WAVELET SETS IN R*ⁿ*

Xingde Dai∗∗† David R. Larson[∗] Darrin M. Speegle‡

September 18, 1995

Abstract: A congruency theorem is proven for an ordered pair of groups of homeomorphisms of a metric space satisfying a dilatory-translatory relationship. A corollary is the existence of wavelet sets, and hence of single-function wavelets, for arbitrary expansive matrix dilations on $L^2(\mathbb{R}^n)$. Moreover, for any expansive matrix dilation, it is proven that there are sufficiently many wavelet sets to generate the *Borel structure of* \mathbb{R}^n .

A dyadic orthonormal (or orthogonal) wavelet is a function $\psi \in L^2(\mathbb{R})$, (Lebesgue measure), with the property that the set

$$
\{2^{\frac{n}{2}}\psi(2^n t - l): n, l \in \mathbb{Z}\}\
$$

is an orthonormal basis for $L^2(\mathbb{R})$ (c.f. [C], [D]). For certain measurable sets *E* the normalized characteristic function $\frac{1}{\sqrt{2\pi}}\chi_E$ is the Fourier transform of such a wavelet. There are several characterizations of such sets (see [DLa] chapt. 4, and independently $[FW]$). In $[DLa]$ they are called wavelet sets. In $[FW]$, $[HWW1]$, [HWW2] they are the support sets of MFS (minimal frequency support) wavelets.

Dilation factors on R other than 2 have been studied in the literature, and analogous wavelet sets corresponding to all dilations *>* 1 are known to exist ([DLa], Example 4.5, part 10). Matrix dilations (for real expansive matrices) on \mathbb{R}^n have also been considered in the literature, usually for a "multi-" notion of wavelet. The translations involved are those along the coordinate axes. The purpose of this article is to prove a general-principle type of result which shows, as a corollary, that

Texas A&M University.

[∗]Supported in part by NSF Grant DMS-9401544

^{∗∗}Supported in part by a grant from the University of North Carolina at Charlotte.

[†]Participant, Workshop in Linear Analysis and Probability, Texas A&M University.

[‡]Graduate Research Assistantship, Workshop in Linear Analysis and Probability,

analogous wavelet sets exist (and are plentiful) for all such dilations. In particular, "single-function" wavelets always exist. This appears to be new.

Theorem 1 seems to belong to the mathematics behind wavelet theory. For this reason we prove it in a more abstract setting than needed for our wavelet results. Essentially, it is a dual-dynamical system congruency principle. The general proof is no more difficult than that for \mathbb{R}^n .

We point out that the wavelets we obtain, which are analogues of Shannon's wavelet, need not satisfy the regularity properties often desired $(c.f. [M])$ in applications.

Let X be a metric space, and let m be a σ -finite nonatomic Borel measure on X for which the measure of every open set is positive and for which bounded sets have finite measure. Let $\mathcal T$ and $\mathcal D$ be countable groups of homeomorphisms of X which map bounded sets to bounded sets and which are absolutely continuous in the sense that they map *m*-null sets to *m*-null sets. A countable group $\mathcal G$ of absolutely continuous Borel isomorphisms of *X* determines an equivalence relation on the family β of Borel sets of X in a natural way: E and F are $\mathcal{G}\text{-congruent}$ (written $E \sim_{\mathcal{G}} F$) if there are measurable partitions $\{E_g: g \in \mathcal{G}\}\$ and $\{F_g: g \in \mathcal{G}\}\$ of *E* and *F*, respectively, such that $F_g = g(E_g)$ for each $g \in \mathcal{G}$, modulo *m*-null sets.

If $r > 0$ and $y \in X$ we write $B_r(y) := \{x \in X: ||x - y|| < r\}$, and abbreviate $B_r := B_r(0).$

We will say that (D, \mathcal{T}) form a *dilatory-translatory pair* if (i) for each bounded set *E* and each open set *F* there are elements $\delta \in \mathcal{D}$ and $\tau \in \mathcal{T}$ such that $\tau(E) \subseteq \delta(F)$, and (ii) there is a fixed point θ for $\mathcal D$ in X which has the property that if N is any nhood of θ and *E* is any bounded set there is an element $\delta \in \mathcal{D}$ such that $\delta(E) \subseteq N$.

