensions, invariably a point is reached where direct computations on
the data become impractical or impossible due to existing computing limitations. One method when dealing
with the so called “curse of dimensionality” conceptually involves approximating the high dimensional time series
on a computationally tractable lower dimensional manifold.18 With any such approximation, information is
almost always lost and the question becomes to what extent we may draw conclusions while working in this lower
dimensional setting.19 Random matrix dimensionality reduction offers an attractive practical approach in this
case because of its ease and inexpensive means of implementation. Furthermore, known theoretical results exist
in the literature for certain special cases that conveniently describe how confidence bounds may be associated
with the results obtained from the lower dimensional manifold.

The first result we consider is due to Johnson and Lindenstrauss and describes how the magnitude of a

high dimensional vector may change after a random matrix dimension reduction.20 Let X = {xi}
N

i
denote a

p−dimensional time series of length N with a multivariate additive Gaussian noise component and a shift of ∆X

at an unknown change-point location, τ . Next we define our dimensionality reduction linear transformation (or
interchangeably a matrix) P. Explicitly, we write P : Rp → Rd where d ≤ p such that

P =
1√
d

A. (7)

Here A is a random matrix with each entry, aij , randomly distributed as aij ∼ N(0, 1). If we perform a matrix

multiplication we obtain a dimensionally reduced time series YT = PXT with a shift vector ∆Y also at time point
τ . With the above notation, the Johnson and Lindenstrauss lemma applied in this setting takes the following
form.

Lemma 2.1. Letting || · ||2 denote the squared magnitude of a vector and requiring 0 < ε < 1, then so long as
d > 2 logα

log(1−ε)−ε , we are at least 100(1− α)% confident that ||∆Y ||2 ≥ (1− ε)||∆X ||2.

The next result we consider concerns what happens to the largest expected singular value, smax, of a random
matrix P (where P is in the form given above). In section 3 we will see how this in turn relates to largest singular
value of the covariance matrix associated with the additive noise component after a random matrix dimension
reduction. Based on Gordon’s theorem for Gaussian matrices and Slepian’s inequality, Vershynin21 proves the
following proposition.

Proposition 2.2. Given a random d × n dimension reduction matrix, P, then with probability of at least
1− 2 exp(−t2/2) and for every t ≥ 0

smax ≤
√
p

d
+ 1 +

t√
d

where smax denotes the largest singular value of P.

The difficulty of the statistical change-point problem in any dimension ultimately depends on both the size
of the shift at the change-point location and the structure of the covariance of the additive noise component.
Clearly larger shifts are easier to detect than smaller shifts while more variance increases the difficulty of correctly
estimating the change-point location. In the context of the high dimensional statistical change-point problem,
the above two results in this section will be important to better understand the scope and effectiveness of the
methods developed below.

3. GENERAL RESULTS

Here we outline our general results that we later apply to the high dimensional change-point problem. We may
consider the shift in the mean function at a particular time as the signal within our time series we seek to
detect. This shift, however, is obscured by the additive noise component of the time series itself. As a means of
quantifying the difficulty of estimating the change-point location in a given time series, we define a form of the
signal-to-noise ratio (SNR) as follows:



SNR = ||∆||/(p1/4
√
λmax) (8)

where as usual ||∆|| denotes the magnitude of the shift, p denotes the dimension of the time series, and λmax
denotes the maximum eigenvalue from the covariance matrix of the additive noise component. This definition
is not crucial to the results to follow; however, it is a useful metric for determining the difficulty of correctly
estimating the location of a change-point in a time series. For example, using an SNR ≥ 3 rule of thumb, we have
found through extensive simulation studies for time series of 100 dimensions and below that the Bayesian-wavelet
estimation equation correctly estimates the change-point location well over 99% of the time.22

3.1 A Model for the Multidimensional Change-point Problem

We begin by deriving a statistical model characterizing the detail coefficients from a multivariate time series of
arbitrary dimension. Ogden23 developed a similar approach for the statistical change-point problem although his
method applied only to 1-dimensional time series. Firstly, from Bayes Theorem we obtain its functional analog,
the so called posterior distribution function, expressed as

p(θ|X) =
L(X|θ)p0(θ)

m(X)

where

m(X) =

∫
L(X|θ)p0(θ)dθ.

