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Abstract. This paper is devoted to the study of the dimension functions of (multi)wavelets,

which was introduced and investigated by P. Auscher in [A]. Our main result provides a

characterization of functions which are dimension functions of a (multi)wavelet. As a corollary,

we obtain that for every function D that is the dimension function of a (multi)wavelet, there

is an MSF (multi)wavelet whose dimension function is D. In addition, we show that if a

dimension function of a wavelet not associated with an MRA attains the value K, then it

attains all integer values from zero to K. Moreover, we prove that every expansive matrix

which preserves ZN admits an MRA structure with an analytic (multi)wavelet.

1. Introduction

The dimension function of an orthonormal wavelet ψ ∈ L2(R) is defined as

Dψ(ξ) =
∞∑

j=1

∑
k∈Z

|ψ̂(2j(ξ + k))|2.

The importance of the dimension function was discovered by P. G. Lemarié, who used it to
prove that certain wavelets are associated with a multiresolution analysis (see [L1], [L2]).
After that G. Gripenberg [G] and X. Wang [W] independently characterized all wavelets
associated with an MRA. The well known characterization establishes that a wavelet is an
MRA wavelet if and only if Dψ(ξ) = 1 for almost every ξ ∈ R. However, P. Auscher [A]
proved something more. His deep theorem shows that the dimension function of a wavelet
describes dimensions of certain subspaces of �2(Z); in particular, it is integer valued. Re-
cently, L. Baggett, A. Medina and K. Merrill [BMM] observed that the dimension function
has one more property, i.e. it satisfies the following consistency equation

(1.1) Dψ(ξ) + Dψ(ξ + 1/2) = Dψ(2ξ) + 1 a.e.
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We shall prove that a third condition is always satisfied; namely,

(1.2)
∑
k∈Z

1∆(ξ + k) ≥ Dψ(ξ) a.e.

where ∆ = {ξ ∈ R : Dψ(2−jξ) ≥ 1 for j ∈ N ∪ {0}} and 1∆ denotes the characteristic
function of ∆. It turns out that the three properties together with three obvious ones –
Dψ is 1-periodic, lim infn→∞ Dψ(2−nξ) ≥ 1 and

∫ 1/2

−1/2
Dψ(ξ) dξ = 1 – fully characterize

dimension functions.
In section 5 we give a brief study of the collection of all dimension functions. Included

are examples of a construction of MSF wavelets using the MRA dimension function and
the Journé dimension function. In Example 5.8 we use an idea due to W. Madych [M]
to prove that for any expansive matrix A which preserves ZN , there exists an analytic
(multi)wavelet associated with an MRA. In Theorem 5.11, we prove that there are no
skips in the range of a non-MRA dimension function; that is, if a dimension function not
associated with an MRA attains the value K, then it attains all of the integer values from
zero to K.

2. Preliminaries

Since our main result holds in greater generality than described in the introduction, let
us review necessary terminology. For this paper, a dilation matrix A will be an expansive
matrix which preserves ZN , i.e. all eigenvalues λ of A satisfy |λ| > 1, and AZN ⊂ ZN .
The transpose of A is denoted by B = AT . A finite set Ψ = {ψ1, . . . , ψL} ⊂ L2(RN ) is
called an orthonormal multiwavelet if the system {ψl

j,k : j ∈ Z, k ∈ ZN , l = 1, . . . , L} is an
orthonormal basis for L2(RN ), where for ψ ∈ L2(RN ) we use the convention

ψj,k = |det A|j/2ψ(Ajx − k) for all j ∈ Z, k ∈ ZN .

If a multiwavelet Ψ consists of a single element ψ then we say that ψ is a wavelet.
The following result establishes a characterization of orthonormal multiwavelets (see [G],
[FGWW], [C], [Bo])

Theorem 2.1. A subset Ψ = {ψ1, . . . , ψL} is an orthonormal multiwavelet if and only if

L∑
l=1

∑
j∈Z

|ψ̂l(Bjξ)|2 = 1 a.e. ξ ∈ RN ,(2.1)

ts(ξ) ≡
L∑

l=1

∞∑
j=0

ψ̂l(Bjξ)ψ̂l(Bj(ξ + s)) = 0 a.e. ξ ∈ RN , s ∈ ZN \ BZN ,

(2.2)
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and ||ψl|| = 1 for l = 1, . . . , L, where B = AT .

In the theorem above and throughout the paper the Fourier transform is defined as

f̂(ξ) =
∫

RN

f(x)e−2πi〈x,ξ〉dx.

Denote TN = RN/ZN , which we identify with the set (−1/2, 1/2]N . The ZN -
periodization of a set E ⊂ RN is defined by EP =

⋃
k∈ZN (E + k). The translation

projection τ is defined on RN by τ(ξ) = ξ′, where ξ′ ∈ TN and ξ′− ξ = k for some k ∈ ZN .
In our convention the set of natural numbers N does not contain zero. The Lebesgue
measure of a set E ⊂ RN is denoted by |E|.

We will find it useful to prove the following

Lemma 2.2. Let Ẽ be a measurable subset of RN . Then there exists a measurable set
E ⊂ Ẽ, such that τ(E) = τ(Ẽ) and τ |E is injective.

Proof. Let us define Ik = k + TN for k ∈ ZN . Fix any bijection α : N → ZN and define
E′

α(n) = Ẽ ∩ Iα(n) for n ∈ N. Let Eα(1) = E′
α(1) and Eα(n) = E′

α(n) \
⋃n−1

i=1 EP
α(i) for n ≥ 2.

We claim that E =
⋃∞

n=1 Eα(n) is an appropriate subset of Ẽ.
To check that τ(E) = τ(Ẽ), it is enough to prove that Ẽ ⊂ EP . Let ξ ∈ Ẽ; it is clear

that ξ ∈ E′
α(n0)

for some n0 ∈ N. If n0 = 1, then ξ ∈ E′
α(1) = Eα(1) ⊂ EP . For n0 ≥ 2, we

have either ξ ∈ E′
α(n0)

\
⋃n0−1

i=1 EP
α(i) = Eα(n0) ⊂ EP , or ξ ∈

⋃n0−1
i=1 EP

α(i) ⊂ EP , either of
which implies that ξ ∈ EP .

To prove the second condition, let us consider ξ1, ξ2 ∈ E such that τ(ξ1) = τ(ξ2).
Without loss of generality we can assume that ξ1 ∈ Eα(n) and ξ2 ∈ Eα(m), where n ≤ m.
If n < m, then ξ2 /∈ EP

α(n), which contradicts τ(ξ1) = τ(ξ2); therefore, n = m. This means
that ξ1, ξ2 ∈ Eα(n) ⊂ Iα(n), but since τ |Iα(n) is injective, we obtain ξ1 = ξ2. ♣
Definition 2.3. An MSF (minimally supported frequency) multiwavelet (of order L) is an
orthonormal multiwavelet Ψ = {ψ1, . . . , ψL} such that |ψ̂l| = 1Wl

for some measurable
sets Wl ⊂ RN , l = 1, . . . , L. An MSF multiwavelet of order 1 is simply referred to as an
MSF wavelet.

The following theorem characterizes all MSF multiwavelets (see [DLS] for a similar
characterization of MSF wavelets). Note that Theorems 2.4 and 2.6 hold without the
assumption that the dilation A preserves the lattice ZN .

Theorem 2.4. A set Ψ = {ψ1, . . . , ψL} ⊂ L2(RN ) such that |ψ̂l| = 1Wl
for l = 1, . . . , L

is an orthonormal multiwavelet associated with the dilation A if and only if∑
k∈ZN

1Wl
(ξ + k)1Wl′ (ξ + k) = δl,l′ a.e. ξ ∈ RN , l, l′ = 1, . . . , L,(2.3)

∑
j∈Z

L∑
l=1

1Wl
(Bjξ) = 1 a.e. ξ ∈ RN ,(2.4)
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where B = AT .

Proof. Suppose ψ ∈ L2(RN ) with |ψ̂| = 1W , for some measurable set W . The set {ψ0,k :
k ∈ ZN} is an orthonormal family if and only if

∑
k∈ZN |ψ̂(ξ+k)|2 =

∑
k∈ZN 1W (ξ+k) = 1

for a.e. ξ. In this case

span{ψ0,k : k ∈ ZN} = {f ∈ L2(RN ) : supp f̂ ⊂ W},

where supp f̂ := {ξ ∈ RN : f̂(ξ) 
= 0}. Therefore {ψl
0,k : k ∈ ZN , l = 1, . . . , L} is an

orthonormal family if and only if∑
k∈ZN

1Wl
(ξ + k) = 1 for l = 1, . . . , L, a.e. ξ ∈ RN ,

and the Wl’s are pairwise disjoint (modulo sets of measure zero), i.e. (2.3). In this case

W0 := span{ψl
0,k : k ∈ ZN , l = 1, . . . , L} = {f ∈ L2(RN ) : supp f̂ ⊂

L⋃
l=1

Wl},

and by scaling for any j ∈ Z,

Wj := span{ψl
j,k : k ∈ ZN , l = 1, . . . , L} = {f ∈ L2(RN ) : supp f̂ ⊂ Bj(

L⋃
l=1

Wl)}.

