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Abstract. It is shown that for any expansive, integer valued two by two matrix, there exists

a (multi)-wavelet whose Fourier transform is compactly supported and smooth. A key step

is showing that for almost every equivalence class of integrally similar matrices there is a

representative A which is strictly expansive in the sense that there is a compact set K which

tiles the plane by integer translations and such that K ⊂ A(K◦), where K◦ is the interior of

K.

1. Introduction and Preliminaries

A common thread in the theory of wavelets has been to ask for which dilations A do
there exist (multi)-wavelets Ψ = {ψ1, . . . , ψl}, usually with some additional properties.
Gröchenig, Haas, and Madych [GH, GM], and Lagarias and Wang [LW1–LW6] studied, for
example, which dilations A yield Haar type wavelets. Strichartz [S] was able to show that
for each dilation which admits a Haar type wavelet, there is also an r-regular wavelet, a
result that was extended to all integer valued, expansive matrices in [B2]. On the Fourier
transform side, Dai and Larson [DL] and Hernandez, Wang and Weiss [HWW1, HWW2]
initiated the study of minimally supported frequency wavelets, which were also studied
in [DLS1, DLS2], [BL], [SW], and [FW]. It is known that all expansive, integer valued
matrices admit minimally supported frequency wavelets. Gu and Han [GH] proved that
all determinant two integer valued expansive matrices admit MRA wavelets, a result that
was extended to arbitrary expansive, integer valued matrices in [BRS], [BM]. More recently,
the question of extending Daubechies [D1, D2] construction to higher dimensions has been
considered by Ayache [A] and independently by Belogay and Wang [BW]. Calogero [C1,
C2] has studied the construction of Meyer type wavelets for the quinconx matrix in R2.
The purpose of this paper is to solve the general existence problem for Meyer type wavelets
in two dimensions. That is, we will show that for all expansive, integer valued two by two
matrices, there exists a (multi)-wavelet Ψ such that for each i, ψ̂i is smooth and compactly
supported.
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A matrix is said to be expansive if all of its eigenvalues have modulus bigger than one.
Such a matrix is often referred to as a dilation. We restrict our attention to dilations A
which preserve a lattice Γ = PZn, i.e., AΓ ⊂ Γ, where P is some n × n non degenerate
matrix. By standard considerations, see [LW1], we will assume that Γ = Z

n and hence A
has integer entries. We say that the matrices A and B are integrally similar if there is an
integer matrix C of determinant ±1 such that A = CBC−1.

Given an expansive matrix A, a (multi)-wavelet (with respect to A) is a collection of
square integrable functions Ψ = {ψ1, . . . , ψl} such that {ψi

j,k : i = 1, . . . , l, j ∈ Z, k ∈ Zn}
is an orthonormal basis for L2(Rn). Here, for ψ ∈ L2(Rn) we let

ψj,k(x) = DAj Tkψ(x) = |detA|j/2ψ(Ajx− k) j ∈ Z, k ∈ Zn,

where Tyf(x) = f(x − y) is a translation operator by the vector y ∈ Rn, and DAf(x) =√
|det A|f(Ax) is a dilation by the matrix A.
To fix notation, the Fourier transform we will use in this paper is

f̂(ξ) =
∫
Rn

f(x)e−2πi〈x,ξ〉dx.

Given a subset X ⊂ Rn, conv X denotes the convex hull of X, sym conv X = conv(−X∪X),
and X◦ is the interior of X.

A minimally supported frequency (MSF) wavelet is a wavelet ψ such that |ψ̂| = 1W , for
some measurable set W . For the purposes of this paper, we will say that the matrix A

admits a Meyer type wavelet if there is a (multi)-wavelet Ψ such that each ψ̂i is smooth
and compactly supported.

It is easy to see that whenever A = CBC−1 with C an integer matrix of determinant
±1 and Ψ is a (multi)-wavelet with respect to B, then {ψ1(Cx), . . . , ψl(Cx)} is a (multi)-
wavelet with respect to A. Moreover, if A and B are integrally similar, then A admits a
Meyer type wavelet if and only if B admits a Meyer type wavelet.

Finally, for any measurable set W ⊂ Rn that satisfies

(1.1)
∑
j∈Z

1W (Ajξ) = 1 for a.e. ξ ∈ Rn,

(in particular, for the support of any MSF wavelet associated to AT ), we define the dilation
projection dA : P(Rn)→ P(W ) by

(1.2) dA(S) = ∪∞j=−∞(Aj(S) ∩W ) for S ∈ P(Rn),

where P(W ) is the power set of W .
The remainder of the terminology in this paper is standard, as can be found in [HW],

[M] or [W].
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2. The determinant two case

In this section, we prove that every expansive, two by two matrix of determinant ±2
admits a Meyer type wavelet. Most of the work for this has been done by previous authors,
so this section will consist of theorem quoting and one example.

The following follows from a theorem due to Latimer and MacDuffee (see [N]), or an
elementary argument as presented in [LW1].

Proposition 2.1. Let A be an expansive matrix with determinant ±2. Let C0 =(
0 1
−2 0

)
, C1 =

(
0 1
−2 1

)
, C2 =

(
0 1
−2 2

)
, and D =

(
0 1
2 0

)
. Then A is integrally

similar to one of the following six matrices: D, C0, ±C1, ±C2.

From Proposition 2.1, it follows that in order to show that all integral matrices of
determinant ±2 admit Meyer type wavelets, it suffices to show that Meyer type wavelets
exist for the six matrices listed in Proposition 2.1. The matrices D and C0 follow from
taking tensor products of one dimensional wavelets as explained, for example, in [W].

The existence of Meyer type wavelets for the quinconx matrix
(

1 −1
1 1

)
was shown by

Calogero in [C1, C2]. Since the quinconx matrix is integrally similar to C2 and the same
argument works for −C2, it suffices to prove that Meyer type wavelets exist for ±C1. Since
our construction is going to be symmetric with respect to the origin, we will focus solely

on C1 (actually, we will focus on the matrix
(

0 2
−1 1

)
, which is integrally similar to C1).

