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Abstract: A congruency theorem is proven for an ordered pair of groups of homeo-

morphisms of a metric space satisfying a dilatory-translatory relationship. A corol-

lary is the existence of wavelet sets, and hence of single-function wavelets, for ar-

bitrary expansive matrix dilations on L2(Rn). Moreover, for any expansive matrix

dilation, it is proven that there are sufficiently many wavelet sets to generate the

Borel structure of Rn.

A dyadic orthonormal (or orthogonal) wavelet is a function ψ ∈ L2(R), (Lebesgue

measure), with the property that the set

{2n
2 ψ(2nt− l): n, l ∈ Z}

is an orthonormal basis for L2(R) (c.f. [C], [D]). For certain measurable sets E

the normalized characteristic function 1√
2π

χE is the Fourier transform of such a

wavelet. There are several characterizations of such sets (see [DLa] chapt. 4, and

independently [FW]). In [DLa] they are called wavelet sets. In [FW], [HWW1],

[HWW2] they are the support sets of MFS (minimal frequency support) wavelets.

Dilation factors on R other than 2 have been studied in the literature, and

analogous wavelet sets corresponding to all dilations > 1 are known to exist ([DLa],

Example 4.5, part 10). Matrix dilations (for real expansive matrices) on Rn have

also been considered in the literature, usually for a “multi-” notion of wavelet.

The translations involved are those along the coordinate axes. The purpose of this

article is to prove a general-principle type of result which shows, as a corollary, that
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analogous wavelet sets exist (and are plentiful) for all such dilations. In particular,

“single-function” wavelets always exist. This appears to be new.

Theorem 1 seems to belong to the mathematics behind wavelet theory. For this

reason we prove it in a more abstract setting than needed for our wavelet results.

Essentially, it is a dual-dynamical system congruency principle. The general proof

is no more difficult than that for Rn.

We point out that the wavelets we obtain, which are analogues of Shannon’s

wavelet, need not satisfy the regularity properties often desired (c.f. [M]) in appli-

cations.

Let X be a metric space, and let m be a σ-finite nonatomic Borel measure on

X for which the measure of every open set is positive and for which bounded sets

have finite measure. Let T and D be countable groups of homeomorphisms of

X which map bounded sets to bounded sets and which are absolutely continuous

in the sense that they map m-null sets to m-null sets. A countable group G of

absolutely continuous Borel isomorphisms of X determines an equivalence relation

on the family B of Borel sets of X in a natural way: E and F are G-congruent

(written E ∼G F ) if there are measurable partitions {Eg: g ∈ G} and {Fg: g ∈ G}
of E and F , respectively, such that Fg = g(Eg) for each g ∈ G, modulo m-null sets.

If r > 0 and y ∈ X we write Br(y) := {x ∈ X: ‖x − y‖ < r}, and abbreviate

Br := Br(0).

We will say that (D, T ) form a dilatory-translatory pair if (i) for each bounded set

E and each open set F there are elements δ ∈ D and τ ∈ T such that τ(E) ⊆ δ(F ),

and (ii) there is a fixed point θ for D in X which has the property that if N is any

nhood of θ and E is any bounded set there is an element δ ∈ D such that δ(E) ⊆ N .

T. heorem 1. Let X,B, m,D, T be as above, with (D, T ) a dilatory-translatory pair,

and with θ the D-fixed point as above. Let E and F be bounded measurable sets in

X such that E contains a nhood of θ, and F has nonempty interior and is bounded

away from θ. Then there is a measurable set G ⊆ X, contained in
⋃

δ∈D
δ(F ), which

is both D-congruent to F and T -congruent to E.

Proof. We will use the term “D-dilate” to denote the image of a set Ω under an

element of D, and “T -translate” for the image of Ω under an element of T .

We will construct a disjoint family {Gij : i ∈ N, j ∈ {1, 2}} of measurable sets
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whose D-dilates form a partition {Fij} of F and whose T -translates form a par-

tition {Eij} of E, modulo m-null sets. Then G =
⋃
i,j

Gij will clearly satisfy our

requirements. The ith induction step will consist of constructing Gi1 and Gi2.

Let {αi} and {βi} be sequences of positive constants decreasing to 0. Let N1 ⊂ E

be a ball centered at θ with radius < α1 such that m(E\N1) > 0. Let E11 = E\N1.