Therefore, Ψ is a multiwavelet if and only if (2.3) and
⊕

j∈Z Wj = L2(RN ) if and only if
(2.3) and {Bj(

⋃L
l=1 Wl) : j ∈ Z} partitions RN (modulo sets of measure zero), i.e. (2.4)

holds.

Definition 2.5. A set W ⊂ RN is a multiwavelet set (of order L), if W =
⋃L

l=1 Wl for
some W1, . . . , WL satisfying (2.3) and (2.4). A multiwavelet set of order 1 is called a
wavelet set.

The following theorem characterizes all multiwavelet sets.

Theorem 2.6. A measurable set W ⊂ RN is a multiwavelet set of order L if and only if∑
k∈ZN

1W (ξ + k) = L a.e. ξ ∈ RN(2.5)

∑
j∈Z

1W (Bjξ) = 1 a.e. ξ ∈ RN(2.6)

Proof. Suppose W is a multiwavelet set of order L. Since 1W =
∑L

l=1 1Wl
, Theorem 2.4

implies (2.5) and (2.6). Conversely, suppose W satisfies (2.5) and (2.6). We proceed to
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define {Wl}L
l=1 inductively. Let W1 be a subset of W such that τ(W1) = TN (modulo sets

of measure zero) and τ |W1 is injective; the existence of W1 is guaranteed by Lemma 2.2.
Suppose that for some 1 ≤ n < L we have defined disjoint sets W1, . . . , Wn ⊂ W such that
τ(Wi) = TN and τ |Wi is injective for i = 1, . . . , n. Therefore

∑
k∈ZN 1R(ξ + k) = L − n

a.e. ξ, where R = W \
⋃n

i=1 Wi, and by Lemma 2.2 we can find Wn+1 ⊂ R, such that
τ(Wn+1) = TN and τ |Wn+1 is injective. Therefore, we have a disjoint partition of W =⋃L

l=1 Wl such that

(2.7)
∑

k∈ZN

1Wl
(ξ + k) = 1 a.e. ξ, for l = 1, . . . , L.

Thus, (2.3) holds. Equation (2.4) is an immediate consequence of (2.6) and the pairwise
disjointness of the Wl’s. ♣

For a finite subset subset F = {f1, . . . , fL} ⊂ L2(RN ) and a dilation A, define the
ZN -periodic function DF by

(2.8) DF (ξ) =
L∑

l=1

∞∑
j=1

∑
k∈ZN

|f̂ l(Bj(ξ + k))|2,

where B = AT . The following fact implies that DF is finite for a.e. ξ ∈ RN .

Proposition 2.7. If F ⊂ L2(RN ) is finite, then ‖DF ‖L1(TN ) = 1/(q−1)
∑L

l=1 ‖f l‖2
L2(RN ),

where q = |det B|.
Proof. We have∫

TN

DF (ξ)dξ =
L∑

l=1

∞∑
j=1

∑
k∈ZN

∫
TN

|f̂ l(Bj(ξ + k))|2dξ =
L∑

l=1

∞∑
j=1

∫
RN

|f̂ l(Bjξ)|2dξ

=
L∑

l=1

‖f̂ l‖2
2

∞∑
j=1

|det B|−j = 1/(q − 1)
L∑

l=1

‖f̂ l‖2
2 = 1/(q − 1)

L∑
l=1

‖f l‖2
2. ♣

Definition 2.8. The dimension function of a multiwavelet Ψ = {ψ1, . . . , ψL} associated
with a dilation A is the function DΨ given by (2.8); that is,

DΨ(ξ) =
L∑

l=1

∞∑
j=1

∑
k∈ZN

|ψ̂l(Bj(ξ + k))|2,

where B = AT .

A priori, it is not obvious from the definition that DΨ has integer values. It is also not
immediate why DΨ is referred to as a dimension function.
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Theorem 2.9. Suppose Ψ = {ψ1, . . . , ψL} is a multiwavelet. Then DΨ(ξ) is a non
negative integer for a.e. ξ ∈ RN .

This result was proved by Auscher [A] for wavelets in L2(R). It is not a surprise that
it holds in a much more general setting. In the following argument it also becomes clear
why DΨ is called a dimension function.

Proof. For l = 1, . . . , L, j ≥ 1 and a.e. ξ ∈ TN we define a vector

Ψl,j(ξ) = (ψ̂l(Bj(ξ + k)))k∈ZN

which belongs to l2(ZN ). The key observation is that the vectors Ψk,p(ξ) satisfy the
following reproducing formula (see Lemma 4.2 in [C] or Chapter 7, equation (3.5) in [HW]
for the case of wavelets in L2(R)),

Ψk,p(ξ) =
L∑

l=1

∑
j≥1

〈Ψk,p(ξ),Ψl,j(ξ)〉l2(ZN )Ψl,j(ξ) a.e. ξ ∈ TN ,

for k = 1, . . . , L, p ≥ 1. As we pointed out before, Proposition 2.7 implies that DΨ(ξ) is
finite a.e. Moreover, a simple calculation shows that DΨ(ξ) =

∑L
l=1

∑
j≥1 ||Ψl,j(ξ)||2l2(ZN ),

which allows us to apply Auscher’s geometrical lemma (see Lemma 3.7 of Chapter 7 in
[HW]) to get

DΨ(ξ) =
L∑

l=1

∑
j≥1

||Ψl,j(ξ)||2 = dim span{Ψl,j(ξ) : j ≥ 1, l = 1, . . . , L}

for a.e. ξ ∈ TN . ♣
In [We] E. Weber proved that the multiplicity function introduced in [BMM] is equal

to the dimension function in the case of single wavelets on R. It is reasonable to suspect
that this result can be extended to the case of the dimension function of multiwavelets on
RN .

Before we present our main result, let us develop a notion of a generalized scaling set
which we use to characterize dimension functions.

3. Generalized scaling sets

One of the main features in the theory of (multi)wavelets is the idea of multiresolution
analysis introduced by S. Mallat. We say that a multiwavelet Ψ ⊂ L2(RN ) is an MRA
multiwavelet if there exists a function ϕ ∈ L2(RN ) such that its integer translations form
an orthonormal basis of the space V0 :=

⊕
j<0 Wj , where Wj := span{ψl

j,k(ξ) : k ∈ ZN , l =
1, . . . , L}. The function ϕ is called a scaling function. It is easy to check that if Ψ is an
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MSF multiwavelet which comes from a multiresolution analysis, then its scaling function
ϕ satisfies |ϕ̂| = 1S for some measurable set S ⊂ RN . Conversely, if ϕ is a scaling function
of some MRA, such that |ϕ̂| = 1S , then there is an MSF multiwavelet associated with this
MRA. Such a set S is called a scaling set.

In [C] Calogero extended Gripenberg’s result by showing that a multiwavelet Ψ comes
from an MRA if and only if DΨ(ξ) = 1 a.e. This implies that the multiwavelets with non-
trivial dimension function can not be constructed by means of multiresolution analysis.
One importance of a multiresolution structure is based on the fact that MRA multiwavelet
can be easily recovered from its scaling function. It turns out that a similar property is
true for all MSF multiwavelets. In fact, in this case W0 = {f ∈ L2(RN ) : supp f̂ ⊂ W},
where W is a multiwavelet set, and V0 = {f ∈ L2(RN ) : supp f̂ ⊂

⋃∞
j=1 B−jW}. Therefore

the role of a scaling function can be played by 1S ∈ V0, where S =
⋃∞

j=1 B−jW , because
then the set W can be easily obtained from S, that is W = BS \ S. These ideas can be
formulated precisely as follows.

Definition 3.1. For fixed L ∈ N, a set S ⊂ RN is called a generalized scaling set (of
order L) associated with a dilation A if |S| = L/(q − 1) and BS \ S is a multiwavelet set
(of order L) associated with the dilation A, where B = AT and q = |det A|.

An equivalent definition can be stated as follows

Proposition 3.2. A set S ⊂ RN is a generalized scaling set (of order L) if and only if
S =

⋃∞
j=1 B−jW for some multiwavelet set W (of order L).

Proof. Let us assume that S =
⋃∞

j=1 B−jW for some multiwavelet set W . From (2.6) it
follows that the union is disjoint; therefore, BS \ S = W . Moreover, (2.5) implies that
|W | = L; hence, |S| = L/(q − 1).