Here θ is the unknown parameter vector, L(X|θ) is the likelihood of observing X given θ , p0 is the prior
distribution of θ, and m(X) is the probability of observing the data set. Notice m(X) does not depend on the
parameter vector and essentially becomes a normalizing constant that we can safely discard in our initial analysis
and reintroduce as necessary later.

After transforming our multivariate time series to the wavelet domain as previously explained, we observe a
matrix of detail coefficient vectors which we denote as D∗. Our parameter vector is comprised of the change-point
location τ , the shift to the mean function at the change-point ∆, and the covariance of our additive noise
component Σ. There are many possible prior distributions that we may place on our parameter vector depending
on what knowledge is known beforehand. For both mathematical convenience and to simultaneously keep our
approach as general as possible, we apply Jeffrey’s noninformative prior expressed as p0(Σ,∆, τ) ∝ |Σ|−1/2.24

Modeling our empirical detail coefficient vectors as given by equation (6) and letting f represent a p-dimensional
multivariate normal distribution our posterior distribution may now be expressed as

p(τ,∆,Σ|D∗) ∝
∏
j

∏
k

f(d∗
jk|Σ, τ,∆)p0(τ,∆,Σ)

∝ |Σ|−m/2 exp

[
− 1

2

∑
j

∑
k

(d∗
jk −∆qjk)TΣ−1(d∗

jk −∆qjk)

]
|Σ|−1/2.

where m represents the actual number of detail coefficients used in the analysis. In general, ∆ and Σ are unknown
nuisance parameters. We therefore would like to integrate out these terms and use instead the marginal posterior
distribution function

p(τ |D∗) ∝
∫
PD(p)

∫
Rp

|Σ|−(m+1)/2 exp

[
− 1

2

∑
j

∑
k

(d∗
jk −∆qjk)TΣ−1(d∗

jk −∆qjk)

]
d∆dΣ.

(9)

where PD(p) represents the space of p-dimensional positive definite matrices. After performing the calculation in
equation (17) which we provide in the appendix, our marginalized posterior probability function becomes



p(τ |D∗) ∝ C− 1
2

∣∣∣∣∑
j

∑
k

d∗
jkd

∗T
jk −

1

C
BBT

∣∣∣∣−(m−p−1)/2

(10)

where

A =
∑
j

∑
k

d∗T
jk Σ−1d∗

jk, B =
∑
j

∑
k

qijd
∗
jk, BT =

∑
j

∑
k

qijd
∗T
jk , C =

∑
j

∑
k

q2ij .

Equation (10) is the Bayesian-wavelet change-point estimation equation. After reintroducing the normalizing
constant it becomes a complete marginalized probability distribution where formally we estimate the change-point
of the time series as arg max

τ
p(τ |D∗). In particular there are N − 1 possible values of τ and a maximum value

always exists. Furthermore, we may calculate any desired credible interval with this estimate to express our
degree of confidence in this change-point location estimate.

Our approach to the inference of a statistical change-point involves a model selection approach and an
application of the Schwarz information criteria (SIC). Let M1 denote the model that a single change-point occurs
in the mean function of our time series and let M2 denote the model where no change occurs. We first compute
the likelihood of these two models given the observed data. Applying arg max

τ
p(τ |D∗) to equation (10) and

retaining all constants throughout the derivation, we obtain the probability of observing D∗ given M1:

P (D∗|M1) = K(2π)(p−mp)/2(2)mp/2Γp(
m
2 )C−1/2

∣∣∣∣∑
j

∑
k

d∗
jkd

∗T
jk −

1

C
BBT

∣∣∣∣−(m−p−1)/2

(11)

where K is a constant common to both models and Γp(·) is the multivariate gamma function defined as

Γp(x) = πp(p−1)/4

p∑
i=1

Γ
[
x+

(
1− i

)
/2
]
.