Observe that we may choose δ1 ∈ D, τ1 ∈ T , so that (δ−1
1 ◦τ1)(E11) is a subset of

F whose relative complement in F has nonempty interior. This is possible because,

since the interior of F is nonempty, there is a δ1-dilate of F which contains a ball

large enough to contain some τ1-translate of E with ample room left over. Now set

F11 := (δ−1
1 ◦ τ1)(E11). (In this context, clearly we may choose δ1 and τ1 such that,

in addition, the τ1-translate of E is disjoint from any prescribed bounded set – a

fact which will be useful in the second and subsequent steps.)

Let G11 := τ1(E11) = δ1(F11). Since δ1 is a homeomorphism of X which fixes

θ, G11 is bounded away from θ since F11 is. Let F12 be a measurable subset of F

of positive measure, disjoint from F11, such that the difference F\(F11 ∪ F12) has

nonempty interior and measure < β1. Choose γ1 ∈ D such that γ1(F12) is contained

in N1 and is disjoint from G11. Set E12 := γ1(F12), and set G12 := E12. The first

step is complete.

For the second step, note that since F is bounded away from θ, N1\E12 contains

a ball N2 centered at θ with radius < α2 such that N1\(E12 ∪ N2) has positive

measure. Let

E21 := N1\(E12 ∪N2) = E\(E11 ∪ E12 ∪N2).

Choose δ2 ∈ D, τ2 ∈ T , using similar reasoning to that used above, such that (δ−1
2 ◦

τ2)(E21) is a subset of F\(F11 ∪ F12) whose relative complement in F\(F11 ∪ F12)

has nonempty interior, and for which τ2(E21) is disjoint from G11 and G12. Let

F21 := (δ−1
2 ◦ τ2)(E21), and let G21 := τ2(E21).

Choose a measurable subset F22 ⊂ F of positive measure disjoint from F11, F12, F21

such that F\(F11 ∪F12 ∪F21 ∪F22) has nonempty interior and measure < β2. Not-

ing that G11, G12, G21 are bounded away from θ, choose γ2 ∈ D such that γ2(F22)

is contained in N2 and is disjoint from G11, G12, G21. Set E22 := γ2(F22), and let

G22 := E22.

Now proceed inductively, obtaining disjoint families of sets of positive measure
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{Eij} in E, {Fij} in F , and {Gij}, such that

τ−1
i1 (Gi1) = Ei1, Gi2 = Ei2, δ

−1
i (Gi1) = Fi1,

γ−1
i (Gi2) = Fi2, for i = 1, 2, . . . and j = 1, 2.

We have E\(∪Eij) = {θ}, a null set, since αi → 0, and F\(∪Fij) is a null set

since βi → 0. Let G = ∪Gij . Since δi, γi ∈ D we have Gij ∈ F for all i, j. So

G ⊆
⋃

δ∈D
δ(F ). The proof is complete. �

Remark 2. Suppose K is any bounded set which is bounded away from θ. (i.e.

K is contained in an annulus centered at θ.) Then the set G in Theorem 1 can be

taken disjoint from K. This follows immediately from the way the sets Gij in the

proof are constructed. Moreover, for each n a disjoint n-tuple can be constructed,

all of which satisfy the properties of G and K above. To see this, mimic the proof

of Theorem 1, at each step constructing G1
ij , . . . , Gn

ij simultaneously, making sure

that they are disjoint from each other and also from all of the previous Gh
lk that

have been constructed to that point. This construction can easily be modified to

yield an infinite pairwise disjoint family {Gk}∞k=1.

We will now relate Theorem 1 to wavelets.

Let 1 ≤ m < ∞, and let A be an n × n real matrix which is expansive (equiv-

alently, all eigenvalues have modulus > 1 (c.f. [R])). By a dilation-A orthonormal

wavelet we mean a function ψ ∈ L2(Rn) such that

(∗) {|det(A)|n2 ψ(Ant− (l1, l2, . . . , ln)t: n, l ∈ Z},

where t = (t1, . . . , tn)t, is an orthonormal basis for L2(Rn;m). (Here m is product

Lebesgue measure, and the superscript “t” means transpose.)