To prove the other implication, denote BS \S by W and observe that since |W | = L we
must have S ⊂ BS. From this easily follows that

⋃∞
j=1 B−jW ⊂ S, but since both these

sets have the same measure they must be equal. ♣

In [PSW] a simple characterization of scaling sets in R is given. Theorem 2.1 of [BMM]
can be viewed as a similar characterization of generalized scaling sets of order 1 in RN .
The proof presented there uses methods of abstract harmonic analysis (in particular, the
multiplicity function of projection valued measures). Let us present an elementary proof
of this theorem extended to the case of generalized scaling sets of order L.

Theorem 3.3. A measurable set S ⊂ RN is a generalized scaling set (of order L) if and
only if

(i) |S| = L/(q − 1),
(ii) S ⊂ BS,
(iii) limn→∞ 1S(B−nξ) = 1 for a.e. ξ ∈ RN ,
(iv)

∑
d∈D D(ξ + B−1d) = D(Bξ) + L a.e.,
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where D(ξ) =
∑

k∈ZN 1S(ξ + k), and D is the set of q representatives of distinct cosets of
ZN/BZN .

Proof. Let us prove that conditions (i)–(iv) are necessary. The first one is guaran-
teed by definition, the second one follows easily from Proposition 3.2. Moreover since
S =

⋃∞
j=1 B−jW for some multiwavelet set W and the union is disjoint, we can write

1S(B−nξ) =
∑∞

j=−n+1 1W (Bjξ) and use (2.6) to obtain that the limit as n → ∞ is 1,
which establishes (iii). A simple calculation shows that

(3.1)

∑
d∈D

D(ξ + B−1d) =
∑
d∈D

∑
k∈ZN

∞∑
j=1

1W (Bj(ξ + B−1d + k))

=
∑

k∈ZN

∞∑
j=0

1W (Bj(Bξ + k)) = D(Bξ) +
∑

k∈ZN

1W (Bξ + k),

therefore (iv) follows from (2.5).
To prove sufficiency define W as BS \S. It is easy to see that W and BjW are disjoint

for every j ∈ N. In fact, BjW = Bj+1S \ BjS, and by (ii) W ⊂ BjS, which together
imply W ∩ BjW = ∅. In this way we obtain that BjW ∩ BkW = ∅ for j, k ∈ Z, j 
= k.
This allows us to check that S =

⋃∞
j=1 B−jW . Indeed, by (ii) we have

⋃∞
j=1 B−jW ⊂ S,

but both these sets have the same measure; therefore, they are equal. This shows that
1S(ξ) =

∑∞
j=1 1W (Bjξ), so (iii) implies that W satisfies (2.6). Using (iv) together with

(3.1), we obtain that (2.5) is fulfilled as well; therefore, W is a multiwavelet set. ♣

Remark. Suppose that a measurable set S satisfies conditions (i)–(iv) of Theorem 3.3.
Then, as we have shown, W = BS\S is a multiwavelet set and S decomposes into a disjoint
sum S =

⋃∞
j=1 B−jW . By Definition 2.5 we can find disjoint sets Wl, l = 1, . . . , L, such

that W =
⋃L

l=1 Wl, and Ψ = {1W1 , . . . , 1WL
} is an MSF multiwavelet. Hence we conclude

(3.2) DΨ(ξ) =
L∑

l=1

∞∑
j=1

∑
k∈ZN

1Wl
(Bj(ξ + k)) =

∑
k∈ZN

1S(ξ + k) for a.e. ξ ∈ RN .

As we have mentioned before, a multiwavelet Ψ can be associated with an MRA if and
only if DΨ(ξ) = 1 a.e. Therefore, it follows that if Ψ is an MSF multiwavelet, then it
comes from an MRA if and only if

∑
k∈ZN 1S(ξ + k) = 1 a.e. In this way we obtain the

following

Corollary 3.4. A measurable set S ⊂ RN is a scaling set if and only if it is a generalized
scaling set of order q − 1 and

∑
k∈ZN 1S(ξ + k) = 1 a.e.
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4. Main Result

Our key contribution to the study of the dimension function of a multiwavelet Ψ asso-
ciated with a dilation A was noticing that its support must be big enough in the sense of
condition (1.2) (that is,∑

k∈ZN

1∆(ξ + k) ≥ DΨ(ξ) for a.e. ξ ∈ RN ,

where ∆ = {ξ ∈ RN : DΨ(B−jξ) ≥ 1 for j ∈ N ∪ {0}}, B = AT ), and proving that,
together with already known conditions, this condition characterizes dimension functions.
Before we proceed further let us prove a technical lemma which converts this condition
into a statement more convenient for the proof of our main result.

Lemma 4.1. Let B be a dilation, and D : RN → N ∪ {0} be a measurable ZN -periodic
function which satisfies

(4.1)
∑

k∈ZN

1∆(ξ + k) ≥ D(ξ) for a.e. ξ ∈ RN ,

where ∆ = {ξ ∈ RN : D(B−jξ) ≥ 1 for j ∈ N ∪ {0}}. Let Aj = {ξ ∈ TN : D(ξ) ≥ j} for
j ∈ N and let {Si}n

i=1, where n ∈ N is fixed, be a collection of measurable sets such that
τ(Si) = Ai and τ |Si is injective for i = 1, . . . , n. Then

(a) there exists a measurable set G such that τ(G) = A1 and D(B−jξ) ≥ 1 for ξ ∈ G
and j ≥ 0,

(b) there exists a measurable set H disjoint from
⋃n

i=1 Si such that τ(H) = An+1 and
D(B−jξ) ≥ 1 for ξ ∈ H and j ≥ 0,

Proof. (a) Recall that ∆ = {ξ ∈ RN : D(B−jξ) ≥ 1 for all j ≥ 0}. Define G = ∆. All we
have to prove is that τ(G) = A1. Since the inclusion τ(G) ⊂ A1 is obvious, it is enough to
check that the opposite inclusion holds. By condition (4.1) we have

∑
k∈ZN 1G(ξ + k) ≥

D(ξ) ≥ 1A1(ξ), which implies that A1 ⊂ GP , i.e. A1 ⊂ τ(G).
(b) Define H = (∆ \

⋃n
i=1 Si) ∩ AP

n+1. Since H ∩
⋃n

i=1 Si = ∅ and τ(H) ⊂ An+1, we
can see that all we have to do is prove that An+1 ⊂ HP . By condition (4.1) and our
assumption about {Si}n

i=1, we have

∑
k∈ZN

1∆(ξ + k) ≥ D(ξ) ≥
∑

k∈ZN

n+1∑
i=1

1Ai(ξ + k)

=
∑

k∈ZN

n∑
i=1

1Si
(ξ + k) +

∑
k∈ZN

1An+1(ξ + k) ≥
∑

k∈ZN

1⋃n
i=1 Si

(ξ + k) + 1An+1(ξ).
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In this way we obtain∑
k∈ZN

1∆\
⋃n

i=1 Si
(ξ + k) ≥

∑
k∈ZN

1∆(ξ + k) −
∑

k∈ZN

1⋃n
i=1 Si

(ξ + k) ≥ 1An+1(ξ),

which implies that An+1 ⊂ (∆ \
⋃n

i=1 Si)P , i.e. An+1 ⊂ HP . ♣

As before A denotes some fixed dilation, B = AT , and q = |det A| = |detB| is the order
of the quotient group ZN/BZN . Let D = {d1, . . . , dq}, where d1 = 0 be representatives
of different cosets of ZN/BZN . The following theorem gives a full characterization of
dimension functions of a multiwavelet.

Theorem 4.2. Let D : RN → N∪ {0} be a measurable ZN -periodic function. Then, D is
the dimension function of some multiwavelet Ψ = {ψ1, . . . , ψL} associated with a dilation
A if and only if the following conditions are satisfied
(D1)

∫
TN D(ξ) dξ = L/(q − 1),

(D2) lim infn→∞ D(B−nξ) ≥ 1,
(D3)

∑
d∈D D(ξ + B−1d) = D(Bξ) + L a.e.,

(D4)
∑

k∈ZN 1∆(ξ + k) ≥ D(ξ) a.e.,
where ∆ = {ξ ∈ RN : D(B−jξ) ≥ 1 for j ∈ N ∪ {0}} and B = AT .

Proof. Let us begin by proving that the conditions (D1)–(D4) are necessary. To do so we
assume that D is the dimension function of some multiwavelet Ψ, i.e.

D(ξ) =
L∑

l=1

∞∑
j=1

∑
k∈ZN

|ψ̂l(Bj(ξ + k))|2.

Then, by Proposition 2.7 we obtain
∫

TN D(ξ) dξ = 1/(q − 1)
∑L

l=1 ||ψl‖2 = L/(q − 1), so
(D1) is proven. To see that (D2) is true, let us observe that D(ξ) ≥

∑L
l=1

∑∞
j=1 |ψ̂l(Bjξ)|2.