Next we compute the probability of observing D∗ given no statistical change-point exists in the data. The
derivation of this probability involves a similar approach to our previous work in obtaining equation (10) only
here the shift, ∆, at the change-point is zero. The probability of observing of observing D∗ given M2 is expressed
as:

P (D∗|M2) = K(2π)−mp/2(2)(m+1)p/2Γp(
(m+1)

2 )
∣∣∑
j

∑
k

d∗
jkd

∗T
jk

∣∣−(m−p)/2
.

We note the difference in the number of free parameters in M1 and M2 is k2 − k1 = p, namely the dimension
of ∆. This suggests a form of the SIC

∆(SIC) = −2(logP (D∗|M2)− logP (D∗|M1)) + (k2 − k1) logN

= −2(log(P (D∗|M2))− logP (D∗|M1)) + p logN. (12)

where equation (12) implicitly assumes equal probability of realizing either M1 or M2. In certain instances the
modeler may have reason to favor one model over the other in which case the prior odds ratio may easily be
adjusted according to this additional information.

Our selection process is now a straightforward calculation of ∆(SIC). We select the no change model when
∆(SIC) < 0 and infer a change-point exists in the time series when ∆(SIC) > 0. We note slightly positive values
(i.e. ∆(SIC) ≤ 3) should be treated with caution. Although the change-point model is favored in such cases, the
evidence is not particularly strong. Values computed farther from zero (i.e. ∆(SIC) > 3) denote strong evidence
of the existence of a change-point with more assurance obtained with larger computed values.



3.2 Applications in Dimensionality Reduction

While the Bayesian-wavelet change-point estimation equation, p(τ |D∗), applies to arbitrary dimensional time series
in theory, in practice computational difficulties prevent a direct application of this method for high dimensional
time series. We overcome this limitation by firstly dimensionally reducing the high dimensional time series
through a random projection to a computationally tractable dimension. Next, we apply the Bayesian-wavelet
change-point estimation equation to this reduced dimensional space to estimate the change-point location. Since
dimension reduction normally comes at the price of information loss, the question becomes how confident are we
of still correctly estimating the change-point location in this lower dimension. Here we may appeal to known
results from random matrix theory provided in section 2.2 that may be applied to this question as well.

For ease of notation, we suppress * to indicate “empirical” for the remainder of this article and let dX , dY ,
DX , and DY denote empirical detail coefficient vectors and matrices of time series X and Y, respectively. Now
suppose we have a multivariate time series X along with a dimension preserving linear transformation T, then
we may define a new multivariate time series as YT = TXT . The question becomes is the Bayesian-wavelet
change-point estimation equation invariant to linear transformations? The following theorem answers this question
in the affirmative.

Theorem 3.1. Given a linear transform, T ∈ GLp(R), then p(τ |DX) = p(τ |DY ) ∀ τ where YT = TXT .
That is, the Bayesian-wavelet change-point estimation equation is invariant under dimension preserving linear
transformations.

Proof. As presented above, we write our full model for the transformed time series as

p(ΣY , τ,∆Y |DY ) =

∏
j

∏
k

p(dYj,k|ΣY , τ,∆Y )p0(ΣY ,∆Y , τ)

m(DY )
. (13)

Letting s = −(m−p)
2 , we consider the numerator of equation (13) where by equation (11) is equal to:

= K(2π)
p−mp

2 (2)
mp
2 Γp(

m
2 )C− 1

2

∣∣∣∣∑
j

∑
k

dYjkd
Y
jk

T− 1

C
BYBY

T
∣∣∣∣s (14)

after the nuisance parameters are integrated out. By the linearity of the DWT, we have

dYjk = TdXjk.

