
DYADIC PFW’S AND Wo-BASES

H. ŠIKIĆ AND D. SPEEGLE

The rich structure of the set of dyadic PFW’s has been presented
in [6]. As mentioned in [6, Remark 3.7], the subclass of the so called
non-W0-frames with various levels of W0-linear independence (denoted
by P0,+ in [6]) needs extra attention. The recent observation in [4]
on W0-Schauder bases enables us to properly restructure this subclass
(P0,+) and to show that it contains a wealth of examples. This is the
purpose of our article. Let us, however, begin by defining some of the
notions mentioned above.

We denote by P the set of all Parseval frame wavelets (PFW’s, for
short), i.e., the set of functions ψ ∈ L2(R) such that the system

{ψjk(x)} := {2j/2ψ(2jx− k) : j, k ∈ Z}
forms a normalized (frame bounds 1) tight frame for L2(R). This is
equivalent to having the reproducing property, i.e., for every f ∈ L2(R)

f =
∑
j,k∈Z

〈f, ψjk〉ψjk (1)

unconditionally in L2(R). Interestingly enough, the property of being
a PFW (on the entire L2(R)) still allows a very varied behaviour on
the main (or zeroeth) resolution level

W0 := span{ψ0k : k ∈ Z}. (2)

If the family {ψ0k : k ∈ Z} satisfies the property “abc” within W0,
we shall say that ψ is a “W0 − abc” (for example, if it is a Riesz basis
within W0, we say that ψ is a W0-Riesz basis). A very useful tool to
study such properties is the periodization function pψ : R → [0,+∞),
defined by

pψ(ξ) :=
∑
k∈Z

|ψ̂(ξ + 2kπ)|
2

, ξ ∈ R ,
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where the Fourier transform is chosen so that

f̂(ξ) =

∫
R
f(x)e−iξxdx, for f ∈ L1(R) ∩ L2(R).

Recall that the Hilbert space W0 ⊂ L2(R) is isometrically isomorphic
to the space L2(T; pψ) (the L2 space on the torus T = R/(2πZ) with

the measure pψ(ξ) dξ
2π

; observe that pψ is 2π-periodic) via isomorphism

Iψ : L2(T; pψ) → W0 ,

given by,
Iψ(t) := (tψ̂)∨ . (3)

If ψ ∈ P , then (see [5])

pψ ≤ 1 a.e. (4)

Let us consider also an operator

Ĩψ : L2(T;
dξ

2π
) → L2(T; pψ) ,

given by Ĩψ(t) = t. It follows by (4) that Ĩψ is a bounded linear
operator.

Let us now introduce the main subclasses of P which are going to be
of interest for us here (for a complete picture see [6]). In the following
we shall assume that the reader is familiar with the notions of frame,
normalized tight frame, biorthogonal sequence, Schauder basis, Riesz
basis and orthonormal basis (see [2] and [7] for basic results and some
further references).

It is shown in [6] that the class P·,+, defined by

P·,+ :=
{
ψ ∈ P : ker(Ĩψ) = {0}

}
, (5)

is the disjoint union

P·,+ = P0,+ ∪ Pf,+ ∪ Ptf,+ , (6)

where

P0,+ = {ψ ∈ P·,+ : ψ is not a W0-frame}
Pf,+ = {ψ ∈ P·,+\P0,+ : ψ is not a W0-normalized tight frame}
Ptf,+ = {ψ ∈ P·,+ : ψ is a W0-normalized tight frame}

Recall that Ptf,+ is actually the set of orthonormal wavelets, while
Pf,+ is the set of non-semiorthogonal W0-Risez basis. However, the
class P0,+ has been touched only briefly in [6], where it was shown that
P0,+ is non-empty. Following the most recent advances in [4], we are
able to show that P0,+ has a much more rich structure with various
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levels of linear independence (or basis) type conditions which naturally
fit with other subclasses of P·,+.