Thus, (D2) follows from (2.1). An easy computation similar to (3.1) shows that

∑
d∈D

D(ξ + B−1d) = D(Bξ) +
L∑

l=1

∑
k∈ZN

|ψ̂l(Bξ + k)|2,

so since
∑

k∈ZN |ψ̂l(ξ + k)|2 = 1 a.e., we obtain (D3). To prove the last condition, let us
denote s(ξ) =

∑L
l=1

∑∞
j=1 |ψ̂l(Bjξ)|2. By (2.1) it is clear that s(ξ) ≤ 1; moreover, we have

s(ξ) ≥ s(Bξ) and D(ξ) =
∑

k∈ZN s(ξ + k). Therefore all we have to prove is s(ξ) ≤ 1∆(ξ)
a.e. It is true for ξ ∈ ∆. On the other hand if ξ /∈ ∆ then D(B−jξ) = 0 for some j ≥ 0,
therefore s(B−jξ) = 0, but s(B−jξ) ≥ s(ξ), so we obtain that s(ξ) = 0, i.e. s ≤ 1∆ holds
almost everywhere.
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We turn now to proving the sufficiency of conditions (D1)–(D4). By Theorem 3.3 and
the remark following it, it suffices to find a measurable set S such that
(a) |S| = L/(q − 1),
(b) S ⊂ BS,
(c) limn→∞ 1S(B−nξ) = 1 for a.e. ξ ∈ RN , and
(d) D(ξ) =

∑
k∈ZN 1S(ξ + k).

Denote Ak = {ξ ∈ TN : D(ξ) ≥ k}, and fix any measurable set Q ⊂ RN such that
Q ⊂ BQ, τ |Q is injective, limn→∞ 1Q(B−nξ) = 1 a.e. and D(ξ) ≥ 1 for ξ ∈ Q. Condition
(D2) and the fact that B is a dilation imply that Q = ∆ ∩

⋂∞
j=0 BjTN is an example of a

set which satisfies these properties.

Claim 1. There is a measurable set S1 ⊂ RN such that
(i) Q ⊂ S1,
(ii) S1 ⊂ BS1,
(iii) τ |S1 is injective, and
(iv) τ(S1) = A1.

Proof of claim 1. Let us denote E1 = Q. For n ∈ N define

Ẽn+1 = (BEn \
n⋃

i=1

EP
i ) ∩ AP

1 ,

and let En+1 ⊂ Ẽn+1 be the set guaranteed to exist by Lemma 2.2.
Define S1 =

⋃∞
i=1 Ei. We submit that S1 satisfies conditions (i) through (iv) above.

Indeed, (i) is obvious from the definition. To see (ii), note that by the construction,
E1 ⊂ BE1 and En ⊂ BEn−1 for all n ≥ 2. Therefore, BS1 =

⋃∞
i=1 BEi ⊃

⋃∞
i=1 Ei = S1.

To see (iii), if ξ1, ξ2 ∈ S1 and τ(ξ1) = τ(ξ2), then there exist j, k ∈ N such that ξ1 ∈ Ej

and ξ2 ∈ Ek. Without loss of generality, j ≤ k. If j < k, then ξ2 
∈ EP
j , which contradicts

τ(ξ1) = τ(ξ2). Therefore, j = k; however, τ |Ej is injective, so ξ1 = ξ2.
We now turn to proving (iv). By definition of S1 we have τ(S1) ⊂ A1. It remains to

show that A1 ⊂ τ(S1). By condition (D4) and Lemma 4.1, there is a set G ⊂ RN such
that τ(G) = A1, and D(B−jξ) ≥ 1 for every j ≥ 0 and every ξ ∈ G.

Subclaim. For j ≥ 1 we have G ∩ BjSP
1 ⊂ Bj−1SP

1 .

Proof of subclaim. Let ξ ∈ G∩BjSP
1 . Since B−jξ + l ∈ S1 for some l ∈ ZN , it follows that

B−jξ + l ∈ Em for some m ∈ N. Then, ξ′ := B−j+1ξ + Bl ∈ BEm, and by definition of G,
D(ξ′) ≥ 1, so ξ′ ∈ BEm ∩ AP

1 . Recall that Ẽm+1 = (BEm \
⋃m

i=1 EP
i ) ∩ AP

1 . Therefore, if
ξ′ /∈

⋃m
i=1 EP

i , then ξ′ ∈ Ẽm+1 ⊂ SP
1 , i.e. ξ ∈ Bj−1SP

1 . On the other hand, if ξ′ ∈ EP
i for

some i = 1, . . . , m, then again ξ′ ∈ SP
1 , so ξ ∈ Bj−1SP

1 and the proof of the subclaim is
completed.

To finish the proof of claim 1, notice that from the assumptions we made about Q it
follows that

⋃∞
j=1 BjQ = RN . Therefore, G =

⋃∞
j=1(G ∩ BjQ) ⊂

⋃∞
j=1(G ∩ BjSP

1 ). By
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iterating the subclaim, we obtain that G ∩ BjSP
1 ⊂ SP

1 for j ≥ 1. So, G ⊂ SP
1 , i.e.

τ(G) ⊂ τ(S1), and since τ(G) = A1 the proof of claim 1 is finished.

We continue defining the set S. Suppose that there exist sets S1, . . . , Sn such that if
we define Pi =

⋃i
j=1 Sj for i ≤ n, then the collections {Si}n

i=1 and {Pi}n
i=1 satisfy Q ⊂ P1,

and
(1) Pi ⊂ BPi for i = 1, . . . , n,
(2) τ |Si is injective for i = 1, . . . , n,
(3) Si ∩ Sj = ∅ for all i, j = 1, . . . , n, where i 
= j and
(4) τ(Si) = Ai for i = 1, . . . , n.
Then, we will construct Sn+1 such that S1, . . . , Sn+1 and P1, . . . , Pn+1 satisfy (1)-(4).

Recall that An+1 = {ξ ∈ TN : D(ξ) ≥ n + 1}.
Define F̃1 = (BPn \ Pn) ∩ AP

n+1. By Lemma 2.2, there is a measurable subset F1 ⊂ F̃1

such that τ |F1 is injective and τ(F1) = τ(F̃1).
For m ∈ N define

F̃m+1 = (BFm \
m⋃

i=1

FP
i ) ∩ AP

n+1,

and let Fm+1 be the subset of F̃m+1 guaranteed to exist by Lemma 2.2.
Let Sn+1 =

⋃∞
m=1 Fm. We claim that the collections {Si}n+1

i=1 and {Pi}n+1
i=1 satisfy the

four conditions above. For condition (1), it suffices to show that Sn+1 ⊂ BPn+1. This
follows from the fact that F1 ⊂ BPn, while Fm ⊂ BFm−1 ⊂ BPn+1 for m ≥ 2.

For condition (2), we must show that τ |Sn+1 is injective. Suppose that ξ1, ξ2 ∈ Sn+1

and τ(ξ1) = τ(ξ2); then, without loss of generality, for some j ≤ k, ξ1 ∈ Fj and ξ2 ∈ Fk.
If j < k, then ξ2 
∈ FP

j , which contradicts τ(ξ1) = τ(ξ2). Therefore, j = k; however, τ |Fk

is injective, so ξ1 = ξ2.
To see (3) it is enough to prove that Sn+1 ∩ Pn = ∅. As we noticed before, for m ≥ 2

we have Fm ⊂ BFm−1. But since F1 ⊂ BPn \ Pn, by induction we obtain Fm ⊂ BmPn \
Bm−1Pn for m ≥ 1. From (1) with i = n, it follows that Pn ⊂ Bm−1Pn for m ≥ 1.
Therefore, for such m we obtain Fm ∩ Pn = ∅, i.e. Sn+1 ∩ Pn = ∅.

The proof of (4) is more difficult. First note that since τ(Fm) ⊂ An+1, we have
τ(Sn+1) ⊂ An+1. For the reverse inclusion, we will find it useful to prove the follow-
ing

Claim 2. We have AP
n+1 ∩ BSP

n+1 ⊂ SP
n+1.

Proof of claim 2. If ξ ∈ AP
n+1 ∩BSP

n+1, then B−1ξ + k ∈ Fm for some m ∈ N and k ∈ ZN .
Therefore, ξ′ := ξ + Bk ∈ BFm, moreover, since ξ ∈ AP

n+1, we obtain ξ′ ∈ BFm ∩ AP
n+1.

Now, if ξ′ /∈
⋃m

i=1 FP
i , then ξ′ ∈ F̃m+1 ⊂ SP

n+1, i.e. ξ ∈ SP
n+1. On the contrary, if ξ′ ∈ FP

i

for some i = 1, . . . , m, then ξ′ ∈ SP
n+1 as well, so ξ ∈ SP

n+1, which ends the proof of claim 2.