We begin with an easy

Proposition 2.2. Let A be an n × n expansive matrix and W ⊂ Rn \ {0} be a compact
set that is bounded away from the origin and satisfies (1.1). Let m0 be a function with
L = supp(m0) = {ξ ∈ Rn : m0(ξ) �= 0} and K = R

n \ L. If there exist ε, N > 0 such that
B(0, ε) ⊂ L and dA(B(0, N) ∩K) = W , then Π∞j=1m0(A−jξ) converges and is compactly
supported. Moreover, if m0 is smooth and m0(0) = 1 then Π∞j=1m0(A−jξ) converges to a
smooth, compactly supported function.

Proof. Note that since W and K∩B(0, N) are bounded and bounded away from the origin,
there is an R ∈ N such that whenever |j| > R, Aj(K ∩ B(0, N)) ∩W = ∅. For |j| ≤ R
let Ej = K ∩B(0, N) ∩ Aj(W ). Consider the set E := AR(∪R

j=−RA−jEj) and note that
dA(E) = A−R(E) = W. Moreover, if j > R and ξ ∈ Aj(W ), then ξ ∈ Aj(A−R(E)) =
∪R

k=−RAj−k(Ek). Therefore, ξ ∈ Al(K) for some l > 0 and Π∞j=1m0(A−jξ) = 0. Since
W is compact and bounded away from zero and A is expansive, ∪j∈ZAj(W ) ∪ {0} is
closed. By (1.1) this implies that ∪j∈ZAj(W ) = Rn\{0} and thus supp(Π∞j=1m0(A−jξ)) ⊂
∪R

k=−∞Ak(W ) ∪ {0}. Since A is expansive, ∪R
k=−∞Ak(W ) is bounded.

Now, assume that m0 is smooth and m0(0) = 1. Since m(ξ) = 1 + O(ξ) as ξ → 0
the product Π∞j=1m0(A−jξ) converges pointwise. Furthermore, by standard considerations
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involving the infinite product rule, see the proof of Theorem 3 in [B1], this product defines
a smooth function.

Example 2.3. There exists a Meyer type wavelet for the matrix A =
(

0 2
−1 1

)
.

Proof. We note here that the set

(2.1) W = conv{(0,
1
2
), (−1,

1
2
), (−1,−1

2
)} ∪ conv{(0,−1

2
), (1,

1
2
), (1,−1

2
)}

is the support of an MSF wavelet with low pass filter the Z2 periodization of 1T , where
T = sym conv{(0, 1

2 ), ( 1
2 , 0)}. The scaling set for W is sym conv{(−1,− 1

2 ), (0,− 1
2 )}.

We will now smooth the low pass filter associated with W . Let D = {(0, 0), (1, 0)}
be the set of representatives of different cosets of Z2/AZ2. Hence the Smith-Barnwell
equation for A is |m0(ξ)|2 + |m0(ξ + ( 1

2 , 1
2 ))|2 = 1. We smooth the low pass filter in

such a way that the support of the new filter is the interior of the Z2 periodization of
sym conv{(0, 1

2 ), ( 1
2 , 1

8 ), ( 1
2 ,− 1

8 )}).
Let g : R→ [0,∞) be a C∞ function such that

supp g := {η ∈ R : g(η) �= 0} = (−∞, 1/4).

Let v1 = (3/8, 1/2), v2 = (3/8,−1/2), v3 = (−3/8, 1/2), v4 = (−3/8,−1/2). Define a C∞

function h : R2 → [0,∞) by

h(ξ) =
4∏

j=1

g(〈ξ, vj〉).

Clearly
supph = (conv{(±2/3, 0), (0,±1/2)})◦.

Let f be Z2 periodization of h, i.e., f(ξ) =
∑

k∈Z2 f(ξ +k). Finally define the function m0

by
m0(ξ) =

√
f(ξ)/(f(ξ) + f(ξ + (1/2, 1/2))).

Since the denominator is always positive and f “vanishes strongly” (see the proof of Claim
3.3), m0 is C∞, Z2 periodic function satisfying |m0(ξ)|2 + |m0(ξ + (1/2, 1/2))|2 = 1 for all
ξ ∈ R2, and m0(0) = 1.

Now, we show that Cohen’s condition is satisfied for this set. The natural first guess
for K is the scaling set K1 = sym conv{(−1,− 1

2 ), (0,− 1
2 )}. This set almost works; the

points ±(1, 1
2 ) get mapped under A−1 to the points ±(0, 1

2 ), which are not in the support
of m0. However, letting B1 be a small neighborhood of (1, 1

2 ) intersected with K1, the
set K = K1 \

(
B1 ∪ −B1) ∪

(
B1 + (−1, 0)

)
∪

(
− B1 + (1, 0)

)
satisfies Cohen’s condition.
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Therefore ϕ̂(ξ) = Π∞j=1m0(A−jξ) is the scaling function for the multiresolution analysis
(Vj)j∈Z associated to the dilation AT defined by

Vj = span{D(AT )j Tlϕ : l ∈ Zn} for j ∈ Z.

Finally, it suffices to show that ϕ̂ is compactly supported by verifying the hypotheses
of Proposition 2.2 with W given by (2.1). A direct computation shows that the images of
the zero set in Figure 1 under various powers Aj line up as pictured below in Figure 2.

-2 -1 1 2

-1

-0.5

0.5

1

O1,1 O1,2

O4,1 O4,2

O2,1O2,2

O3,1O3,2

Figure 1. Zero set of m0.
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A O1,1

A-1 O3,1

A-1 O4,1

A-2 O3,2

A-3 O2,2

Figure 2. Verification of Proposition 2.2

Clearly, all of W is covered by the union of these sets. Furthermore, ψ given by

ψ̂(ξ) = m0(A−1ξ + (1/2, 1/2))eπi(ξ1+ξ2)ϕ̂(A−1ξ) for ξ = (ξ1, ξ2) ∈ R2,
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is a Meyer type wavelet associated to the dilation AT .

We have thus proven

Theorem 2.4. Let A be a two by two expansive integer matrix of determinant ±2. Then,
A admits a Meyer type wavelet.