T. heorem 1. Let $X, \mathcal{B}, m, \mathcal{D}, \mathcal{T}$ be as above, with $(\mathcal{D}, \mathcal{T})$ a dilatory-translatory pair, and with θ the $\mathcal{D}\text{-}$ fixed point as above. Let *E* and *F* be bounded measurable sets in *X* such that *E* contains a nhood of *θ*, and *F* has nonempty interior and is bounded away from θ . Then there is a measurable set $G \subseteq X$, contained in \bigcup *δ*∈D *δ*(*F*), which is both D -congruent to F and T -congruent to E .

Proof. We will use the term "D-dilate" to denote the image of a set Ω under an element of \mathcal{D} , and "T-translate" for the image of Ω under an element of \mathcal{T} .

We will construct a disjoint family $\{G_{ij}: i \in \mathbb{N}, j \in \{1,2\}\}\$ of measurable sets

whose D-dilates form a partition ${F_{ij}}$ of *F* and whose T-translates form a partition ${E_{ij}}$ of *E*, modulo *m*-null sets. Then $G = \bigcup G_{ij}$ will clearly satisfy our $_{i,j}$ requirements. The i^{th} induction step will consist of constructing G_{i1} and G_{i2} .

Let $\{\alpha_i\}$ and $\{\beta_i\}$ be sequences of positive constants decreasing to 0. Let $N_1 \subset E$ be a ball centered at θ with radius $\lt \alpha_1$ such that $m(E\setminus N_1) > 0$. Let $E_{11} = E\setminus N_1$.

Observe that we may choose $\delta_1 \in \mathcal{D}$, $\tau_1 \in \mathcal{T}$, so that $(\delta_1^{-1} \circ \tau_1)(E_{11})$ is a subset of F whose relative complement in F has nonempty interior. This is possible because, since the interior of F is nonempty, there is a δ_1 -dilate of F which contains a ball large enough to contain some τ_1 -translate of *E* with ample room left over. Now set $F_{11} := (\delta_1^{-1} \circ \tau_1)(E_{11})$. (In this context, clearly we may choose δ_1 and τ_1 such that, in addition, the τ_1 -translate of *E* is disjoint from any prescribed bounded set – a fact which will be useful in the second and subsequent steps.)

Let $G_{11} := \tau_1(E_{11}) = \delta_1(F_{11})$. Since δ_1 is a homeomorphism of X which fixes *θ*, G_{11} is bounded away from *θ* since F_{11} is. Let F_{12} be a measurable subset of *F* of positive measure, disjoint from F_{11} , such that the difference $F\setminus (F_{11} \cup F_{12})$ has nonempty interior and measure $\lt \beta_1$. Choose $\gamma_1 \in \mathcal{D}$ such that $\gamma_1(F_{12})$ is contained in *N*₁ and is disjoint from *G*₁₁. Set $E_{12} := \gamma_1(F_{12})$, and set $G_{12} := E_{12}$. The first step is complete.

For the second step, note that since *F* is bounded away from θ , $N_1 \backslash E_{12}$ contains a ball N_2 centered at θ with radius $\langle \alpha_2 \rangle$ such that $N_1 \setminus (E_{12} \cup N_2)$ has positive measure. Let

$$
E_{21} := N_1 \setminus (E_{12} \cup N_2) = E \setminus (E_{11} \cup E_{12} \cup N_2).
$$

Choose $\delta_2 \in \mathcal{D}, \tau_2 \in \mathcal{T}$, using similar reasoning to that used above, such that $(\delta_2^{-1} \circ$ τ_2)(*E*₂₁) is a subset of *F*\(*F*₁₁ ∪ *F*₁₂) whose relative complement in *F*\(*F*₁₁ ∪ *F*₁₂) has nonempty interior, and for which $\tau_2(E_{21})$ is disjoint from G_{11} and G_{12} . Let $F_{21} := (\delta_2^{-1} \circ \tau_2)(E_{21}),$ and let $G_{21} := \tau_2(E_{21}).$

Choose a measurable subset $F_{22} \subset F$ of positive measure disjoint from F_{11}, F_{12}, F_{21} such that $F\setminus (F_{11} \cup F_{12} \cup F_{21} \cup F_{22})$ has nonempty interior and measure $\lt \beta_2$. Noting that G_{11}, G_{12}, G_{21} are bounded away from θ , choose $\gamma_2 \in \mathcal{D}$ such that $\gamma_2(F_{22})$ is contained in N_2 and is disjoint from G_{11}, G_{12}, G_{21} . Set $E_{22} := \gamma_2(F_{22})$, and let $G_{22} := E_{22}.$