Continuing with the proof of condition (4), we need to show that An+1 ⊂ τ(Sn+1). By
condition (D4) and Lemma 4.1, there is a set H ⊂ RN such that H ∩ Pn = ∅, τ(H) =
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An+1, and D(B−jξ) ≥ 1 for every j ≥ 0 and ξ ∈ H. Therefore all we have to prove is
τ(H) ⊂ τ(Sn+1), i.e. H ⊂ SP

n+1.
We split into two cases; first, we consider all ξ ∈ H such that for every j ≥ 0, D(B−jξ) ≥

n + 1, i.e. the set R := H ∩
⋂∞

j=0 BjAP
n+1. We will show that R ⊂ SP

n+1. Let ξ ∈ R. As
we mentioned before

⋃∞
j=1 BjQ = RN ; therefore, B−jξ ∈ Q for some j ≥ 1. Condition

(1) implies that Q ⊂ Pn; hence, we can consider j0 = min{j ∈ N : B−jξ ∈ Pn}. Since
H ∩ Pn = ∅, it follows that B−j0+1ξ ∈ BPn \ Pn. Moreover, since B−j0+1ξ ∈ AP

n+1, we
obtain B−j0+1ξ ∈ (BPn \ Pn) ∩ AP

n+1 = F̃1 ⊂ SP
n+1. In this way we proved that R ⊂⋃∞

k=0 BkSP
n+1. Therefore, R =

⋃∞
k=0(R∩BkSP

n+1) ⊂
⋃∞

k=0(H ∩
⋂k

j=0 BjAP
n+1 ∩BkSP

n+1).
But claim 2 implies that for k ≥ 0

(4.2)
k⋂

j=0

BjAP
n+1 ∩ BkSP

n+1 ⊂ SP
n+1,

hence R ⊂ SP
n+1.

The second case deals with the set C := H \
⋂∞

j=0 BjAP
n+1. We still wish to show that

C ⊂ SP
n+1. If ξ ∈ C then ξ ∈ H ⊂ AP

n+1, so we can find j0 ≥ 0 such that ξ ∈
⋂j0

j=0 BjAP
n+1

and ξ /∈ Bj0+1AP
n+1. To prove that ξ ∈ SP

n+1, it is enough to show that ξ ∈ Bj0SP
n+1, and

then use formula (4.2) with k = j0. To see why ξ ∈ Bj0SP
n+1 observe that D(B−j0ξ) ≥ n+1.

Therefore by the consistency equation, i.e. condition (D3) we obtain

(4.3) n + L + 1 ≤ L + D(B−j0ξ) =
∑
d∈D

D(B−j0−1ξ + B−1d).

For each d ∈ D set K(d) = D(B−j0−1ξ + B−1d), then τ(B−j0−1ξ + B−1d) ∈
⋂K(d)

k=1 Ak.
Moreover, since d = 0 ∈ D, τ(B−j0−1ξ) ∈ AK(0), and ξ /∈ Bj0+1AP

n+1 we obtain K(0) ≤ n.
Since ξ ∈ H, it follows that D(B−j0−1ξ) ≥ 1, and we obtain K(0) ≥ 1. By (4) we have
B−j0−1ξ ∈

⋂K(0)
k=1 SP

k , i.e. B−j0−1ξ + p0
k ∈ Sk, where p0

k ∈ ZN for k = 1, . . . , K(0) are
distinct by (3). For each d ∈ D \ {0} such that K(d) 
= 0, by using (4) again we can find
distinct pd

k ∈ ZN such that B−j0−1ξ + pd
k + B−1d ∈ Sk, where k = 1, . . . ,min(K(d), n).

In this way for each d ∈ D such that K(d) 
= 0 we obtain

(4.4) B−j0ξ + Bpd
k + d ∈ BSk ⊂ BPn for k = 1, . . . ,min(K(d), n)

We claim that this gives us at least n + 1 distinct elements of BPn. If Bpd
k + d =

Bpd′

k′ + d′ for some k = 1, . . . ,min(K(d), n), k′ = 1, . . . ,min(K(d′), n), then d − d′ ∈
BZN , hence d = d′. Also for fixed d ∈ D, pd

k 
= pd
k′ for k 
= k′. What remains to

check is that
∑

d∈D min(K(d), n) ≥ n + 1. Since 1 ≤ K(0) ≤ n formula (4.3) yields
K(0) +

∑
d∈D\{0} min(K(d), n) ≥ n + 1.
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By property (2) of the induction hypothesis, at least one of the elements given in (4.4)
must lie in the complement of Pn. So, for some k ∈ ZN , B−j0ξ+k ∈ BPn\Pn. In addition,
since B−j0ξ ∈ AP

n+1, we have B−j0ξ + k ∈ AP
n+1. Therefore, B−j0ξ + k ∈ F̃1 ⊂ SP

n+1, i.e.
ξ ∈ Bj0SP

n+1, which completes the proof of condition (4).
To recap, we have defined sets {Si}∞i=1 such that if we set Pi =

⋃i
j=1 Sj , then the

following conditions hold:
(0) Q ⊂ P1,
(1) Pi ⊂ BPi for i ∈ N,
(2) τ |Si

is injective for i ∈ N,
(3) Si ∩ Sj = ∅ whenever i 
= j, and
(4) τ(Si) = Ai for i ∈ N.
Define S =

⋃∞
i=1 Si. We claim that S satisfies properties (a)-(d) listed above. To show

that S ⊂ BS, it suffices to show that Si ⊂ BS for every i ∈ N, but this is immediate from
condition (1).

To show that limn→∞ 1S(B−nξ) = 1 almost everywhere, we note that Q ⊂ S, and since
limn→∞ 1Q(B−nξ) = 1, we obtain limn→∞ 1S(B−nξ) = 1.

To prove D(ξ) =
∑

k∈ZN 1S(ξ + k), it suffices to show that the equality holds for all
ξ ∈ TN . By condition (3) we have 1S =

∑∞
i=1 1Si , therefore

D′(ξ) :=
∑

k∈ZN

1S(ξ + k) =
∑

k∈ZN

∞∑
i=1

1Si(ξ + k).

It follows from (2) that
∑

k∈ZN 1Si(ξ + k) = 1τ(Si)(ξ) for ξ ∈ TN . Therefore, using (4) we
obtain (for ξ ∈ TN )

D′(ξ) =
∞∑

i=1

1τ(Si)(ξ) =
∞∑

i=1

1Ai(ξ) = D(ξ).

Finally, we show that |S| = L/(q − 1). By condition (D1) we have

|S| =
∫

RN

1S(ξ) dξ =
∫

TN

∑
k∈ZN

1S(ξ + k) dξ =
∫

TN

D(ξ) dξ = L/(q − 1),

which completes the proof of the theorem. ♣
An immediate implication of the proof of Theorem 4.2 is the following

Corollary 4.3. If D is a dimension function of some multiwavelet then there exists an
MSF multiwavelet Ψ of the same order such that DΨ = D.

Theorem 4.2 gives us an algorithm for constructing multiwavelet sets if the dimension
function is given.
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Algorithm 4.4. Assume that D is a function given which satisfies the assumptions of
Theorem 4.2 for some L ∈ N. Denote Ak = {ξ ∈ TN : D(ξ) ≥ k}.

1o Fix a measurable set Q ⊂ RN such that Q ⊂ BQ, limn→∞ 1Q(B−nξ) = 1 a.e., τ |Q
is injective and D(ξ) ≥ 1 for ξ ∈ Q.

2o Let E1 = Q. For m ∈ N define Ẽm+1 = (BEm \
⋃m

i=1 EP
i ) ∩ AP

1 , and choose any
measurable Em+1 ⊂ Ẽm+1 such that τ(Em+1) = τ(Ẽm+1) and τ |Em+1 is injective. Let
S1 =

⋃∞
m=1 Em.

3o If Si are constructed for 1 ≤ i ≤ n, let Pn =
⋃n

i=1 Si. Define F̃1 = (BPn \Pn)∩AP
n+1

and F̃m+1 = (BFm \
⋃m

i=1 FP
i )∩AP

n+1, where again Fm+1 ⊂ F̃m+1 is such that τ(Fm+1) =
τ(F̃m+1) and τ |Fm+1 is injective. Let Sn+1 =

⋃∞
m=1 Fm.

4o Let S =
⋃∞

n=1 Sn, then W = BS\S is a multiwavelet set (of order L) with dimension
function equal to D.

If the function D is bounded by n then Si = ∅ for i > n. In particular if we wish to
construct MRA multiwavelet sets (i.e. D ≡ 1), the algorithm is much simpler.