This means for a given jk we have

dYjkd
Y
jk

T− 1

C
BYBY T =

TdXjkd
X
jk

T
TT− 1

C
TBXBX

T
TT = T

(
djkd

X
jk

T− 1

C
BXBX

T )
TT

Applying this to equation (14)

K(2π)
p−mp

2 (2)
mp
2 Γp(

m
2 )C− 1

2

∣∣∣∣∑
j

∑
k

dYjkd
Y
jk

T− 1

C
BYBY

T
∣∣∣∣s

= K(2π)
p−mp

2 (2)
mp
2 Γp(

m
2 )C− 1

2 |T|2s
∣∣∣∣(∑

j

∑
k

dXjkd
X
jk

T− 1

C
BXBX

T
)∣∣∣∣s.



Next consider the denominator. Our calculation of m(DY |ΣY , τ,∆Y ) is similar to above except we must integrate
over all our parameters, namely

m(DY ) =

∫
L(DY |ΣY ,∆Y , τ)p0(Σ,∆Y , τ)dΣY d∆Y dτ

=

N−1∑
τ=1

(2π)
p−mp

2 (2)
mp
2 Γp(

m
2 )C− 1

2 |T|2s
∣∣∣∣(∑

j

∑
k

dXjkd
X
jk

T− 1

C
BXBX

T
)∣∣∣∣s

= |T|2s
N−1∑
τ=1

(2π)
p−mp

2 (2)
mp
2 Γp(

m
2 )C− 1

2

∣∣∣∣(∑
j

∑
k

dXjkd
X
jk

T− 1

C
BXBX

T
)∣∣∣∣s

Clearly the constant term, |T|2s, introduced by the linear transformation in the numerator and denominator

cancel out. Since τ was otherwise arbitary we have p(τ |X) = p(τ |Y) ∀ τ .

3.2.1 Confidence bound after a random projection

Given the covariance structure, ΣX , and the shift vector, ∆X , of a high dimensional time series, we seek to
establish a lower confidence bound for correctly estimating the change-point location using equation (10). Our
approach is to first standardize an arbitrary time series in a manner that will be clear below. The purpose of this
standardization step is twofold. Firstly, the standardization step allows us to more clearly compare the difficulty
of the change-point problem for different time series. Secondly, the standardization step transforms our time
series into a form where we can take advantage of known random projection results.

With theorem 3.1 in hand, we have the following proposition which will be useful later when “standardizing”
the time series in this chapter. Proposition 3.2 recalls covariance matrix diagonalization properties. Since we
obtain our diagonal covariance matrix by linear transformations, theorem 3.1 ensures us that our ability to
estimate the change-point location of our time series remains unchanged.

Proposition 3.2. (Whitening Transform) Given a multivariate time series X with covariance matrix ΣX , there
exists a linear transformation, T, such that TXT = YT with an associated covariance matrix, ΣY , such that ΣY

is the identity matrix.

Proof. This is a known result. See, for example, Bell.25

The upshot of theorem 3.1 and proposition 3.2 is that from the standpoint of p(τ |DX), for an arbitrary time
series, there exists an equivalent time series with the covariance structure of ΣY as in proposition 3.2. So in
particular, for the purpose of our analysis all we need to consider are those time series with an identity covariance
matrix structure.

Our purpose here is to develop a lower confidence bound for p(τ |DX) after a dimension reduction for correctly
estimating the change-point location. By assuming the covariance matrix is simply the identity, we may employ
known results from random matrix theory thereby simplifying calculations. For this reason, we assume our
original time series X has already been standardized with covariance matrix ΣX = I, where I represents the
identity matrix.

We next focus on a dimensionality reduction of our time series. Letting ∆X represent the shift vector of our
original time series, the next proposition tells us what happens to the shift vector after being acted upon by a
dimensionality reducing linear transformation, P.