Now proceed inductively, obtaining disjoint families of sets of positive measure

 ${E_{ij}}$ in *E*, ${F_{ij}}$ in *F*, and ${G_{ij}}$, such that

$$
\tau_{i1}^{-1}(G_{i1}) = E_{i1}, G_{i2} = E_{i2}, \delta_i^{-1}(G_{i1}) = F_{i1},
$$

$$
\gamma_i^{-1}(G_{i2}) = F_{i2}, \text{ for } i = 1, 2, ... \text{ and } j = 1, 2.
$$

We have $E\setminus(\cup E_{ij}) = \{\theta\}$, a null set, since $\alpha_i \to 0$, and $F\setminus(\cup F_{ij})$ is a null set since $\beta_i \to 0$. Let $G = \bigcup G_{ij}$. Since δ_i , $\gamma_i \in \mathcal{D}$ we have $G_{ij} \in F$ for all *i*, *j*. So $G \subseteq U$ *δ*∈D $\delta(F)$. The proof is complete.

Remark 2. Suppose *K* is anybounded set which is bounded awayfrom *θ*. (i.e. *K* is contained in an annulus centered at θ .) Then the set *G* in Theorem 1 can be taken *disjoint* from *K*. This follows immediately from the way the sets G_{ij} in the proof are constructed. Moreover, for each *n* a disjoint *n*-tuple can be constructed, all of which satisfythe properties of *G* and *K* above. To see this, mimic the proof of Theorem 1, at each step constructing $G_{ij}^1, \ldots, G_{ij}^n$ simultaneously, making sure that they are disjoint from each other and also from all of the previous G_{lk}^h that have been constructed to that point. This construction can easily be modified to yield an infinite pairwise disjoint family $\{G^k\}_{k=1}^{\infty}$.

We will now relate Theorem 1 to wavelets.

Let $1 \leq m < \infty$, and let A be an $n \times n$ real matrix which is *expansive* (equivalently, all eigenvalues have modulus > 1 (c.f. $[R]$)). By a dilation-A orthonormal wavelet we mean a function $\psi \in L^2(\mathbb{R}^n)$ such that

(*)
$$
\{ |\det(A)|^{\frac{n}{2}} \psi(A^n t - (l_1, l_2, \dots, l_n)^t : n, l \in \mathbb{Z} \},\
$$

where $t = (t_1, \ldots, t_n)^t$, is an orthonormal basis for $L^2(\mathbb{R}^n; m)$. (Here *m* is product Lebesgue measure, and the superscript "*t*" means transpose.)

It is useful to introduce dilation and translation unitary operators. If $A \in M_n(\mathbb{R})$ is invertible (so in particular if *A* is expansive) then the operator defined by

$$
(D_A f)(t) = |\det A|^{\frac{1}{2}} f(At),
$$

 $f \in L^2(\mathbb{R}^n)$, $t \in \mathbb{R}^n$, is unitary. For $1 \leq i \leq n$ let T_i be the unitary operator determined by translation by 1 in the i^{th} coordinate direction. The set $(*)$ is then

$$
\{D_A^k T_1^{l_1} \dots T_n^{l_n} \psi: k, l_i \in \mathbb{Z}\}.
$$

The term orthogonal wavelet has been extended in the literature to include a "multi" notion, which is an orthonormal *p*-tuple (f_1, \ldots, f_p) of functions in $L^2(\mathbb{R}^n)$, each of which separatelygenerates an incomplete orthonormal set under the system of unitaries, and which together form an o.n. basis.