5. Examples and Remarks

In the first part of this section, we will restrict our attention to dimension functions of
a single wavelet in R. Let us denote by D the set of all functions which are dimension
functions of some wavelet associated with dilation A = 2 in dimension N = 1. Theorem 4.2
provides some information about D, but we are not aware of a general constructive proce-
dure which would allow us to produce all dimension functions. As a result, further inves-
tigation of D relies on other techniques and studying examples. Below, we present several
dimension functions and provide examples which illustrate the construction of wavelet sets
via Algorithm 4.4.

Example 5.1. Wavelet sets with dimension function equal to 1.

In the MRA case, the dimension function is identically 1. We illustrate how to con-
struct MSF wavelets with this dimension function using Algorithm 4.4. If we choose
Q = [−1/2, 1/2], then Q = S1, and the MSF wavelet we obtain is the Shannon
wavelet, 1̌[−1,−1/2)∪[1/2,1) (1̌S denotes the inverse Fourier transform of 1S). If we choose
Q = [−a, 1 − a] (for 0 < a < 1), then we obtain S1 = Q, and the MSF wavelet
1̌[−2a,−a)∪[1−a,2−2a).

A non-trivial example of our construction is obtained by taking Q = [− 1
8 , 1

4 ] ∪ [ 38 , 1
2 ].

Then, we can choose S1 = Q ∪ [ 14 , 3
8 ] ∪ [ 34 , 7

8 ] ∪ [ 32 , 7
4 ]. The MSF wavelet we obtain has

support W = [− 1
4 ,− 1

8 ] ∪ [ 12 , 3
4 ] ∪ [ 78 , 1] ∪ [3, 7

2 ].

Example 5.2. Wavelet sets with the Journé dimension function.
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A nontrivial example of a dimension function is given by the Journé wavelet

Dψ(ξ) =


2 for ξ ∈ [− 1

7 , 1
7 ]

1 for ξ ∈ [− 1
2 ,− 3

7 ] ∪ [− 1
7 ,− 2

7 ] ∪ [ 17 , 2
7 ] ∪ [ 37 , 1

2 ]

0 for ξ ∈ [− 2
7 ,− 3

7 ] ∪ [ 27 , 3
7 ],

where ψ̂ = 1[− 16
7 ,−2]∪[− 1

2 ,− 2
7 ]∪[ 27 , 1

2 ]∪[2, 16
7 ] (see Diagram 1).

−1
2

−3
7

−2
7

−1
7

1
7

2
7

3
7

1
2

Diagram 1. Journé Dimension Function

We proceed to construct an MSF wavelet with the dimension function above via Algo-
rithm 4.4. We can choose Q = [− 2

7 , 2
7 ], and S1 can be chosen to be Q ∪ [− 1

2 ,− 3
7 ] ∪ [ 37 , 1

2 ].
Then S2 can be chosen to be [−1,− 6

7 ]∪ [ 67 , 1]. These choices lead to the MSF wavelet with
support

W1 = [−2,−12
7

] ∪ [−4
7
,−1

2
] ∪ [−3

7
,−2

7
] ∪ [

2
7
,
3
7
] ∪ [

1
2
,
4
7
] ∪ [

12
7

, 2].

We also could have chosen S1 = Q ∪ [− 4
7 ,− 1

2 ] ∪ [ 12 , 4
7 ] and S2 = 2(S1 \ Q), which would

have yielded the usual Journé wavelet.
For the choice of Q = [− 1

7 , 2
7 ], we can get S1 = Q ∪ [− 2

7 ,− 1
7 ] ∪ [ 37 , 4

7 ] and S2 = [ 67 , 8
7 ].

In this case, we obtain the wavelet set

W2 = [−4
7
,−2

7
] ∪ [

2
7
,
3
7
] ∪ [

12
7

,
16
7

].

Example 5.3. A non-symmetric dimension function.

Another nontrivial example of a dimension function which is bounded by two can be
obtained by computing the dimension function of an MSF wavelet with support W =
[− 4

3 ,−1] ∪ [− 1
2 ,− 1

3 ] ∪ [ 15 , 1
3 ] ∪ [ 43 , 3

2 ] ∪ [3, 16
5 ] (this wavelet set is considered by X. Dai and

D.R. Larson in [DL]). Then for ψ̂ = 1W , we have
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Dψ(ξ) =


2 for ξ ∈ [− 1

3 ,− 1
5 ] ∪ [ 13 , 2

5 ]

1 for ξ ∈ [− 1
2 ,− 2

5 ] ∪ [− 1
5 , 1

5 ] ∪ [ 25 , 1
2 ]

0 for ξ ∈ [− 2
5 ,− 1

3 ] ∪ [ 15 , 1
3 ],

which yields a non-symmetric dimension function.
Before proceeding to the next example, we mention a fact that simplifies checking

whether a given function satisfies the consistency equation.

Fact 5.4. Let D be a 1-periodic function such that D(ξ) + D(ξ + 1/2) = D(2ξ) + 1 for all
ξ ∈ [− 1

4 , 1
4 ]. Then, D satisfies the consistency equation for all ξ ∈ R. Moreover, if D is

symmetric, then it suffices to check the consistency equation on [0, 1
4 ].

Proof. It suffices to show that whenever ξ satisfies D(ξ)+D(ξ +1/2) = D(2ξ)+1, so does
ξ + 1/2 and ξ − 1/2. However, this is obvious since D(ξ + 1/2) + D((ξ + 1/2) + 1/2) =
D(ξ + 1/2) + D(ξ) = D(2ξ) + 1 = D(2ξ + 1) + 1 = D(2(ξ + 1/2)) + 1, and an analogous
reasoning works for ξ − 1/2.

To see the moreover statement, if D is symmetric and the consistency equation is sat-
isfied on [0, 1

4 ], then for ξ ∈ [− 1
4 , 0], we have D(ξ) + D(ξ + 1/2) = D(ξ) + D(ξ − 1/2) =

D(−ξ) + D(−ξ + 1/2) = D(2(−ξ)) + 1 = D(2ξ) + 1. ♣
In the following example we present an interesting family of dimension functions which

appears also in [BM].

Example 5.5. Dimension functions with arbitrarily large supremums.

Let n be a positive integer. We show that there is a dimension function Dn with
‖Dn‖∞ = n. Let ε = 1

2n+2−2 . Define T1 = [−2ε, 2ε] and for i = 2, . . . , n, define Ti =
[−2iε,−2i−1ε] ∪ [2i−1ε, 2iε]. Finally, define U = [−1/2 + ε,−2nε] ∪ [2nε, 1/2 − ε] and
V = [−1/2,−1/2 + ε] ∪ [1/2 − ε, 1/2]. Then, we define (see Diagram 2)

Dn(ξ) =


n − i + 1 for ξ ∈ Ti, 1 ≤ i ≤ n

0 for ξ ∈ U

1 for ξ ∈ V,

and extend 1-periodically.

Diagram 2. The function D4.
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Notice that when n = 1, we obtain the MRA dimension function, and when n = 2, we
obtain the Journé dimension function. We turn to showing that Dn satisfies the consistency
equation. For ξ ∈ [0, ε], we have that Dn(ξ) + Dn(ξ + 1/2) = n + 1, while Dn(2ξ) = n,
so the consistency equation is satisfied for those ξ. For ξ ∈ [ε, (2n − 1)ε] ∩ Ti, we have
that −1/2 + ε ≤ ξ − 1/2 ≤ −1/2 + (2n − 1)ε = −2nε and that 2ξ ∈ Ti+1. Therefore,
Dn(ξ) + Dn(ξ + 1/2) = Dn(ξ) = n − i + 1 = Dn(2ξ) + 1. It remains to check that
the consistency equation is satisfied for ξ ∈ [(2n − 1)ε, 1/4]. In this case, 2ξ ∈ V and
ξ − 1/2 ∈ Tn. Therefore, Dn(ξ) + Dn(ξ + 1/2) = 2 = Dn(2ξ) + 1, as desired.

We now show that the function Dn satisfies condition (D4) of Theorem 4.2. Since
A1 ⊂ ∆ we only need to check for ξ ∈ A2, i.e. ξ ∈ Ti, i ≤ n − 1. (Here, as before,
Aj = {ξ ∈ TN : Dn(ξ) ≥ j}.) For such ξ, we have that ξ + 2j−1 ∈ ∆ for all j ≥ n − 1.
Indeed, ξ + 2j−1 ∈ [2j−1, 2j−1 + 2n−1ε] ⊂ ∆. Hence,

∑
k∈Z 1∆(ξ + k) = ∞ for all ξ ∈ A2,

as desired.
We note here that for n = 3, an MSF wavelet that the construction in Theorem 4.2 yields

Q = [− 4
15 , 4

15 ], S1 = Q∪ [− 1
2 ,− 7

15 ]∪ [ 7
15 , 1

2 ], S2 = [− 29
15 ,− 28

15 ]∪ [−1,− 14
15 ]∪ [ 1415 , 1]∪ [ 2815 , 29

15 ],
S3 = [−2,− 29

15 ] ∪ [ 2915 , 2], and the MSF wavelet has support

W3 = [−4,−56
15

] ∪ [− 8
15

,−1
2
] ∪ [− 7

15
,− 4

15
] ∪ [

4
15

,
7
15

] ∪ [
1
2
,

8
15

] ∪ [
56
15

, 4].