It is useful to introduce dilation and translation unitary operators. If A ∈Mn(R)

is invertible (so in particular if A is expansive) then the operator defined by

(DAf)(t) = |det A| 12 f(At),

f ∈ L2(Rn), t ∈ Rn, is unitary. For 1 ≤ i ≤ n let Ti be the unitary operator

determined by translation by 1 in the ith coordinate direction. The set (∗) is then

{Dk
AT l1

1 . . . T ln
n ψ: k, li ∈ Z}.
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The term orthogonal wavelet has been extended in the literature to include a

“multi” notion, which is an orthonormal p-tuple (f1, . . . , fp) of functions in L2(Rn),

each of which separately generates an incomplete orthonormal set under the system

of unitaries, and which together form an o.n. basis.

Let F be the Fourier-Plancherel transform on L2(R), normalized so it is a unitary

transformation. For f, g ∈ L1(R) ∩ L2(R),

F(f)(s) :=
1√
2π

∫
R

e−istf(t)dt

and

F−1(g)(t) =
1√
2π

∫
R

eistg(s)ds.

On L2(Rn) the Fourier transform is

(Ff)(s) :=
1

(2π)n/2

∫
Rn

e−i(s◦t)f(t)dm,

where s ◦ t denotes the real inner product. Write f̂ = Ff , and for A ∈ B(Rn)

write Â := FAF−1. We have D̂A = D(At)−1(= D−1
At = D∗At), where At is the

transpose of A, and T̂j = Me−isj , the multiplication operator on Rn with symbol

f(s1, . . . , sn) = e−isj .

By a dilation-A wavelet set we will mean a measurable subset of Rn (necessarily

of finite measure) for which the inverse Fourier transform of (m(E))−
1
2 χE is a

dilation-A orthonormal wavelet.

We will say that measurable subsets H and K of Rn are A-dilation congruent if

there exist measurable partitions {Hl} of H and {Kl} of K such that Kl = AlHl,

l ∈ Z, modulo Lebesgue null-sets. Write H ∼δA
K. We will also say that E, F are

2π-translation congruent (write this E ∼τ2π F ) if there exist measurable partitions

{El: l = (l1, . . . , ln) ∈ Zn} of E and {Fl: l ∈ Zn} of F such that Fl = El + 2πl,

l ∈ Zn, modulo null sets. If E is a measurable subset of Rn which is 2π-translation

congruent to the n-cube [0, 2π]×· · ·× [0, 2π], it is clear from the exponential form of

T̂j that {T̂ l1
l T̂ l2

2 . . . T̂ ln
n · (m(E))−

1
2 χE : (l1, . . . , ln) ∈ Zn} is an o.n. basis for L2(E).

If A is a strict dilation, so ‖A−1‖ < 1, then AB1 ⊇ B‖A−1‖−1 . It follows that if

F = AB1\B1, then {AkF : k ∈ Z} is a partition of Rn\{0}. If A is expansive then A

is similar to a strict dilation. So A = TCT−1 for T a real invertible n×n matrix, and

with ‖C−1‖ < 1. If FA = T (CB1\B1), then {AkFA}k∈Z is a partition of Rn\{0}.
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So an expansive matrix has a measurable complete wandering set FA ⊂ Rn. It

follows that L2(FA), considered as a subspace of L2(Rn), is a complete wandering

subspace for DA. That is, L2(Rn) is the direct sum decomposition of the subspaces

{Dk
AL2(FA)}k∈Z. Moreover, it is clear that any measurable set F ′ with F ′ ∼δA

FA

has this same property.

Corollary 3. Let 1 ≤ n < ∞ and let A ∈ Mn(R) be expansive. There exist

dilation-A wavelet sets.

Proof. Let A be the group of homeomorphisms of Rn generated by the map

x → Atx. Let T be the group of homeomorphisms of Rn generated by the trans-

lations in each of the coordinate directions by the integral multiples of 2π. Then

A-dilation-congruency means A-congruency and 2π-translation-congruency means

T -congruency. Moreover, it is clear that (A, T ) is a dilatory-translatory pair on Rn

in the sense of Theorem 1, with θ = 0.