3. General facts

The main goal of this section is to give a simple condition on a dilation A which guar-
antees the existence of Meyer type wavelets associated with A. Since this condition is
meaningful regardless of the dimension, we will work on Rn. An application of this condi-
tion to R2 is given by Corollary 3.6.

Definition 3.1. We say that an n × n integral dilation B is strictly expansive if there
exists a compact set K ⊂ Rn such that

(3.1)
∑

k∈Zn

1K(ξ + k) = 1 for a.e. ξ ∈ Rn,

(3.2) K ⊂ BK◦, where K◦ is the interior of K.

When (3.1) and (3.2) hold, we say that B is strictly expansive with respect to K.

We shall prove the following existence theorem.

Theorem 3.2. Suppose A is a n×n integral dilation matrix. If B = AT is strictly expan-
sive then there exists a multiresolution analysis with a scaling function and an associated
wavelet family of (|detA| − 1) functions in the Schwartz class.

Proof. Suppose the compact set K satisfies (3.1) and (3.2). Given ε > 0 we define

K−ε = {ξ ∈ Rn : B(ξ, ε) ⊂ K}
K+ε = {ξ ∈ Rn : B(ξ, ε) ∩K �= ∅}

Note that K−ε is closed, K+ε is open, and the interior of K satisfies K◦ =
⋃

ε>0 K−ε.
Hence there exists ε > 0 such that

(3.3) K+ε ⊂ B(K−ε).

Pick a function g : Rn → [0,∞) in the class C∞ such that
∫
Rn g = 1 and

supp g := {ξ ∈ Rn : g(ξ) �= 0} = B(0, ε).
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Define a function f by
f(ξ) = (1K ∗ g)(ξ).

Clearly f is in the class C∞, 0 ≤ f(ξ) ≤ 1, and

supp f = {ξ ∈ Rn : f(ξ) �= 0} ⊂ K+ε,(3.4)

{ξ ∈ Rn : f(ξ) = 1} = K−ε.(3.5)

Moreover, by (3.1)

(3.6)
∑

k∈Zn

f(ξ + k) =
∑

k∈Zn

(1K ∗ g)(ξ + k) = 1 for all ξ ∈ Rn.

Finally define a function m : Rn → [0, 1] by

(3.7) m(ξ) =
√ ∑

k∈Zn

f(B(ξ + k)).

Claim 3.3. The function m given by (3.7) is C∞, Zn-periodic, and
∑
d∈D
|m(ξ + B−1d)|2 = 1 for all ξ ∈ Rn,(3.8)

m(ξ) > 0 =⇒ ξ ∈ Zn + B−1(K+ε),(3.9)

m(ξ) = 0 for ξ ∈ (B−1
Z

n \ Zn) + B−1(K−ε),(3.10)

where B = AT , and D = {d1, . . . , db} is the set of representatives of different cosets of
Z

n/BZn, where b = |det A|.
Proof of Claim 3.3. To guarantee that m is C∞, the function f must “vanish strongly”,
i.e., if f(ξ0) = 0 for some ξ0 then ∂αf(ξ0) = 0 for any multi-index α. It is clear that if
nonnegative function f in C∞ “vanishes strongly” then

√
f is also C∞.

The condition (3.8) is a consequence of
∑
d∈D
|m(ξ + B−1d)|2 =

∑
k∈Zn

∑
d∈D

f(B(ξ + B−1d + k)) =
∑

k∈Zn

∑
d∈D

f(Bξ + d + Bk) = 1,

by (3.6).
To see (3.9), take ξ such that m(ξ) > 0. By (3.4) and (3.7), B(ξ + k) ∈ K+ε for some

k ∈ Zn, and hence (3.9) holds.
We claim that (3.10) follows from (3.8) and

(3.11) m(ξ) = 1 for ξ ∈ Zn + B−1(K−ε).
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Indeed, if ξ ∈ B−1d + k + B−1(K−ε) for some d ∈ D \BZn and k ∈ Zn, then by (3.11) we
have m(ξ − B−1d) = 1. Hence by (3.8) m(ξ) = 0 and (3.10) holds. Finally, (3.11) is the
immediate consequence of (3.5) and (3.7). This ends the proof of the claim.

We can write m in the Fourier expansion as

(3.12) m(ξ) =
1√
|det A|

∑
k∈Zn

hke−2πi〈k,ξ〉,

where we include the factor |det A|−1/2 outside the summation as in [B1]. Since m is C∞,
the coefficients hk decay polynomially at infinity, that is for all N > 0 there is CN > 0 so
that

|hk| ≤ CN |k|−N for k ∈ Zn \ {0}.

Since m satisfies (3.8) and m(0) = 1, m is a low-pass filter which is regular in the sense of
the definition following Theorem 1 in [B1]. By Theorem 5 in [B1] ϕ ∈ L2(Rn) defined by

(3.13) ϕ̂(ξ) =
∞∏

j=1

m(B−jξ),

has orthogonal translates, i.e.,

〈ϕ, Tlϕ〉 = δl,0 for l ∈ Zn,

if and only if m satisfies the Cohen condition, that is there exists a compact set K̃ ⊂ Rn

such that
• K̃ contains a neighborhood of zero,
• |K̃ ∩ (l + K̃)| = δl,0 for l ∈ Zn,
• m(B−jξ) �= 0 for ξ ∈ K̃, j ≥ 1.

The first guess for K̃ to be K is in general incorrect, e.g. if K has isolated points.
Instead we claim that there is 0 < δ < 1 so that

(3.14) K̃ = {ξ ∈ K : |B(ξ, ε) ∩K| ≥ δ|B(ξ, ε)|}

does the job. Clearly, if ξ ∈ K̃ then f(ξ) �= 0 and thus m(B−1ξ) �= 0. By (3.3) B−1K̃ ⊂
B−1K+ε ⊂ K−ε ⊂ K̃ and thus m(B−jξ) �= 0 for all j ≥ 1. Since 0 ∈ K◦ by (3.2) thus
0 ∈ (K−ε)◦ by (3.3) and hence 0 ∈ K̃◦. Finally, it suffices to check that

(3.15)
∑

k∈Zn

1K̃(ξ + k) = 1 for a.e. ξ ∈ Rn.
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By the compactness of K there is a finite index set I ⊂ Zn such that

(3.16)
∑
k∈I

1K(ξ + k) ≥ 1 for all ξ ∈ [−1, 1]n.