Remark. Parseval frames are orthogonal projections of orthonormal
bases, and as such, are not necessarily linearly independent. However,
in the special case of PFW’s, there is more structure. First of all, for
every ψ ∈ P the family {ψ0k : k ∈ Z} is linearly independent. Suppose
contrary that the family {eiξk : k ∈ Z} (here we are using (3)) is linearly
dependent in L2(T; pψ). Since ‖ψ‖2 > 0, we have that the Lebesgue
measure |{ξ ∈ T : pψ(ξ) > 0}| > 0. Hence, without loss of generality,
we would have that a constant function 1 is a.e. on a set of positive
Lebesgue measure equal to a finite linear combination of non-constant
exponentials {eiξk}, which is not possible. Additionally, every frame
(even Bessel sequence) can be partitioned into linearly independent
sets [?]. Combining these two results, it is natural to conjecture that
PFW’s must already be linearly independent. This is also true, and
will be appear in future work. �

We can not expect more than linear independence of {ψ0k : k ∈
Z} outside of P·,+ . However, inside P·,+ we have a rich hierarchy of
subclasses. Let us remind the reader (see [7] for more details) that
a sequence {xn : n ∈ N} in a Banach space is said to be `2-linearly
independent if(

{αn} ∈ `2 ,
∞∑
n=1

αnxn = 0 ⇒ αn = 0 , ∀n ∈ N
)

. (7)

Theorem 1. Supose that ψ ∈ P. Then, the following are equivalent:

(a) ψ ∈ P·,+ ;
(b) pψ > 0 a.e. ;
(c) {ψ0k : k ∈ Z} is l2-linearly independent in W0.

Observe that in (7), the tacit assumption is that lim
N→∞

∑N
n=1 αnxn

exists in the Banach space, so the particular ordering of vectors matters.
This will be the case in several other statements in this article. Here
(Theorem 1.(c)), as throughout the article, we assume that Z is ordered
as

{0, 1,−1, 2,−2, ...} . (8)

Proof. The equivalence (a) ⇔ (b) is more or less obvious (and is given
already in [6]). Let us prove (b) ⇔ (c).

Suppose first that pψ > 0 a.e., i.e., that ker(Ĩψ) = {0}. Let us denote
by {xn : n ∈ N} the family {ψ0k : k ∈ Z} ordered by (8). Suppose
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that {αn} ∈ `2 and Σ∞
n=1αnxn = 0. Let us denote by {en : n ∈ N}

the family of exponentials {eiξk : k ∈ Z} ordered by (8). Since Ĩψ is a

bounded linear operator, and Ĩψ(en) = xn, we get Ĩψ(
∑∞

n=1 αnen) = 0.

Since the kernel of Ĩψ is trivial, we get
∑∞

n=1 αnen = 0 in L2(T; dξ
2π

).

However, {en : n ∈ N} forms an orthonormal basis in L2(T; dξ
2π

), which
implies αn = 0 ,∀n ∈ N.

Suppose now that the set {ξ : pψ(ξ) = 0} has a positive Lebesgue

measure. Observe that h := 1{pψ=0} is a non-zero function in L2(T; dξ
2π

),
but is a zero function in L2(T; pψ). Hence, the Fourier coefficients of h
are not trivial, i.e., there exists an `2-sequence {αn}, whose elements
are not all equal to zero, such that h =

∑∞
n=1 αnen in L2(T; dξ

2π
). Since

Ĩψ is a bounded linear operator, we get that

0 = h = Ĩψ(h) =
∞∑
n=1

αnxn

in L2(T; pψ). Hence, {xn} is not `2-linearly independent. Q.E.D.

If we combine this result with the recent note [4], we get a nice
description of the structure of P·,+ . Let us remind the reader that a
measurable, 2π-periodic function w : R → (0,∞) is an A2-weight (see
[3] for more details) if there exists a constant M > 0 such that for every
interval I ⊆ R,(

1

|I|

∫
I

w(ξ) dξ

) (
1

|I|

∫
I

1

w(ξ)
dξ

)
≤M ,

where |I| is the Lebesgue measure of I.