Proposition 3.3. Given a dimensionality reduction by linear transformation operator, P, along with a shift
vector, ∆X , then the shift vector in the projected space becomes P∆X = ∆Y .

Proof. Supposing the change-point of the time series occurs at time τ , let µXτ and µXτ+1 represent the mean
vector of the time series both before and after the change-point of the original time series, respectively. Similarly



so for µYτ and µYτ+1 in the projected space. We have by definition of the shift vector both before and after the
transformation

∆X = µXτ+1 − µXτ
and

∆Y = µYτ+1 − µYτ .

We may represent P as a d× p matrix with entries pij , so we obtain our dimensionally reduced time series, Y, by
a matrix multiplication

PXT = YT

Then using the definition of the expected value we have

∆Y = µYτ+1 − µYτ

=E


y(τ+1),1

y(τ+1),2

...
y(τ+1),d

− E

yτ1
yτ2
...
yτd

= E



p∑
i=1

p1ix(τ+1),i

p∑
i=1

p2ix(τ+1),i

...
p∑
i=1

pdix(τ+1),i


− E



p∑
i=1

p1ixτi

p∑
i=1

p2ixτi

...
p∑
i=1

pdixτi


= P(µXτ+1 − µXτ ) = P∆X

So we determine our shift vector after a linear dimension reduction simply by a matrix multiplication. For the
remainder of this article we assume P is a d× n projection matrix of the form given by equation (7).

As a consequence of theorem 3.1, observe that if the covariance is diagonal, then it is only the magnitude of
∆X that effects p(τ |X). If ∆X is known and the projection matrix is random, we can use similar calculations
as in proposition 3.3 to determine the expected value of ||∆Y ||2. Letting ∆X = (δX1 , δ

X
2 , . . . , δ

x
p )T and ∆Y =

(δY1 , δ
Y
2 , . . . , δ

Y
d )T , we have our next proposition.

Proposition 3.4. Given a random matrix, P, as in equation (7) and ∆Y as in proposition 3.3. then E||∆Y ||2 =
||∆X ||2

Proof. This proof simply involves taking the expected value of a vector after performing a matrix multiplication
and is therefore omitted.

The difficulty of estimating the location of a statistical change-point in a high dimensional time series not
only depends the characteristics of the shift vector, but also on the covariance structure. We, therefore, need to
understand what happens to our covariance matrix under a random projection as well. Since we are assuming
the covariance matrix of our original time series has been transformed in such a way that ΣX = I, this step is
straightforward.

Proposition 3.5. Under our random projection, the expected covariance matrix of our transformed time series is

E[ΣY ] =
p

d
I

where I is the identity matrix.

Proof. A direct calculation by our above definitions gives

E[ΣY ] = E[PΣXPT ] = E[
1√
d

AI
1√
d

AT ] =
p

d
I



From propositions 3.4 and 3.5 we obtain expected values for the shift vector magnitude and covariance matrix
structure of our transformed time series after a dimensionality reduction by linear transformation. From lemma
2.1, we further obtain confidence bounds for the magnitude of the shift vector after a dimension reduction. In
particular, recall from section 2 that if P is a d× n dimension reduction matrix, then so long as

d >
2 logα1

log(1− ε)− ε
(15)

we are at least 100(1− α1)% confident that ||∆Y ||2 ≥ (1− ε)||∆X ||2.

Establishing some control over the magnitude of the shift vector after a dimension reduction is only half
the problem. We also need to understand how the covariance structure is affected. While in proposition 3.5 we
established the form of our expected covariance matrix, ΣY , in the lower dimensional space, we provided no
associated confidence level. In particular, to apply our signal to noise ratio rule of thumb, we need the value
of the largest expected eigenvalue, λmax, of ΣY along with a confidence level for this value. We note this is
equivalent to finding the expected value and confidence level for the largest singular value, smax, of P. Recalling
proposition 2.2 we have with probability of at least α2 = 1− 2 exp(−t2/2) and for every t ≥ 0

smax ≤
√
p

d
+ 1 +

t√
d

(16)

where smax denotes the largest singular value of P.