Let $\mathcal F$ be the Fourier-Plancherel transform on $L^2(\mathbb{R})$, normalized so it is a unitary transformation. For $f, g \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}),$

$$
\mathcal{F}(f)(s) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ist} f(t) dt
$$

and

$$
\mathcal{F}^{-1}(g)(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ist} g(s) ds.
$$

On $L^2(\mathbb{R}^n)$ the Fourier transform is

$$
(\mathcal{F}f)(s) := \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(s\circ t)} f(t) dm,
$$

where $s \circ t$ denotes the real inner product. Write $\hat{f} = \mathcal{F}f$, and for $A \in B(\mathbb{R}^n)$ write $\hat{A} := \mathcal{F} A \mathcal{F}^{-1}$. We have $\hat{D}_A = D_{(A^t)^{-1}} (= D_{A^t}^{-1} = D_{A^t}^*$, where A^t is the transpose of *A*, and $\hat{T}_j = M_{e^{-is_j}}$, the multiplication operator on \mathbb{R}^n with symbol $f(s_1, \ldots, s_n) = e^{-is_j}.$

By a *dilation-A wavelet set* we will mean a measurable subset of \mathbb{R}^n (necessarily of finite measure) for which the inverse Fourier transform of $(m(E))^{-\frac{1}{2}}\chi_E$ is a dilation-*A* orthonormal wavelet.

We will say that measurable subsets H and K of \mathbb{R}^n are *A*-dilation congruent if there exist measurable partitions ${H_l}$ of *H* and ${K_l}$ of *K* such that $K_l = A^l H_l$, *l* ∈ Z, modulo Lebesgue null-sets. Write $H \sim_{\delta_A} K$. We will also say that E, F are 2*π*-translation congruent (write this $E \sim_{\tau_{2\pi}} F$) if there exist measurable partitions ${E_l: l = (l_1, \ldots, l_n) \in \mathbb{Z}^n}$ of *E* and ${F_l: l \in \mathbb{Z}^n}$ of *F* such that $F_l = E_l + 2\pi l$, $l \in \mathbb{Z}^n$, modulo null sets. If *E* is a measurable subset of \mathbb{R}^n which is 2π -translation congruent to the *n*-cube $[0, 2\pi] \times \cdots \times [0, 2\pi]$, it is clear from the exponential form of \widehat{T}_j that $\{\widehat{T}_l^{l_1}\widehat{T}_2^{l_2}\dots\widehat{T}_n^{l_n}\cdot(m(E))^{-\frac{1}{2}}\chi_E: (l_1,\dots,l_n)\in\mathbb{Z}^n\}$ is an o.n. basis for $L^2(E)$.

If *A* is a strict dilation, so $||A^{-1}|| < 1$, then $AB_1 \supseteq B_{||A^{-1}||^{-1}}$. It follows that if $F = AB_1 \setminus B_1$, then $\{A^k F: k \in \mathbb{Z}\}$ is a partition of $\mathbb{R}^n \setminus \{0\}$. If *A* is expansive then *A* is *similar* to a strict dilation. So $A = TCT^{-1}$ for *T* a real invertible $n \times n$ matrix, and with $||C^{-1}|| < 1$. If $F_A = T(CB_1 \setminus B_1)$, then $\{A^k F_A\}_{k \in \mathbb{Z}}$ is a partition of $\mathbb{R}^n \setminus \{0\}$. So an expansive matrix has a measurable complete *wandering set* $F_A \subset \mathbb{R}^n$. It follows that $L^2(F_A)$, considered as a subspace of $L^2(\mathbb{R}^n)$, is a complete wandering subspace for D_A . That is, $L^2(\mathbb{R}^n)$ is the direct sum decomposition of the subspaces ${D_A^k L^2(F_A)}_{k \in \mathbb{Z}}$. Moreover, it is clear that any measurable set *F*' with *F*' ∼*δ*_{*A*} *F*_{*A*} has this same property.

Corollary 3. Let $1 \leq n < \infty$ and let $A \in M_n(\mathbb{R})$ be expansive. There exist dilation-*A* wavelet sets.

Proof. Let A be the group of homeomorphisms of \mathbb{R}^n generated by the map $x \to A^t x$. Let T be the group of homeomorphisms of \mathbb{R}^n generated by the translations in each of the coordinate directions by the integral multiples of 2π . Then *A*-dilation-congruency means \mathcal{A} -congruency and 2π -translation-congruency means T-congruency. Moreover, it is clear that (A, \mathcal{T}) is a dilatory-translatory pair on \mathbb{R}^n in the sense of Theorem 1, with $\theta = 0$.