Corollary 2. Let ψ ∈ P. Then

(a) ψ ∈ P·,+ if and only if {ψ0k : k ∈ Z} is `2-linearly independent;
(b) ψ ∈ P·,+ if and only if pψ > 0 a.e. ;
(c) {ψ0k : k ∈ Z} belongs to a biorthogonal sequence in W0 if and

only if 1
pψ
∈ L1(T; dξ

2π
)

(d) ψ is a W0-Schauder basis if and only if pψ is an A2(T)-weight;
(e) ψ is a W0-Riesz basis if and only if 1

pψ
is bounded;

(f) ψ is a W0-orthonormal basis (and, therefore, an orthonormal
wavelet) if and only if pψ ≡ 1 a.e.

Furthermore, any ψ from either (b),(c), or (d), which is also a W0-
frame, belongs to (e). For any W0-Schauder basis, which is not a W0-
frame, the Schauder basis {ψ0k} in W0 is a conditional basis.



DYADIC PFW’S AND Wo-BASES 5

Following [6] we can expect that some of these classes are not easy to
understand; partially for the lack of examples. It is not a priori clear
that any of those subclasses is non-empty. However, as we shall see
here, the approach via the function pψ is not just suitable for the char-
acterization of these subclasses, but is also helpful for the construction
of examples. We shall construct a continuum of examples of PFW’s
whose periodization function can be arbitrarily chosen on an interval,
so as to satisfy any of the desired conditions from Corollary 2. Hence,
every subclass is far from being empty.

We shall construct sets with the properties that [−π, π) will be di-
vided into three disjoint sets, say A,B,C (each of them is a union of
intervals). The periodization function will be chosen arbitrarily on A
(and, hence, can be adjusted to satisfy any of the requirements given
in Corollary 2), will be equal to 1 on B (and, hence, will not affect any
of the properties from Corollary 2). On C the periodization function
will be of the form 1

2
a+ 1

2
b , where a and b will be bounded from below.

Observe that in this fashion, we can construct examples that satisfy
any condition from Corollary 2, parts (a) – (e). The only condition
which is not included is Corollary 2, part (f) , i.e., pψ ≡ 1 . But this is
the case of orthonormal wavelets, which has been studied thoroughly
and many examples are known.

Let us denote by τ the translation projection on R, defined by τ(ξ) =
η, where η ∈ [−π, π) is such that ξ − η = 2πk for some k ∈ Z. The
dilation projection d is defined on R\{0} by d(ξ) = η , where η belongs
to [−2π,−π) ∪ [π, 2π) and η/ξ = 2k for some k ∈ Z. We recall the
following theorem, which plays a crucial role in our construction (see
[1] and [8]).

Theorem 3. [1]. Let E ⊆ [−π, π) and F ⊆ [−2π,−π) ∪ [π, 2π) be
measurable sets such that 0 ∈ E◦ and E◦ 6= ∅. Then, there exists
measurable G ⊆ R such that τ |G and d|G are injective functions with
τ(G) = E and d(G) = F .

Example 4. Let I be a small interval around 9π
4

so that d(I) ∩ d(I +
π) = ∅, τ(I)∩τ(I+π) = ∅, and τ(I)∩τ(2jI+2kπ) = ∅ for j = 1, 2 and
k = 1, 2 . Moreover, we require I to be small enough to ensure that E,
defined by E := [−π, π)\

(
τ(I)∪ τ(I + π)∪ τ(2I)∪ τ(4I)

)
, satisfies the

requirements of Theorem 3. It is easy to see that such a choice of I is
possible. We define F by F :=

[
[−2π,−π)∪ [π, 2π)

]
\
[
d(I)∪ d(I +π)

]
.