3.2.2 Discussion

We now bring all the results together in the context of inferring the existence of and location of a change-point
in a high dimensional time series. Given a high dimensional time series with the conditions listed in section 1,
suppose we are interested in determining the location of a statistical change-point. The first step is to perform a
dimension reduction by way of random matrix multiplication to a computationally tractable lower dimension of
say 100 or less. We may then apply equation (12) to infer the existence of change-point and apply equation (10)
to estimate the location of the change-point along with an associated credible interval.

The next question becomes how far can we dimensionally reduce the time series and how confident can we be
of our results? Here we appeal to results from simulation studies and theoretical results from random matrix
theory. Firstly, if we calculate a value SNR > 3 with equation (8), then for most practical purposes we may
assume we are guaranteed of both correctly inferring the existence of a change-point and estimating its location
within a time series. In fact this SNR value is actually quite conservative as very good results are also observed
for SNR values much lower than 3 for the majority of cases as well.

The question still remains, however, how certain are we of our computed SNR after a random matrix dimension
reduction? By assuming independence between the shift vector and covariance structure, a lower confidence
bound for our SNR simply becomes the product of our computed lower confidence bounds for the size of the shift
vector and largest eigenvalue of the covariance matrix after the dimensionality reduction by linear transformation,
respectively. Explicitly, these respective confidence bounds are determined from lemma 2.1 and proposition 2.2
based on the dimension of the original time series, the dimension of the dimensionally reduced time series, and
the desired confidence level.

4. NUMERICAL EXAMPLES

4.1 Illustrative Example

Consider a time series of length 128 which consists of 256× 256 pixel images of John Lennon where we add a
random multivariate normal component with identity covariance structure to each image of the time series. We
may consider this sequence of images as a 2562 = 65, 536 dimensional time series which in practice is far too high
a dimension to directly apply p(τ |DX) to estimate the change-point. Next, we inject a change-point at time point
95 indicated by the small dark box in the lower left side of the right image in Figure 2. We consider the question
how far can we dimensionally reduce the time series and still be at least 95% confident of correctly finding the
change-point location?



Firstly, we note the small dark box in Figure 2 (right) corresponds to a shift vector magnitude of ||∆X || = 350.
For α1 = .025 and ε = .1, we apply equation (15) to conclude that after a random matrix dimension reduction
down to d = 36, we are at least 97.5% confident that ||∆Y || ≥ 332. Now letting α2 = .025, we apply equation
(16) to conclude that after the same random matrix dimension reduction smax ≤ 44. Computing the SNR using
equation (8), we combine these results to conclude with at least 95% confidence that SNR > 3.

Based on our empirical rule of thumb of SNR > 3, we have very high confidence of correctly estimating
the change-point location in the time series after a dimension reduction. We verify this result by generating a
random matrix and dimensionally reducing the sequence of images down to 36 dimensions and applying equation
(10) to estimate the change-point location. Observing the posterior probability plot in Figure 3, we find highest
probability change-point is in fact tightly concentrated around the true change-point location at time point 95.

Figure 2: Notice the small dark box on the right picture which is the shift.

0 20 40 60 80 100 120

0.
00

0.
10

0.
20

0.
30

Probability of Change−point Location

units of time

Pr
ob

ab
ilit

y 
of

 a
 c

ha
ng

e−
po

in
t

Figure 3: Posterior plot of change-point location correctly estimating the change-point at point 95 with an 80% credible
interval of 90-100.



4.2 Practical Example

The archive of many outdoor scenes (AMOS) is large data set comprising long-term time lapse photos from over
32,000 publically available stationary cameras from around the world. Many AMOS data set related research
projects are currently underway related to such problems as geolocation, camera calibration, and the automatic
annotation of objects in a scene (cite website). The AMOS data set projects typically work under the assumption
that the camera do in fact remain station. Occasionally, however, a camera shift does inadvertently occur for a
variety of reasons thus potentially contaminating the image data. In such cases it would be helpful to identify if a
shift has occurred in the data set and if so at what time point.