Let *E* be the *n*-cube $[-\pi, \pi) \times \cdots \times [-\pi, \pi)$, and observe that *E* is 2 π -translation congruent to $[0, 2\pi) \times \cdots \times [0, 2\pi)$. By Theorem 1 a measurable set *W* exists with $W \sim_{\delta_{A^t}} F_{A^t}$ and $W \sim_{\tau_{2\pi}} E$. Since $W \sim_{\tau_{2\pi}} [0, 2\pi) \times \cdots \times [0, 2\pi)$, the set $\{\widehat{T}_1^{l_1}\widehat{T}_2^{l_2}\dots\widehat{T}_n^{l_n}\widehat{\psi}_W\colon l_j \in \mathbb{Z}, 1 \leq j \leq n\}$ is an o.n. basis for $L^2(W)$, (with $\hat{\psi}_W = (m(W))^{-\frac{1}{2}} \chi_W$. So since $L^2(W)$, regarded as a subspace of $L^2(\mathbb{R}^n)$, is wandering for $\widehat{D} := \widehat{D}_A = D_A^{-1}$, the set

$$
\{\widehat{D}^k \widehat{T}_1^{l_1} \dots \widehat{T}_n^{l_n} \widehat{\psi} : k \in \mathbb{Z}, l_j \in \mathbb{Z}, 1 \le j \le n\}
$$

is an o.n. basis for $L^2(\mathbb{R}^n)$, so W is a wavelet set for *A*. (Moreover, by Remark 2 it follows that there is a countably infinite pairwise disjoint family of such sets.)

A *Hardy* dyadic orthonormal wavelet is a function $\psi \in L^2(\mathbb{R})$ for which $\{2^{\frac{n}{2}}\psi(2^n t$ *l*): *n, l* $\in \mathbb{Z}$ is an o.n. basis for the Hardy space of L^2 -functions *f* whose Fourier transform \hat{f} has support contained in $[0, \infty)$. An example is $\hat{\psi} = (2\pi)^{-\frac{1}{2}} \chi_{[2\pi, 4\pi)}$. So $[2\pi, 4\pi)$ is a Hardy wavelet set. This idea can be generalized.

Corollary 4. Let $A \in M_n(\mathbb{R})$ be expansive, and let $M \subseteq \mathbb{R}^n$ be a measurable set of positive measure which is stable under A^t in the sense that $A^tM = M$. Suppose $M \cap F_{A^t}$ has nonempty interior. Then there exist measurable sets $W \subset M$ with the property that, if $\widehat{\psi}_W := (2\pi)^{-\frac{n}{2}} \chi_W$, then

$$
\{D_A^k T_1^{l_1} \dots T_n^{l_n} \psi_W : k, l_i \in \mathbb{Z}\}
$$

is an orthonormal basis for $\mathcal{F}^{-1}(L^2(M)).$

[Wavelets of this type were studied in $[DLu]$ for the dyadic, $n = 1$ case, where they were called *subspace wavelets*. The concept is that they are wavelets for proper subspaces of $L^2(\mathbb{R}).$

Proof. Apply Theorem 1, with $F = M \cap F_{A^t}$ and $E = [-\pi, \pi) \times \cdots \times [-\pi, \pi)$, obtaining *W* with $W \sim_{\tau_{2\pi}} E$ and $W \sim_{\delta_{A^t}} F$. Since *M* is A^t -stable, $W \subset M$. Also, $\{(A^t)^k W: k \in \mathbb{Z}\}\$ is a measurable partition of *M*. So an argument similar to that above shows that $\{\widehat{D}_{A}^{k}\widehat{T}_{1}^{l} \ldots T_{n}^{l_{n}}\widehat{\psi}_{W}$: $k, l_{i} \in \mathbb{Z}\}$ is an o.n. basis for $L^{2}(M)$.

The following result points out that the set of wavelet sets for any dilation is large. We will call an orthonormal wavelet for a dilation-factor $a > 1$, $a \in \mathbb{R}$, an *a*-adic orthonormal wavelet.

Corollary 5. Let $A \in M_n(\mathbb{R})$ be expansive. Every measurable subset of \mathbb{R}^n is a countable union of intersections of pairs of dilation-*A* wavelet sets. The family of Borel dilation-A wavelet sets generates the Borel structure of \mathbb{R}^n .

Proof. We first prove the *a*-adic case. Let *a >* 1 be arbitrary.