Take any ξ ∈ [−1/2, 1/2]n and integrate (3.16) over B(ξ, ε) to obtain

∑
k∈I

|B(ξ + k, ε) ∩K| ≥ |B(ξ, ε)|.

Therefore, if we take δ = 1/#I then there is k ∈ I such that |B(ξ + k, ε)∩K| ≥ δ|B(ξ, ε)|
and hence ξ+k ∈ K̃. Thus (3.15) holds and K̃ given by (3.14) satisfies the Cohen condition.
Therefore ϕ is a scaling function for the multiresolution analysis (Vj)j∈Z defined by

Vj = span{DAj Tlϕ : l ∈ Zn} for j ∈ Z.

It remains to show that ϕ is in the Schwartz class. We are going to prove that ϕ is
band-limited, i.e., ϕ̂ is compactly supported. By (3.9) and (3.13)

(3.17) ϕ̂(ξ) �= 0 =⇒ ξ ∈ BZn + K+ε.

On the other hand, by (3.10) m(B−jξ) = 0 for ξ ∈ Bj−1
Z

n \Bj
Z

n + Bj−1(K−ε). Since

∞⋃
j=2

(Bj−1
Z

n \Bj
Z

n) = BZn \ {0},

and
K+ε ⊂ B(K−ε) ⊂ Bj−1(K−ε) for j ≥ 2,

we have

(3.18) ϕ̂(ξ) = 0 for ξ ∈ BZn \ {0}+ K+ε.

Combining (3.17) and (3.18) we have ϕ̂(ξ) = 0 for ξ ∈ (K+ε)c. Therefore supp ϕ̂ ⊂ K+ε

and therefore ϕ is in the Schwartz class. To conclude the proof of Theorem 3.2 it suffices
to use Proposition 3.4 due to Wojtaszczyk, see [W, Corollary 5.17] which also holds for
r =∞.

Remark. It is widely known (see [S2]) that for every dilation B there is an ellipsoid ∆ and
an s > 1 such that ∆ ⊂ s∆ ⊂ B∆. If one uses this fact to construct wavelets, the wavelets
obtained do not have compactly supported Fourier transforms, see [B2] for details. It is
thus crucial to our considerations that the set K in the definition of strictly expansive
matrices be compact and tile the plane by translations.
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Proposition 3.4. Assume that we have a multiresolution analysis on Rn associated with
an integral dilation A. Assume that this MRA has a scaling function ϕ(x) in the Schwartz
class such that ϕ̂(ξ) is real. Then there exists a wavelet family associated with this MRA
consisting of (|detA| − 1) Schwartz class functions.

The remainder of this section consists of finding a computationally convenient form of
Theorem 3.2 in the two-dimensional case.

Proposition 3.5. A two by two integer matrix A is expansive if and only if (a) |det(A)| ≥
2, (b) |tr(A)| ≤ det(A) when the determinant is positive, and (c) | tr(A)| ≤ −det(A) − 2
when the determinant of A is negative.

Proof. We split into cases. First, we assume the eigenvalues are real. If d = det(A) > 0
and t = tr(A) > 0, then the eigenvalues t ±

√
t2 − 4d have the same sign, and their

absolute values are bigger than one if and only if t−
√

t2 − 4d > 2. This holds if and only
if t2 − 4t + 4 > t2 − 4d; that is, if and only if t − 1 < d, which is equivalent to |t| ≤ d in
the case under consideration. If t < 0, then the eigenvalues are both negative, and A is
expansive if and only if t+

√
t2 − 4d < −2, which holds if and only if t2 +4t+4 > t2− 4d;

that is, t > −d− 1 which is equivalent to |t| ≤ |d| in the case under consideration.
If d < 0 and t > 0, then the eigenvalues have opposite signs, so both have absolute value

bigger than one if and only if t −
√

t2 − 4d < −2. This is easily seen to be equivalent to
t < −d−1 which is equivalent to |t| ≤ −d−2 in the case under consideration. If t < 0, then
A is expansive if and only if t +

√
t2 − 4d > 2, which is again easily seen to be equivalent

to t > d + 1, which is equivalent to |t| ≤ −d− 2 in the case under consideration.
If t = 0, it is easy to see that A is expansive if and only if |d| ≥ 2, whether the eigenvalues

are real or imaginary.
Finally, for complex eigenvalues, if |t| = 1, then A is expansive if and only if 1−4d < −3;

that is, d ≥ 2. If |t| ≥ 2, then A is expansive whenever t2 − 4d < 0; that is, whenever
d > t2/4. Since d must also be an integer, this means A is expansive whenever d ≥ |t|. Since
the reverse implication falls under the previous cases considered (namely, when d < |t|),
this completes the proof of the proposition.

Corollary 3.6. Let A =
(

a b
c d

)
be an expansive, integer valued matrix. If there exists

u ∈ R such that

η(A) := max{| − uc + a|, | − (u + 2)c + a|, |ud− b + (−1− u)(−uc + a)|,
|(u + 2)d− b + (−1− u)(−(u + 2)c + a)|} < |det(A)|,

then A is strictly expansive.