One might think that letting n go to ∞ in the above example would yield an unbounded
dimension function. However, this is not the case. Indeed, the limit function would be
D∞(ξ) = i for all ξ ∈ [− 1

2i+1 ,− 1
2i+2 ]∪[ 1

2i+2 , 1
2i+1 ]. In this limit, the zero set of D∞ contains

[− 1
2 ,− 1

4 ]∪ [ 14 , 1
2 ], so ∆ = [− 1

4 , 1
4 ], and condition (D4) of Theorem 4.2 is not satisfied. The

function D∞ also is an example of a function which satisfies conditions (D1) through (D3)
of Theorem 4.2, but not condition (D4). In particular, condition (D4) is independent of
the other conditions, at least for unbounded dimension functions.

The following example shows that, in spite of the setback above, unbounded dimension
functions do exist.

Example 5.6. An MSF wavelet with unbounded dimension function.

Recall that for a function f ∈ L2(R) we defined Df (ξ) =
∑∞

j=1

∑
k∈Z |f̂(2j(ξ + k))|2.

If f is a wavelet, then this is just the usual dimension function. It is clear that whenever
f̂ ≤ ĝ, then Df (ξ) ≤ Dg(ξ) almost everywhere.

We will proceed by constructing a set S such that D1̌S
is unbounded, and then showing

that S is a subset of some wavelet set W . Since we will have 1S ≤ 1W this will be enough
to conclude that D1̌W

is unbounded. Set Sk = [2k−1+ 1
2k+2 , 2k−1+ 1

2k+1 ) and S =
⋃∞

k=1 Sk.
We show that D1̌S

is unbounded.

Claim. D1̌S
(ξ) ≥ m/2 − 1 for even m ∈ N and ξ ∈ [ 1

2m+2 , 1
2m+1 ).

Proof of claim. If 1
2m+2 ≤ ξ < 1

2m+1 , then for all l ∈ N,

1
2m+2

+ 2l−1 ≤ ξ + 2l−1 <
1

2m+1
+ 2l−1,



A CHARACTERIZATION OF DIMENSION FUNCTIONS OF WAVELETS 19

from which it follows that

1
2(m+l)/2+2

+ 2(m+l)/2−1 ≤ 2(m−l)/2(ξ + 2l−1) <
1

2(m+l)/2+1
+ 2(m+l)/2−1.

That is, 2(m−l)/2(ξ + 2l−1) ∈ S(m+l)/2 whenever (m + l)/2 ∈ N, i.e. whenever l is even.
We conclude that for even m ≥ 4 and ξ ∈ [ 1

2m+2 , 1
2m+1 ),

D1̌S
(ξ) =

∞∑
j=1

∑
k∈Z

|1S(2j(ξ + k))| ≥
m/2−1∑

j=1

|1S(2(m−2j)/2(ξ + 22j−1))| = m/2 − 1.

From the claim, it immediately follows that D1̌S
is unbounded. We now turn to showing

that there is a wavelet set W ⊃ S. The dilation projection d is defined on R \ {0} by
d(ξ) = ξ′, where ξ′ ∈ [− 1

2 , 1
4 )∪ [ 14 , 1

2 ) and ξ′/ξ = 2k for some k ∈ Z. It is easy to check that
the translation projection τ and the dilation projection d satisfy the following properties:
τ |S and d|S are injections, τ(S) ⊂ [0, 1

4 ], and d(S) ⊂ [ 14 , 1
2 ).

Set T = [ 14 , 1
2 )\d(S), and notice that τ |S∪T and d|S∪T are injections, and that d(S∪T ) =

[ 14 , 1
2 ), while τ(S ∪ T ) = [0, 1

2 ). We will use the following theorem, due to E. Ionascu and
C. Pearcy, with S ∪ T = U :

Theorem. [IP] A measurable set U ⊂ R is a subset of a wavelet set if and only if the
following two conditions hold: (i) there is a set A ⊃ U such that τ |A and d|A are injective,
and d(A) = [− 1

2 ,− 1
4 ) ∪ [ 14 , 1

2 ), and (ii) there is a set B ⊃ U such that τ |B and d|B are
injective and τ(B) = [− 1

2 , 1
2 ). Moreover, in this case, there is a wavelet set W satisfying

U ⊂ W ⊂ A ∪ B.

Indeed, it is clear that A = [− 1
2 ,− 1

4 ) ∪ U satisfies condition (i). Also, if we set V =
[− 1

2 , 1
2 ) \ τ(U), we will show that B = V − 3 satisfies condition (ii). First, note that

V − 3 ⊂ [− 7
2 ,− 5

2 ), so d(V − 3) ⊂ [− 1
2 ,− 1

4 ) and d|V is injective. Therefore, d|(V −3)∪U is
also injective. Finally, note that τ(V −3) = V , so τ |(V −3)∪U is injective and τ((V −3)∪U) =
[− 1

2 , 1
2 ). Therefore, by Ionascu and Pearcy’s result mentioned above, U (and hence S) is

contained in a wavelet set, as desired.
The last fact concerning single wavelets in R we are going to present implies that there

are “many” dimension functions – enough to connect all of the examples we have included
so far.

Fact 5.7. The set D is arcwise connected in the L1(T) topology.

Proof. Let D, D′ ∈ D. By Corollary 4.3 we can find MSF wavelets ψ, ψ′ with corresponding
wavelet sets W , W ′ such that Dψ = D and Dψ′ = D′. It is easy to justify that ‖D −
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D′‖L1(T) ≤ ‖1W − 1W ′‖2
L2(R). In fact

‖D − D′‖L1(T) =
∫ 1/2

−1/2

∣∣∣∣ ∞∑
j=1

∑
k∈Z

(
1W (2j(ξ + k)) − 1W ′(2j(ξ + k))

)∣∣∣∣dξ ≤

∫ 1/2

−1/2

∞∑
j=1

∑
k∈Z

|1W (2j(ξ + k)) − 1W ′(2j(ξ + k))|dξ = ‖1W − 1W ′‖2
L2(R).

The arcwise connectivity of D follows from [S], where it was shown that the set of all
characteristic functions of wavelet sets is arcwise connected in the L2(R) norm. ♣

We can also consider
√

D = {
√

D : D ∈ D} with the L2(T) norm. The advantage of this
comes from the fact that for f, g ∈ L2(R) we have ‖

√
Df −

√
Dg‖L2(T) ≤ ‖f − g‖L2(R),

where Df and Dg are defined as in formula (2.8). In particular if ψn → ψ in L2(R), where
ψn and ψ are orthonormal wavelets, then

√
Dψn →

√
Dψ in L2(T). The connectivity of√

D in the L2(T) norm follows again from Corollary 4.3 and [S].
In the final part of our paper we consider the multidimensional case. Of course a detailed

study of dimension functions requires fixing a dilation and an order number; this, however,
goes beyond the scope of our paper. We offer instead some examples and facts which hold
for any dilation.

The following example is devoted to construction of an analytic MRA multiwavelet for
any dilation A. In [M] W. Madych defined a set Ω, which can be thought of as a scaling set,
and showed how to use it to obtain an analytic scaling function. However, the problem
of constructing such a set was not considered in his paper. We present here a detailed
treatment of this problem using Algorithm 4.4.

Example 5.8. An analytic multiwavelet.

Consider the function D ≡ 1, which clearly satisfies (D1)–(D4) of Theorem 4.2 with
L = q − 1, where q = |det A|, A is some dilation, and B = AT . Algorithm 4.4 yields then
a generalized scaling set S of order q − 1 satisfying

∑
k∈ZN 1S(ξ + k) = 1 for a.e. ξ ∈ RN ,

therefore, by Corollary 3.4, S is a scaling set. To start Algorithm 4.4 we must choose a
set Q. Note that Q = TN will not work for every dilation, since in general we do not have
the inclusion TN ⊂ BTN . Nevertheless, choose as Q the set

⋂∞
j=0 BjTN which is bounded

and contains some neighborhood of the origin. We claim that such choice of Q yields a
bounded scaling set S.

Indeed, the sets Em from Algorithm 4.4 satisfy E1 = Q and for m ∈ N

(5.1) EP
m+1 = (BEm)P \

m⋃
i=1

EP
i .

Hence

(5.2) EP
m+1 ⊂ (BEm)P ⊂ EP

1 ∪ . . . ∪ EP
m+1.
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We claim that for any m ∈ N

(5.3) (BmE1)P ⊂ EP
1 ∪ . . . ∪ EP

m+1.