We apply the change-point inference and location estimation methods developed in this paper to four of these
camera data sets; one with a known shift and three others chosen at random. To account for such factors as
the variability of ambient light within a 24 hour period and small image shifts we process the images with the
following algorithm.

1. Average the images within each calendar day

2. Extract edges of images by a convolution involving the Laplacian operator

3. Convert each image to a vector and sort the values from highest to lowest

4. Apply a random matrix dimension reduction down to 10 dimensions.

With the dimensionally reduced time series, we apply equation (12) to determine the existence of a shift
followed by equation (10) to estimate the change-point location if a shift is detected. Working with the images
from AMOS, we found a ∆SIC < 3 threshold, which was very effective in detecting the presence of a small
change-point with simulated data sets,22 was too low a cut-off with this actual data set for large shifts. A clear
interpretation is that small shifts are typically present in any AMOS image sequence even though they may
not be shifts with which we are particularly concerned. Instead a value of ∆SIC < 30 appears to be a better
threshold for the large shifts we are interested in detecting. By setting our threshold value at 30, minor shifts
in the image sequences are ignored while large shifts will still be detected. Choosing 128 consecutive available
days in each data set process the images according to the above algorithm. Example images averaged of a single
calendar from both the beginning and end of each data set are displayed in Figure 4 below. Notice the shift in
the final pair of adjacent images.

Appling equation (12) to the first three sequence of images returns values of 2.63, 9.99, and 11.39 respectively.
With the ∆SIC < 30 threshold, we conclude no large shift occurs in these image sequences. In the final image
sequence, equation (12) returns a value of 89.92 implying the existence of a large shift. Next applying equation
(10) to this final image sequence returns a change-point location at day 66 with 95% credible interval of [65,69].
The true change-point location appears to be at day 68.



Figure 4: Sample images from the beginning and end of image sequences from four AMOS cameras. Notice only in the
bottom image is a large shift apparent.



5. CONCLUSION

In this paper we developed a method to both detect and estimate a statistical change-point in a high dimensional
nonlinear time series. The primary advantage of the Bayesian-wavelet change-point estimation equation, p(τ |DX),
over other known methods in change-point analysis is seen in how it easily adapts to cases where the true underlying
mean function varies smoothly except possibly at the change-point location. Since numerical complications
prevent us from directly applying p(τ |DX) to high dimensional time series, we first project the original time
series down to a computationally tractable approximation space and then apply p(τ |DX). Finally section 3.2
provides a theoretical answer to the question of how far can we dimensionally reduce the original time series and
still be able to be reasonably certain of detecting and estimating the change-point location.

Our change-point detection method involved a model selection approach. As we saw in both the illustrative
and the practical example involving the AMOS data set, ∆SIC may be set to detect either very small shifts or
to ignore small shifts and only capture large shifts. In cases where a data set is fairly clean in the sense that
the additive noise component closely conforms to a constant multivariate normal distribution, simulation results
from22 support using a value of ∆SIC < 3 as a cut-off. Actual data sets such as the AMOS images often have
various anomalies such as outliers or small shifts that in fact represent statistical change-points albeit not the
ones the modeler is interested in discovering. In such cases the flexibility of our approach allows the modeler to
simply adjust the ∆SIC cut-off point to a level where only change-points of interest are detected.

As a final point we note these methods may be extended to the case of multiple change-points. A straight
forward approach involves an application of the so called binary segmentation algorithm. That is we may apply
the following algorithm for some threshold value C

1. Perform a random matrix multiplication to dimensionally reduce the time series to a computationally
tractable dimension.

2. Apply eqauation (12) to the dimensionally reduced time series.

If ∆(SIC) < C terminate the algorithm and conclude time series has no change-points.