Proof. Let X be the (2-dimensional) Banach space with unit ball

BX = conv{±(u, 1),±(u + 2, 1)}.
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Consider A : R2 → R
2 as a linear map on X. We show that |det(A)|‖A−1‖ = η(A). Thus,

under the hypotheses of the corollary, ‖A−1‖ < 1 and BX ⊂ A(BX)◦. Hence A is strictly
expansive with respect to the compact set K = 1

2BX which satisfies (3.1) and (3.2).
First, note that (x, y) ∈ X∗ = R

2 has norm less than or equal to 1 if and only if
|ux + y| ≤ 1 and |(u + 2)x + y| ≤ 1, which holds if and only if −1− ux ≤ y ≤ 1− ux and
−1 − (u + 2)x ≤ y ≤ 1 − (u + 2)x. Hence, the extreme points of the unit ball of X∗ are
{±(0, 1),±(1,−1− u)}. So, since

det(A)A−1 =
(

d −b
−c a

)
,

it follows that

|det(A)|‖A−1‖ = max
(∣∣∣∣

∣∣∣∣A−1

(
u
1

) ∣∣∣∣
∣∣∣∣
X

,

∣∣∣∣
∣∣∣∣A−1

(
u + 2

1

) ∣∣∣∣
∣∣∣∣
X

)

= max
(∣∣∣∣

∣∣∣∣
(

ud− b
−uc + a

) ∣∣∣∣
∣∣∣∣
X

,

∣∣∣∣
∣∣∣∣
(

(u + 2)d− b
−(u + 2)c + a

) ∣∣∣∣
∣∣∣∣
X

)
= η(A).

Remark. If we set u = −1 in Corollary 3.6, then we obtain that the matrix A is strictly
expansive if the 61 norm of each column is less than the determinant of A.

4. A reduction

In this section, we prove that every expansive two by two integer matrix admits a Meyer

type wavelet if every expansive matrix of the form
(

0 1
−d t

)
admits a Meyer type wavelet.

Suppose we are given an arbitrary dilation matrix A =
(

a b
c d

)
. Although there

are algorithms [V] for determining when A is integrally similar to
(

0 1
∗ ∗

)
based on the

theorem of Latimer and MacDuffee, these techniques do not seem to be well-suited for our
purposes. Therefore, we will devise an ad hoc procedure of reducing a dilation matrix to
a matrix which is either strictly expansive or integrally similar to a matrix of the form(

0 1
∗ ∗

)
. (Note that by the theorem of Latimer and MacDuffee, there are (many) 2 × 2

dilation matrices which are not integrally similar to matrices of the form
(

0 1
∗ ∗

)
. )

Theorem 4.1. Suppose A is a 2 × 2 dilation matrix with integer entries which is not

integrally similar to the matrix of the form
(

0 1
∗ ∗

)
. Then A is integrally similar to a

matrix which is strictly expansive with respect to a centrally symmetric set.

Before starting the proof of Theorem 4.1 we need some prerequisites. We are going to
employ the elementary transformations

11



(4.1)
(
−1 0
0 −1

) (
a b
c d

) (
−1 0
0 −1

)
=

(
a −b
−c d

)
,

(4.2)
(

0 1
1 0

) (
a b
c d

) (
0 1
1 0

)
=

(
d c
b a

)
, and

(4.3)
(

1 λ
0 1

) (
a b
c d

) (
1 −λ
0 1

)
=

(
a + λc −λ2c + λ(d− a) + b

c −λc + d

)
.

Lemma 4.2. Every integer matrix is integrally similar to a matrix
(

a b
c d

)
with

(4.4) |b|, |c| ≥ |a− d|.

Proof. Suppose A is a given dilation matrix. Let
(

a b
c d

)
be an integrally similar matrix to

A with the minimal sum of the diagonal entries, i.e., a2 +d2. Since the sum of the diagonal
entries of a matrix obtained by the transformation (4.3) is equal to a2+d2+2λc(λc+a−d)
we must have

(4.5) λc(λc + a− d) ≥ 0 for all λ ∈ Z.

By taking λ = ±1 we see that |c| < |a− d| would contradict (4.5). Therefore |c| ≥ |a− d|.
Using transformations (4.2) and (4.3) we can also conclude that |b| ≥ |a− d|.

Therefore, without loss of generality, we can assume that for a given dilation A, (4.4)
holds.

We now turn to showing that we can assume without loss of generality that trA ≥ 0.

Lemma 4.3. (a) A dilation matrix A is integrally similar to a matrix that is strictly
expansive with respect to a centrally symmetric set if and only if −A is integrally similar
to a matrix that is strictly expansive with respect to a centrally symmetric set.

(b) A dilation matrix A is integrally similar to
(

0 1
∗ ∗

)
if and only if −A is integrally

similar to
(

0 1
∗ ∗

)
.

Proof. To see part (a), note that if A is similar to B, then −A is similar to −B. Moreover,
if B is strictly expansive with respect to the centrally symmetric set K, then −B is also
strictly expansive with respect to the centrally symmetric set K.

12



To see (b), if A is similar to
(

0 1
∗ ∗

)
, then −A is similar to

(
0 −1
∗ ∗

)
, which is similar

to
(

0 1
∗ ∗

)
by (4.1).

Thus, since A is a dilation matrix if and only if −A is a dilation matrix, it suffices to
prove Theorem 4.1 in the case that trA ≥ 0.

Proof of Theorem 4.1. Suppose the dilation A satisfies (4.4) and trA = a + d ≥ 0.
1◦ case. Suppose that

(4.6) |a| < |b| and |d| < |c|.

Geometrically, (4.6) says that the vertices of the square [−1, 1]2, i.e., (±1,±1) are mapped
by the dilation A into different quadrants of the plane. Furthermore, the mapped vertices
A(±1,±1) can not lie on the axes.

We need to consider several subcases. Assume that exactly two of the mapped ver-
tices A(±1,±1) are of the form (±1,±1). By the symmetry of the vertices (±1,±1) and
|det A| ≥ 2, the only remaining possibility is that none of the mapped vertices A(±1,±1)

is of the form (±1,±1). Furthermore, if the dilation A =
(

a b
c d

)
maps exactly two of the

vertices (±1,±1) into each other, so does a dilation obtained by the transformation (4.1)
or (4.2). Hence by applying (4.1) and (4.2) we can also assume that a, b ≥ 0. By (4.6) this
uniquely determines then the first row, and A must be one of the matrices below

(4.7)

(
a a + 1

d + 1 d

)
or

(
a a + 1

−d− 1 d

)
if d ≥ 0,(

a a + 1
d− 1 d

)
or

(
a a + 1

−d + 1 d

)
if d ≤ 0.

Note that we must have a, |d| ≥ 1, since our dilation is not integrally similar to
(

0 1
∗ ∗

)
.