Let $d(\cdot)$ denote the projection map from $\mathbb{R}\setminus\{0\}$ onto $F = [-a, -1) \cup [1, a)$ determined by *a*-dilation, and let $t(\cdot)$ denote the projection map from R onto $E = [-\pi, \pi)$ determined by 2π -translation. That is, for $x \in \mathbb{R} \setminus \{0\}$, $d(x)$ is the unique *a*-dilate of *x* contained in *F*, and for $x \in \mathbb{R}$, $t(x)$ is the unique 2π -translate of *x* contained in *E*. Note that $E \sim_{\tau_{2\pi}} [0, 2\pi) \sim_{\tau_{2\pi}} ([-2\pi, \pi) \cup [\pi, 2\pi)$. Suppose K is a measurable set in $\mathbb{R}\setminus\{0\}$ for which the restrictions $d|_K$ and $t|_K$ are one-to-one. Let $E_0 = E\setminus t(K)$ and $F_0 = F \dagger d(K)$. If E_0 contains a nhood of 0 and F_0 has nonempty interior then by Theorem 1 and Remark 2 there are disjoint measurable sets G_1, G_2 with $G_i \sim_{\tau_{2\pi}} E_0$ and $G_i \sim_{\delta_a} F_0$, $i = 1, 2$. (By the construction in the proof of Theorem 1 (and Remark 2) if *K* is Borel these can be taken Borel.) Let $W_i = K \cup G_i$. Then $W_i \sim_{\tau_{2\pi}} E$ and $W_i \sim_{\delta_a} F$. So each W_i is an *a*-adic wavelet set. We have $K = W_1 \cap W_2$. We will show that each measurable set $G \subseteq \mathbb{R}$ has a measurable partition ${G_j}_j$ where each G_j has the property of *K*.

Observe that if *K* has the property in the above paragraph i.e., $d(\cdot)$ and $t(\cdot)$ are 1-1, E_0 contains a nhood of 0 and F_0 has nonempty interior then every subset of *K* also has the property.

Suppose $0 < \alpha < \beta$, and let $J = [\alpha, \beta]$. If $\beta - \alpha < 2\pi$ then $t|_J$ is 1-1, and if $\beta < a\alpha$ then *d*|*J* is 1-1. If in addition *J* contains no integral multiple of 2π then *J* satisfies the property of *K* above. Let \mathcal{J}_+ be the set of all intervals $[\alpha, \beta]$ with $0 < \alpha < \beta, \beta < \min\{a\alpha, \alpha + 2\pi\}, \ [\alpha, \beta] \cap 2\pi\mathbb{Z} = \phi, \alpha \text{ and } \beta \text{ rational. Observe}$ that $\bigcup \{J: J \in \mathcal{J}_+\} = (0, \infty) \setminus 2\pi \mathbb{Z}$. Let $\mathcal{J}_- = \{[-\beta, -\alpha]: [\alpha, \beta] \in \mathcal{J}_+\}$, and $\mathcal{J} = \mathcal{J}_+ \cup \mathcal{J}_-$. Then \bigcup *J*∈J $J = \mathbb{R} \backslash 2\pi \mathbb{Z}$.

Let J_1, J_2, \ldots be an enumeration of \mathcal{J} , and let $L_1 = J_1$, and

$$
L_{j+1} = J_{j+1} \setminus (J_1 \cup \dots \cup J_j) \quad \text{for} \quad j \ge 1.
$$

Then $\{L_j: j \in \mathbb{N}\}\$ is a measurable partition of $\mathbb{R} \setminus 2\pi \mathbb{Z}$.

Let $G \subseteq \mathbb{R}$ be a measurable set. Clearly we may assume $G\setminus 2\pi\mathbb{Z} = \phi$. Let $G_j = G \cap L_j$. Then $\{G_j\}$ is a measurable partition of *G* satisfying our requirements. If *G* is Borel then each G_i is Borel.

We adapt the above proof to the general case. Replace F with F_{A^t} , E with the *n*-cube $[-\pi,\pi] \times \cdots \times [-\pi,\pi)$, and $d(\cdot)$ and $t(\cdot)$ with the corresponding projections from $\mathbb{R}^n\setminus\{0\}$ to F_{A^t} and from \mathbb{R}^n to E , respectively.