3. Apply equation (10) and record change point location τ .

4. Segment the original time series into two time series from elements 1 through τ and τ + 1 through N .

5. Return to step 2 for each segment.

The algorithm runs until all segments terminate.

Appendix

We derive equation (10) beginning with the posterior distribution

p(τ,∆,Σ|D) ∝ |Σ|−m/2 exp

[
− 1

2

∑
j

∑
k

(djk −∆qjk)TΣ−1(djk −∆qjk)

]
|Σ|−1/2.

Here, m represents the actual number of detail coefficients used in the analysis. We integrate out ∆ and Σ to
obtain the the marginal posterior distribution function

p(τ |D) ∝
∫
PD(p)

∫
Rp

|Σ|−(m+1)/2 exp

[
− 1

2

∑
j

∑
k

(djk −∆qjk)TΣ−1(djk −∆qjk)

]
d∆dΣ. (17)

where PD(p) represents the space of p-dimensional positive definite matrices.

Notice by how Q is defined, that all the elements of any qjk are identical. With this observation in mind,
we let qjk be a scalar representative for a given row of Q corresponding to the value of each element in that



particular row. Next we let ∆ represent a vector of the mean function shift at the change-point in the natural
way. With this change of notation in hand, we may equivalently write equation (17) as

p(τ |D) ∝
∫
PD(p)

∫
Rp

|Σ|−(m+1)/2 exp

[
− 1

2

∑
j

∑
k

(djk − qjk∆)TΣ−1(djk − qjk∆)

]
d∆dΣ. (18)

Expanding the exponent of equation (18) we obtain

p(τ |D) ∝
∫
PD(p)

∫
Rp

|Σ|−(m+1)/2

× exp

[
− 1

2

∑
j

∑
k

(
dTjkΣ−1djk + qjk∆

TΣ−1qjk∆− qjk∆TΣ−1djk − dTjkΣ−1qjk∆

)]
d∆dΣ

=

∫
PD(p)

∫
Rp

|Σ|−(m+1)/2 exp

[
− 1

2

(
A+ C∆TΣ−1∆−∆TΣ−1B −BTΣ−1∆

)]
d∆dΣ (19)

where

A =
∑
j

∑
k

dTjkΣ−1djk, B =
∑
j

∑
k

qijdjk, BT =
∑
j

∑
k

qijd
T
jk, and C =

∑
j

∑
k

q2ij .

Continuing from equation (19) we provide the following detailed calculations:

p(τ |D) =

∫
PD(p)

∫
Rp

|Σ|−(m+1)/2 exp

[
− C

2

(
A

C
+ ∆TΣ−1∆−∆TΣ−1B

C
− BT

C
Σ−1∆

)]
d∆dΣ

=

∫
PD(p)

|Σ|−(m+1)/2 exp

[
− 1

2

(
A− 1

C
BTΣ−1B

)]∫
Rp

exp

[
− C

2

(
(∆− B

C
)TΣ−1(∆− B

C
)

)]
d∆dΣ

=

∫
PD(p)

|Σ|−(m+1)/2|Σ|1/2C−1/2 exp

[
− 1

2

(
A− 1

C
BTΣ−1B

)]
dΣ

=

∫
PD(p)

Σ−m/2C−1/2 exp

[
− 1

2

(∑
j

∑
k

dTjkΣ−1djk −
1

C
BTΣ−1B

)]
dΣ

=

∫
PD(p)

Σ−m/2C−1/2 exp

[
− 1

2

(
tr
(
Σ−1

∑
j

∑
k

djkd
T
jk−

1

C
BBT

))]
dΣ

∝ C− 1
2

∣∣∣∣∑
j

∑
k

djkd
T
jk−

1

C
BBT

∣∣∣∣−(m−p−1)/2

(20)

where in the last step equation (10) follows by dropping multiplicative constants and applying the known form of
the Wishart distribution.
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