Indeed, (5.3) is true for m = 1 by (5.2). Assume, by induction, that (5.3) holds for some
m, then

(Bm+1E1)P = (B(BmE1))P ⊂ (B(EP
1 ∪ . . . ∪ EP

m+1))
P = (B(E1 ∪ . . . ∪ Em+1))P

= (BE1)P ∪ . . . ∪ (BEm+1)P ⊂ EP
1 ∪ . . . ∪ EP

m+2,

therefore (5.3) is true for m + 1, hence for all m ∈ N. The set E1 = Q contains some
neighborhood of the origin, therefore (BME1)P = RN for sufficiently large M ∈ N. Thus
by (5.3) EP

1 ∪ . . . ∪ EP
M+1 = RN , and by (5.1) En = ∅ for n ≥ M + 2. Since each Em is

bounded so is S =
⋃M+1

m=1 Em.
By the remark following Theorem 3.3 we conclude that the bounded set W = BS \ S

is a multiwavelet set of order q − 1. Definition 2.5 allows us to partition W into sets
W1, . . . Wq−1 so that Ψ = {ψ1, . . . ψq−1} is an MSF multiwavelet, where ψ̂l = 1Wl

. The
functions ψl are C∞ (even analytic) in the direct space and are associated with an MRA
with a smooth scaling function ϕ, where ϕ̂ = 1S . Naturally, ϕ and ψl do not have good
decay properties.

In the above example we can consider a special case of a dilation matrix A such that
|det A| = 2. This leads to a multiwavelet of order 1; that is, we obtain a single wavelet. The
fact that the condition |detA| = 2 is sufficient for obtaining MRA wavelets was already
noticed by Q. Gu and D. Han in [GH]. It is not clear whether the techniques in [GH] can
be used to obtain analytic wavelets.

The following example shows the existence of non-trivial dimension functions on RN .

Example 5.9. “Stairway to heaven” dimension function.

Suppose A is a dilation, B = AT and q = |det A| = |detB|. Consider a scaling set S
associated with the dilation A; that is, a set satisfying the conditions of Theorem 3.3 with
L = q − 1 and

(5.4)
∑

k∈ZN

1S(ξ + k) = 1 a.e. ξ ∈ RN .

Example 5.8 guarantees the existence of such a set S. Fix J ∈ N and define the function
D by

(5.5) D(ξ) = 1 + jJ if ξ ∈ (B−jS \ B−j−1S)P for some j ≥ 0.

D is defined for a.e. ξ ∈ RN because the sets {B−jS \ B−j−1S}j≥0 form a partition of S,
and {S +k}k∈ZN partitions RN modulo sets of measure zero. We will show that D satisfies
conditions (D1)–(D4) of Theorem 4.2 with L = J + (q − 1)
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The first condition is fulfilled because∫
TN

D(ξ)dξ =
∫

S

D(ξ)dξ =
∞∑

j=0

∫
B−jS\B−j−1S

D(ξ)dξ

=
∞∑

j=0

(1 + jJ)(q−j − q−j−1) = 1 +
∞∑

j=1

q−jJ = 1 + J/(q − 1).

Since D(ξ) ≥ 1 a.e., conditions (D2) and (D4) are automatically satisfied. To check the
consistency equation we shall show that {(B−1S)P + B−1d}d∈D partitions RN , where D
denotes the set of q representatives of different cosets of ZN/BZN . In fact, by (5.4) we
have ∑

d∈D
1(B−1S)P (ξ + B−1d) =

∑
d∈D

∑
k∈ZN

1B−1S(ξ + B−1d + k)

=
∑

k∈ZN

1B−1S(ξ + B−1k) =
∑

k∈ZN

1S(Bξ + k) = 1.

Since RN =
⋃∞

j=0(B
−jS \ B−j−1S)P it is enough to prove that (D3) holds on (B−jS \

B−j−1S)P for every j ≥ 0. First let us consider ξ ∈ (B−jS \B−j−1S)P , where j ≥ 1. It is
easy to see that then we must have Bξ ∈ (B−j+1S \B−jS)P . Moreover, since S ⊂ BS, we
have ξ ∈ (B−1S)P , which together with the fact that {(B−1S)P + B−1d}d∈D partitions
RN and SP = RN allows us to conclude that ξ + B−1d ∈ (S \ B−1S)P for d ∈ D \ {0}.
Therefore, by (5.5),∑

d∈D
D(ξ + B−1d) = 1 + jJ + (q − 1) = 1 + (j − 1)J + J + (q − 1) = D(Bξ) + L.

If j = 0 and ξ ∈ S \ B−1S, we can choose d ∈ D such that ξ + B−1d ∈ (B−1S)P , since
{(B−1S)P + B−1d}d∈D partitions RN . Replacing ξ by ξ + B−1d does not affect values of
the expressions in (D3), so we can assume that ξ ∈ (B−1S)P , which corresponds exactly
to the case j ≥ 1. Thus the consistency equation is satisfied a.e., and D is a dimension
function of a multiwavelet of order L = J + (q − 1).

The dimension function we constructed above is clearly unbounded (note, however, that
for q = 2, the order L must be at least 2, therefore we can not use this construction to
produce anything similar to Example 5.6). The following fact shows that band limited
wavelets have a bounded dimension function

Fact 5.10. Suppose Ψ = {ψ1, . . . , ψL} is a multiwavelet and suppψl is bounded for each
l = 1, . . . , L. Then there is an n ∈ N such that DΨ ≤ n.

Proof. Let s(ξ) =
∑L

l=1

∑∞
j=1 |ψ̂l(Bjξ)|2. By the support condition on ψ̂l, we see that

supp s is bounded. Therefore (2.1) implies that s ≤ 1supp s, and we obtain

DΨ(ξ) =
∑

k∈ZN

s(ξ + k) ≤
∑

k∈ZN

1supp s(ξ + k) =
∑

k∈ZN

1k+supp s(ξ) ≤ n,
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where n denotes the number of distinct k’s such that TN ∩ (k + supp s) 
= ∅. ♣

As we saw, every dimension function presented in Example 5.5 attains all integer values
between zero and its supremum. The following fact shows that the skips in the range of
a dimension function of a multiwavelet of order L are at most of the size L. In particular
if a dimension function of a single wavelet not associated with an MRA attains the value
M , then it attains all values from zero to M .

Theorem 5.11. Let Ψ be an orthonormal multiwavelet (of order L) with dimension func-
tion DΨ, and let M be an integer M > L/(q − 1). If there is a set C ⊂ RN such that its
Lebesgue measure |C| > 0 and DΨ(ξ) ≥ M for all ξ ∈ C, then there is a set R ⊂ RN such
that |R| > 0 and M > DΨ(ξ) ≥ M − L for all ξ ∈ R.

Proof. By the consistency equation (see Theorem 4.2 (D3))

DΨ(Bξ) =
∑
d∈D

DΨ(ξ + B−1d) − L,

it follows that DΨ(Bξ) ≥ DΨ(ξ)−L a.e. Suppose that |{ξ ∈ RN : M > DΨ(ξ) ≥ M−L}| =
0. Then, the inequality implies that for almost every ξ ∈ BC, DΨ(ξ) ≥ M. Repeating this
argument, we obtain DΨ(ξ) ≥ M for all ξ ∈ BjC and all j ≥ 1. So, by the ZN -periodicity
of DΨ, we have that for every j ≥ 1 and ξ ∈ τ(BjC), DΨ(ξ) ≥ M ; that is DΨ(ξ) ≥ M for
ξ ∈

⋃∞
j=1 τ(BjC). From the claim below, it follows that |

⋃∞
j=1 τ(BjC)| = 1, hence

∫
TN

DΨ(ξ) dξ ≥ M
∣∣ ∞⋃

j=1

τ(BjC)
∣∣ = M > L/(q − 1),

which contradicts the fact that
∫

TN DΨ(ξ) dξ = L/(q − 1) (see Theorem 4.1 (D1)). ♣

Claim. If C ⊂ RN is a set of positive Lebesgue measure, then |
⋃∞

j=1 τ(BjC)| = 1.

Proof. Since the matrix B : RN → RN preserves the lattice ZN , it induces a measure
preserving endomorphism B̃ : TN → TN which is ergodic by Corollary 1.10.1 in [Wa].
Since Z =

⋃∞
j=1 τ(BjC) =

⋃∞
j=1 B̃jτ(C), it follows that B̃Z ⊂ Z. We have Z ⊂ B̃−1B̃Z ⊂

B̃−1Z, and since B̃ is measure preserving Z = B̃−1Z (modulo sets of measure zero). By
the ergodicity of B̃ we have either |Z| = 0 or |Z| = 1. Since C is of positive measure we
must have |τ(Z)| > 0, hence|Z| = 1. ♣
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