Using Theorem 3, we obtain G such that τ |G and d|G are 1 − 1 and
τ(G) = E , d(G) = F .
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Take any function f : I → C, such that 0 < |f(ξ)| < 1, for every
ξ ∈ I. We claim that ψ is a PFW, when defined by

ψ̂(ξ) :=



1 ξ ∈ G
f(ξ) ξ ∈ I
f(ξ − π) ξ ∈ I + π

(1/
√

2)
√

1− |f(ξ/2)|2 ξ ∈ 2I

−(1/
√

2)
√

1− |f
(
(ξ − 2π)/2

)
|2 ξ ∈ 2I + 2π

(1/
√

2)
√

1− |f(ξ/4)|2 ξ ∈ 4I

(1/
√

2)
√

1− |f
(
(ξ − 4π)/4

)
|2 ξ ∈ 4I + 4π

0 otherwise .

We first need to show that
∑

j∈Z |ψ̂(2jξ)|2 = 1 a.e., first. Clearly, it

is enough to check this for ξ ∈ [−2π,−π) ∪ [π, 2π). This means that
ξ is either in G, in I or in (I + π) (modulo dilations by 2). If ξ ∈ G,

then ψ̂(2jξ) = 0, for every j ∈ Z\{0}. Hence,∑
j∈Z

|ψ̂(2jξ)|2 = |ψ̂(ξ)|2 = 1 .

If ξ ∈ I, then ψ̂(2jξ) = 0, for every j ∈ Z\{0, 1, 2}. Hence∑
j∈Z

|ψ̂(2jξ)|2|ψ̂(ξ)|2 + |ψ̂(2ξ)|2 + |ψ̂(4ξ)|2 =

|f(ξ)|2 +
1

2
(1− |f(ξ)|2) +

1

2
(1− |f(ξ)|2) = 1 .

The case ξ ∈ (I + π) goes along the same line.

Secondly, we need to show that for every odd integer q and for almost
every ξ we have

tq(ξ) :=
∑
j≥0

ψ̂(2jξ)ψ̂
(
2j(ξ + 2qπ)

)
= 0 .

Let us observe terms of the form

ψ̂(2jξ) · ψ̂
(
2j(ξ + 2qπ)

)
.
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Such a product is zero except in the following cases

ξ ∈ 2I, j = 0, q = 1

ξ ∈ 2I + 2π, j = 0, q = −1

ξ ∈ 2I, j = 1, q = 1

ξ ∈ 2I + 2π, j = 1, q = −1.

In the first case (ξ ∈ 2I, j = 0, q = 1), we get

tq(ξ) =ψ̂(ξ)ψ̂(ξ + 2π) + ψ̂(2ξ)ψ̂(2ξ + 4π) =

=− 1

2

√
1− |f(ξ/2)|2

√
1− |f(ξ/2)|2 +

+
1

2

√
1− |f(ξ/2)|2

√
1− |f(ξ/2)|2 = 0 .

Other cases are checked in a similar way.

Observe that we have a PFW ψ and the function pψ has the following
properties on [−π, π) (since pψ is 2π-periodic this is all we need)

pψ(ξ) =



1 ξ ∈ G
|f(ξ)|2 ξ ∈ I
|f(ξ − π)|2 ξ ∈ I + π
1
2

[
(1− |f( ξ

2
)|2) + (1− |f( ξ

2
)|2)

]
ξ ∈ 2I

1
2

[
(1− |f( ξ

4
)|2) + (1− |f( ξ

4
)|2)

]
ξ ∈ 4I .

In particular, pψ > 0 a.e. Hence, for each choice of f , f : I → C ,
0 < |f(ξ)| < 1, we get a PFW ψ which is in P·,+ . Observe that if
we require |f | to be bounded away from 1, then pψ|G∪2I∪4I

is bounded
below and away from zero. Since we can adjust pψ freely on I (through
the choice of f) it is clear that we get a continuum of examples for
any subclass described in Corollary 2. (except the subclass described
in Corollary 2.(f), i.e., orthonormal wavelets).

�
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8 H. ŠIKIĆ AND D. SPEEGLE

[4] M.Nielsen and H. Šikić “Schauder bases of integer translates”, to appear in
Appl. Comput. Harmon. Anal. (2007).

[5] A. Ron and Z. Shen “The wavelet dimension function is the trace function of
a shift-invariant system”, Proc. Amer. Math. Soc. 131(2003), no.5, 1385–1398.
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