The first matrix in (4.7) can not be even expansive by Proposition 3.5. The second and
the fourth matrix are strictly expansive by the remark following Corollary 3.6, since their
determinants are 2ad + a + d + 1 and 2ad− a + d− 1, respectively. Finally, using (4.4) for
the third dilation in (4.7) we must necessarily have that a = 1 and d = −1. It is then easy

to show that
(

1 2
−2 −1

)
is strictly expansive by Corollary 3.6 with u = −1.1.

Therefore, we can assume that none of the vertices (±1,±1) is mapped by A into
(±1,±1). By (4.6) we have that [−1, 1]2 ⊂ A[−1, 1]2. If [−1, 1]2 ⊂ A(−1, 1)2 then A is
strictly expansive. By a simple geometry, the last inclusion may fail only if at least one
(and thus two by the symmetry) sides of the square [−1, 1]2 are contained in the boundary
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of the parallelogram A[−1, 1]2. This means that the vertices of A[−1, 1]2 must be of the
form ±(x1, 1),±(x2, 1) or ±(1, y1),±(1, y2). But then the matrix A must be of the form(
∗ ∗
±1 0

)
or

(
0 ±1
∗ ∗

)
, respectively. This would mean that A is integrally similar to(

0 1
∗ ∗

)
— a contradiction. This ends the proof of case 1◦.

We remark that we can now assume that the diagonal entries a, d ≥ 0. Indeed, if one
element in the diagonal is negative, the other must be positive (by trA ≥ 0) and we
automatically have (4.6) by (4.4).
2◦ case. Suppose that b = 0 or c = 0. By (4.2) we can assume that c = 0. By applying
(4.3) to A we see that we can reduce the upper right corner of A in the absolute value to
minλ∈Z |λ(d − a) + b| ≤ |d − a|/2. Hence, it suffices to consider the case |b| ≤ |a − d|/2
and c = 0. Moreover, since (4.3) does not modify a or d when c = 0 and A is a dilation
we must have that a, d ≥ 2. By the remark following Corollary 3.6, A is strictly expansive
since

|b|+ |d| ≤ |a− d|/2 + |d| < 2 max(|a|, |d|) ≤ |ad| = |det A|.

This shows the case 2◦.
Suppose next that neither case 1◦ nor 2◦ holds. Since (4.6) fails then we either have

a ≥ |b| or d ≥ |c|. Without loss of generality, we can assume that d ≥ |c| by applying (4.2)
and c ≥ 0 by (4.1). Since 2◦ does not hold, c must be positive. Moreover, c �= 1. Indeed,

for c = 1 the matrix A is integrally similar to
(

0 1
∗ ∗

)
by the application of (4.3) with

λ = −d and (4.2). Therefore we are left with the possibility that our dilation A =
(

a b
c d

)
satisfies

(4.8) a, c, d ≥ 0, 2 ≤ c ≤ d, c, |b| ≥ |a− d|.

The analysis of classes of dilations satisfying (4.8) is quite intricate and technical. We split
the argument into positive and negative determinant case.
3◦ case. Suppose that A satisfies (4.8) and detA > 0, and hence detA ≥ 2. We claim
that A is strictly expansive by the virtue of Corollary 3.6 with u = −d/c+δ for sufficiently

small δ > 0, unless A is
(

0 −2
2 2

)
. This last dilation is also strictly expansive by Corollary

3.6 with u = −1.1.
First take u = −d/c. We claim that the last three expressions appearing in the definition

of η(A) are (strictly) less than |det A|. If this is the case then for sufficiently small δ > 0
these three inequalities will continue to hold with u = −d/c + δ and moreover

| − uc + a| = | − δc + a + d| < trA ≤ detA.
14



Hence A is strictly expansive by Corollary 3.6 with u = −d/c + δ. Finally, to show the
claim, take u = −d/c. The second expression appearing in η(A) satisfies by (4.8)

| − (u + 2)c + a| = | − 2c + a + d| ≤ trA ≤ det A.

Furthermore, at least one of the above inequalities has to be strict. If we had an equality in
the first inequality then a = 0 and c = d which would imply b ≤ −d and thus trA < det A.
The third expression in η(A) satisfies

|ud− b + (−1− u)(−uc + a)| = | − b− d− a + ad/c| = |detA/c− trA| < det A.

Finally, we need to show that the fourth expression in η(A) satisfies

(4.9)
|(u + 2)d− b + (−1− u)(−(u + 2)c + a)| = | − b− d− a + 2c + ad/c|

= |det A/c− trA + 2c| < det A.

Indeed,

detA(1− 1/c) + trA− 2c ≥ trA(2− 1/c)− 2c = (2− 1/c)(a + d− c)− 1 > 0,

unless a + d − c = 0, that is a = 0 and c = d which would imply b ≤ −d by (4.8) (b is
negative since det A > 0). If this is the case then (4.9) reduces to −b + d < −bd, i.e.,
b < −d/(d − 1) which clearly holds unless d = 2 and b = −2. Therefore, A must be(

0 −2
2 2

)
which was excluded from our considerations in the beginning of case 3◦. This

shows the claim and ends the proof of 3◦.
4◦ case. Suppose that A satisfies (4.8) and detA < 0, and hence detA ≤ −2. We claim
that A is strictly expansive by the virtue of Corollary 3.6 with

u =
(a− d)−

√
(a− d)2 + 4bc

2c
.

Let λ1 < 0 be the negative eigenvalue of A and λ2 > 0 be the positive eigenvalue of A. Note
that by expansiveness λ1 < −1 and λ2 > 1. We need to check that the four expressions
appearing in the definition of η(A) are (strictly) less than |detA|.

−uc + a =
(d + a) +

√
(a + d)2 − 4(ad− bc)

2
=

trA +
√

(trA)2 − 4 detA

2
= λ2 < |det A|,

since |λ1| > 1. Note that the above implies that

(4.10) cu = −λ2 + a.
15



Hence we also need to show that

| − (u + 2)c + a| = |λ2 − 2c| < |det A|.
Since c > 0 and 1 < λ2 < |det A|, it suffices to show that

λ2 − 2c > det A = λ1λ2.