If $K \subset \mathbb{R}^n$ has the property in paragraph one relative to these, the same argument shows that *K* is the intersection of two dilation-*A* wavelet sets. The boundary *∂C* of the *n*-cube $C = [0, 2\pi) \times \cdots \times [0, 2\pi)$ is an *m*-null set. Let $Q = \bigcup \{(\partial C) + 2\pi \ell : \ell \in \mathbb{Z} \}$ $\mathbb{Z}^{(n)}$ }. By construction ∂F_{A^t} is also an *m*-null set. If $J = B_r(y)$ is a ball in \mathbb{R}^n contained in one of the annuli $(A^t)^{\ell}F_{A^t}$ and which is also bounded away from *Q*, then *J* satisfies the property of *K*. Let $\mathcal J$ be the set of all such balls which have rational center and radius. Enumerate \mathcal{J} , define L_j as above, and observe that ${L_i: j \in \mathbb{N}}$ is a partition of \mathbb{R}^n modulo a null set. As above, if $G \subseteq \mathbb{R}^n$ is a measurable, the partition $\{G \cap L_j : j \in \mathbb{N}\}\$ satisfies our requirements.

Remark 6. Theorem 1 can be improved in several further ways.

- (i) It is not necessarythat *m* be nonatomic in Theorem 1. All that is needed is that {*θ*} is not an atom for *m*.
- (ii) The hypothesis that E contains a nhood of θ in Theorem 1 can be replaced with the hypothesis that for each $\epsilon > 0$ there exists $\delta \in \mathcal{D}$ such that $\delta(F) \subseteq E \cap B_{\epsilon}(\theta)$. If we let $\widetilde{F} = \cup \{ \delta(F) : \ \delta \in \mathcal{D} \} \cup \{ \theta \}$, then this is equivalent to the requirement that *E* contain a subset of \widetilde{F} which is a nhood of θ in the relative topology of \widetilde{F} in *X*. Remark 2 generalizes as well.

(iii) Theorem 1 remains true, in the general form of Remark 2 and (i), (ii) above, if we drop the hypotheses that E and F are bounded and F is bounded away from θ . To adapt the proof, write $E = \bigcup_{n=1}^{\infty}$ $\bigcup_{i=0}^{\infty} E_i, F = \bigcup_{i=0}^{\infty}$ $\bigcup_{i=0}$ F_i , $\{E_i\}$, $\{F_i\}$ disjoint, bounded, F_i bounded away from θ , and such that E_0 and F_0 play the role of E, F in the proof of Theorem 1; so E_0 contains a nhood of θ and F_0 has nonempty interior. Then, for $k \geq 1$, in the k^{th} induction step (in which G_{k1} and G_{k2} are constructed), replace E with $E_0 \cup E_1 \cup \cdots \cup E_k$ and F with $F_0 \cup F_1 \cup \cdots \cup F_k$. The proof, thus modified, is easily seen to be valid.

References

- [C] C.K. Chui, An Introduction to Wavelets, Acad. Press, New York, 1992.
- [D] I. Daubechies, Ten Lectures on Wavelets, CBMS 61, SIAM, 1992.
- [DLa] X. Dai and D. Larson, Wandering vectors for unitary systems and orthogonal wavelets, preprint.
- [DLu] X. Dai and S. Lu, Wavelets in subspaces, Mich. J. Math., to appear.
- [FW] X. Fang and X. Wang, Construction of minimally-supported-frequencies wavelets, J. Fourier Analysis and Applications, to appear.
- [HWW1] E. Hernandez, X. Wang and G. Weiss, Smoothing minimally supported frequency(MSF) wavelets: Part I, J. Fourier Analysis and Applications, to appear.
- [HWW2] E. Hernandez, X. Wang and G. Weiss, Smoothing minimallysupported (MSF) wavelets: Part II, preprint.
	- [M] Y. Meyer, Wavelets and Operators, Camb. Studies in Adv. Math. 37, 1992.
	- [R] C. Robinson, Dynamical Systems, CRC Press, Boca Raton, 1995.
	- [S] D. Speegle, The *s*-elementary wavelets are connected, preprint.

Xingde Dai David R. Larson Darrin M. Speegle Department of MathematicsDepartment of MathematicsDepartment of Mathematics
Univ. of North Carolina Texas A&M University Texas A&M University Univ. of North Carolina
Charlotte, NC 28223 College Station, TX 77843 College Station, TX 77843