Since c ≤ d

λ2 − 2c− λ1λ2 ≥ λ2 − 2d− λ1λ2 ≥ λ2 − 2 trA− λ1λ2 = −2λ1(−λ1 − 1)λ2 > 0.

The third inequality
|ud− b + (−1− u)(−uc + a)| < |det A|,

is a consequence of

(4.11) ud− b + (−1− u)(−uc + a) = uc− a = −λ2.

Indeed, if we solve the quadratic equation above we have

u =
(a− d)±

√
(a− d)2 + 4bc

2c
.

Finally we need to show

|(u + 2)d− b + (−1− u)(−(u + 2)c + a)| < |det A|.
Note that by (4.10) and (4.11)

(u + 2)d− b + (−1− u)(−(u + 2)c + a) = −λ2 + 2d + 2c + 2cu

= −λ2 + 2c + 2d + 2a− 2λ2 = −λ2 + 2λ1 + 2c.

To see that −λ2 + 2λ1 + 2c < −det A note that since c ≤ d ≤ trA,

−λ2 + 2λ1 + 2c + λ1λ2 ≤ −λ2 + 2λ1 + 2(λ1 + λ2) + λ1λ2 = 4λ1 + λ2(1 + λ1) < 0.

It remains to show
2λ1 − λ2 + 2c− det A > 0.

If λ1 ≤ −3 then

2λ1 − λ2 + 2c− λ1λ2 = 2λ1 − (1 + λ1)λ2 + 2c ≥ 2λ1 + 2λ2 + 2c = 2(trA + c) > 0.

If −3 < λ1 < −1 then using

(4.12)
√

(trA)2 − 4 det A < 1− detA,

we have

2λ1 − λ2 + 2c− detA = λ1 −
√

(trA)2 − 4 detA + 2c− det A > λ1 − 1 + 2c ≥ 3 + λ1 > 0,

since c ≥ 2. Finally, (4.12) is equivalent to (trA)2 < (1 + detA)2 which is a consequence
of | trA| ≤ |2 + detA| by Proposition 3.5. This ends the proof of case 4◦ and thus shows
Theorem 4.1.
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5. Special cases

In this section, we prove that there exist Meyer type wavelets for all expansive matrices

of the form
(

0 1
−d t

)
. The determinant two case was completed in section 2, our main

concern in this section is to prove

Theorem 5.1. Every two by two dilation A is integrally similar to a strictly expansive
matrix with respect to a centrally symmetric set unless |det(A)| = 2 or det(A) = 3 and
tr(A) = 0.

Proof. By Theorem 4.1, it suffices to prove Theorem 5.1 for matrices of the form
(

0 1
−d t

)
.

By Lemma 4.3 and equation (4.1), we can assume that t ≥ 0.

Lemma 5.2. Let A be an integer valued, expansive matrix of the form A =
(

0 1
−d t

)
with t ≥ 0. Then A is integrally similar to a strictly expansive matrix with respect to a
centrally symmetric set if either (a) d > 3 and t > 2 or (b) d < −3 and t �= −d− 2.

Proof. First, suppose that d > 3 and t > 3. (Since A is expansive, we can rewrite as
3 < t ≤ d.) Then,(

1 0
−2 1

) (
0 1
−d t

) (
1 0
2 1

)
=

(
2 1

−4− d + 2t −2 + t

)
.

Now, by Proposition 3.6 with u = −1, it suffices to show that 1 + | − 2 + t| < d and
2 + | − 4− d + 2t| < d.

To this end, note that −d + 2 < t− 2 ≤ d− 2 implies that 1 + |t− 2| ≤ d− 1. For the
second inequality, notice that 2t − 4 ≥ 4, so 2t − 4 − d ≥ 4 − d > 2 − d. Also, note that
2t− 4 ≤ 2d− 4, so 2t− 4− d ≤ d− 4 < d− 2. Hence, |2t− 4− d| < d− 2, as desired.

Now, if d > 3 and t = 3, then(
1 0
−1 1

) (
0 1
−d t

) (
1 0
1 1

)
=

(
1 1

−1− d + t 1 + t

)
.

That the resulting matrix is strictly expansive follows from Proposition 3.6 with u = −1
by noting that 1 + |t− 1| = 3 < d and 1 + | − 1− d + t| = 1 + |2− d| < d.

Suppose that d < 0 and t �= −d− 2 and t �= 0. Then,(
1 0
1 1

) (
0 1
−d t

) (
1 0
−1 0

)
=

(
−1 1

−1− d− t 1 + t

)
.

We proceed with checking the 61 norms of the columns. First, 1 + |1 + t| = t + 2 < |d| by
assumptions. Second, note that 1 + | − 1− d− t| ≤ max{1 + | − 1− d− 1|, 1 + | − 1− d−
(−d− 2)|} = max{−d− 1, 2} < −d.
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Finally, when d < 0 and t = 0, we can (as above) that
(

0 1
−d t

)
is integer equivalent

to
(

2 1
−4− d −2

)
. Then, 1+ |−2| = 3 < |d| and 2+ |−4−d| = −d−4+2 = −d−2 < |d|,

as desired.

The remainder of this section focuses on the special cases which are not covered in
Lemma 5.2; namely, t ≤ 2 and d > 3, t = |d| − 2 and d < −3, and |d| = 3.

Lemma 5.3. All matrices of the form
(

0 1
−d 2

)
are integrally similar to strictly expan-

sive matrices with respect to centrally symmetric sets, where d ≥ 3.

Proof. Apply the transformation
(

1 0
−1 1

) (
0 1
−d 2

) (
1 0
1 1

)
=

(
1 1

−d + 1 1

)
.

We wish to show that there is a u as in Theorem 3.2 that makes our matrix strictly
expansive. We claim that there is an ε = ε(d) > 0 such that −1 < u < −1 + ε works.

For the first equation, note that if u < 0, then |u(−d + 1) + 1| = u(−d + 1) + 1, which
is less than d if and only if u > −1. For the second equation, if we plug in u = −1, then
we obtain |(u + 2)(−d + 1) + 1| = d− 2 < d. So, by continuity, there is an 1 > ε1 > 0 such
that the second equation is satisfied when −1 < u < −1 + ε1.

For the third equation, again we plug in u = −1 to get |u−1+(−1−u)(−u(1−d)+1)| =
2 < d, so as above we obtain 0 < ε2 < ε1 such that the second and third equations are
satisfied when −1 < u < −1 + ε2.

Finally, for the last equation, we plug in u = −1 to get |(u + 2)− 1 + (−1− u)(−(u +
2)(1−d)+1))| = 0 < d. By continuity, get ε3 < ε2 such that all four equations are satisfied
when −1 < u < −1 + ε3.

Lemma 5.4. The matrices
(

0 1
−d 1

)
are integrally similar to strictly expansive matrices

with respect to centrally symmetric sets for d ≥ 3.

Proof. Consider

A =
(

1 0
−1 1

) (
0 1
−d 1

) (
1 0
1 1

)
=

(
1 1
−d 0

)
.

Let
B = sym conv{(1, 1), (1,−1)}.

Then,
A(B) = sym conv{(2,−d), (0,−d)},
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as in Figure 3.

21-1-2

3

2

1

0

-1

-2

-3

Figure 3. First Try For Strict Expansiveness

We need to (carefully) move the pieces of B which are not also in A(B). Let T =
conv{(1, 0), (1, 1), (1−1/d, 1)} and Tε = conv{(1,−ε), (1, 1), (1−1/d−ε, 1)}. Then, A(Tε) =
conv{(1− ε,−d), (2,−d), (2− 1/d− ε,−d + 1 + dε)}. So, for ε > 0 and small enough, if we
let B′ = B \ (Tε ∪ (−Tε)) ∪ (Tε − (0, 2)) ∪ (−Tε + (0, 2)), then B′ ⊂ (A(B′))◦ as pictured
in Figure 4.

1.510.5-0.5-1-1.5

3

2

1

0

-1

-2

-3

Figure 4. Strict Expansiveness for Trace 1

Lemma 5.5. Every matrix of the form
(

0 1
−d −d− 2

)
is integrally similar to a strictly

expansive matrix with respect to a centrally symmetric set when d ≤ −3.
19



Proof. Note that A is integrally similar to
(
−1 1
1 −d− 1

)
, which satisfies Corollary 3.6

with u = −1.1. The easy details of verification are omitted.

Lemma 5.6. For |d| ≥ 4 and d = −3, the matrices
(

0 1
−d 0

)
are integrally similar to

strictly expansive matrices with respect to centrally symmetric sets.

Proof. Consider

A =
(

1 0
−1 1

) (
0 1
−d 0

) (
1 0
1 1

)
=

(
1 1

−1− d −1

)
.

Let B = sym conv{(1, 1), (1,−1)}. Then, A(B) = sym conv{(2,−d− 2), (0,−d)}.
Now, in the case that d is positive, let T = conv{(1,−1), (1, 1), (1 − 2/(d + 1), 1)} and

let
K0 = sym conv{(1− 2/(d + 1), 1), (1,−1)} ∪ (T + (0,−2)) ∪ (−T + (0, 2)).

Since A(T ) = conv{(0,−d), (2,−d− 2), (2− 2/(d + 1),−d)}, we have K0 ⊂ A(K0). More-
over, for d ≥ 4, K0 \ A(K◦0 ) consists of two line segments connecting ±(1 − 2/(d + 1), 1)
and ±(1,−1). Finally, to show that A is strictly expansive it suffices to slightly modify
the set K0 into a compact set K satisfying K ⊂ A(K◦) and

∑
k∈Z2 1K(ξ + 2k) = 1 for

a.e. ξ ∈ R2. Given ε ≥ 0 define points v1 = (1− 2/(d + 1)− ε, 1), v2 = (1,−1− (d + 1)ε),
v3 = (1,−3 + (d + 1)ε), v4 = (1 + ε,−3), v5 = (1 − ε,−3), v6 = (1 − 2/(d + 1) − ε,−1),
and vj = −vj−6 for 7 ≤ j ≤ 12. Let Kε be a polygon whose boundary consists of line
segments connected by vertices v1, v2, . . . , v12. Note that for ε = 0, Kε is just K0 given
as above. Finally, it follows by simple (but long) calculations, that K = Kε satisfies strict
expansiveness condition for sufficiently small ε = ε(d) > 0. Figure 5 shows polygons Kε

and A(Kε) when d = 4 and ε = 0.1.

-2 -1 1 2

-3

-2

-1

1

2

3

Figure 5. Strict Expansiveness for Trace 0, Det ≥ 4

In the case that d is negative, note that by (4.1) A is integrally similar to
(

0 −d
1 0

)
.

One easily checks that this matrix satisfies Corollary 3.6 with u = −2− δ, for δ > 0 small
enough.
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Proof of Theorem 5.1 (continued). The only matrices that are not covered by the above

lemmas are the matrices
(

0 1
−3 3

)
and

(
0 1
−3 0

)
. Notice that

(
0 1
−3 3

)
is similar to

A =
(

2 −1
1 1

)
, which has η(A) = 2.9 when u = −0.9, proving Theorem 5.1.

The authors do not know whether the remaining matrix
(

0 1
−3 0

)
is integrally similar

to a strictly expansive matrix, nor whether any matrix of determinant two can be strictly
expansive. However, it is easy to see that there is a Meyer type wavelet for the matrix

A =
(

0 1
−3 0

)
. Indeed, by Proposition 3.6, there are Meyer type wavelets ψ1, ψ2 with

scaling function φ for dilation by −3 on the line. One can easily check that the functions
ψ1 ⊗ φ and ψ2 ⊗ φ are wavelets for the dilation A. Thus, we have proven the following

Theorem 5.7. Let A be an expansive, two by two integer matrix. Then, there exist Meyer
type wavelets ψ1, . . . , ψl, where l = |det A| − 1.

Proof. Combine Theorem 5.1 with Theorem 2.4, Theorem 4.1 and the example immedi-
ately preceding this theorem statement.
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