Let E be the n-cube [−π, π)×· · ·× [−π, π), and observe that E is 2π-translation

congruent to [0, 2π) × · · · × [0, 2π). By Theorem 1 a measurable set W exists

with W ∼δAt FAt and W ∼τ2π
E. Since W ∼τ2π

[0, 2π) × · · · × [0, 2π), the

set {T̂ l1
1 T̂ l2

2 . . . T̂ ln
n ψ̂W : lj ∈ Z, 1 ≤ j ≤ n} is an o.n. basis for L2(W ), (with

ψ̂W = (m(W ))−
1
2 χW ). So since L2(W ), regarded as a subspace of L2(Rn), is

wandering for D̂ := D̂A = D−1
At , the set

{D̂kT̂ l1
1 . . . T̂ ln

n ψ̂: k ∈ Z, lj ∈ Z, 1 ≤ j ≤ n}

is an o.n. basis for L2(Rn), so W is a wavelet set for A. (Moreover, by Remark 2 it

follows that there is a countably infinite pairwise disjoint family of such sets.) �

A Hardy dyadic orthonormal wavelet is a function ψ ∈ L2(R) for which {2n
2 ψ(2nt−

/): n, l ∈ Z} is an o.n. basis for the Hardy space of L2-functions f whose Fourier

transform f̂ has support contained in [0,∞). An example is ψ̂ = (2π)−
1
2 χ[2π,4π).

So [2π, 4π) is a Hardy wavelet set. This idea can be generalized.

Corollary 4. Let A ∈ Mn(R) be expansive, and let M ⊆ Rn be a measurable set

of positive measure which is stable under At in the sense that AtM = M . Suppose

M ∩FAt has nonempty interior. Then there exist measurable sets W ⊂M with the

property that, if ψ̂W := (2π)−
n
2 χW , then

{Dk
AT l1

1 . . . T ln
n ψW : k, li ∈ Z}
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is an orthonormal basis for F−1(L2(M)).

[Wavelets of this type were studied in [DLu] for the dyadic, n = 1 case, where

they were called subspace wavelets. The concept is that they are wavelets for proper

subspaces of L2(R).]

Proof. Apply Theorem 1, with F = M ∩ FAt and E = [−π, π) × · · · × [−π, π),

obtaining W with W ∼τ2π E and W ∼δAt F . Since M is At-stable, W ⊂M . Also,

{(At)kW : k ∈ Z} is a measurable partition of M . So an argument similar to that

above shows that {D̂k
AT̂ l1

1 . . . T ln
n ψ̂W : k, li ∈ Z} is an o.n. basis for L2(M). �

The following result points out that the set of wavelet sets for any dilation is

large. We will call an orthonormal wavelet for a dilation-factor a > 1, a ∈ R, an

a-adic orthonormal wavelet.

Corollary 5. Let A ∈ Mn(R) be expansive. Every measurable subset of Rn is a

countable union of intersections of pairs of dilation-A wavelet sets. The family of

Borel dilation-A wavelet sets generates the Borel structure of Rn.

Proof. We first prove the a-adic case. Let a > 1 be arbitrary.

Let d(·) denote the projection map from R\{0} onto F = [−a,−1)∪ [1, a) deter-

mined by a-dilation, and let t(·) denote the projection map from R onto E = [−π, π)

determined by 2π-translation. That is, for x ∈ R\{0}, d(x) is the unique a-dilate of

x contained in F , and for x ∈ R, t(x) is the unique 2π-translate of x contained in E.

Note that E ∼τ2π
[0, 2π) ∼τ2π

([−2π, π) ∪ [π, 2π). Suppose K is a measurable set

in R\{0} for which the restrictions d|K and t|K are one-to-one. Let E0 = E\t(K)

and F0 = F\d(K). If E0 contains a nhood of 0 and F0 has nonempty interior

then by Theorem 1 and Remark 2 there are disjoint measurable sets G1, G2 with

Gi ∼τ2π E0 and Gi ∼δa F0, i = 1, 2. (By the construction in the proof of Theo-

rem 1 (and Remark 2) if K is Borel these can be taken Borel.) Let Wi = K ∪Gi.

Then Wi ∼τ2π E and Wi ∼δa F . So each Wi is an a-adic wavelet set. We have

K = W1 ∩W2. We will show that each measurable set G ⊆ R has a measurable

partition {Gj}j where each Gj has the property of K.

Observe that if K has the property in the above paragraph i.e., d(·) and t(·) are

1-1, E0 contains a nhood of 0 and F0 has nonempty interior then every subset of

K also has the property.
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Suppose 0 < α < β, and let J = [α, β]. If β − α < 2π then t|J is 1-1, and if

β < aα then d|J is 1-1. If in addition J contains no integral multiple of 2π then

J satisfies the property of K above. Let J+ be the set of all intervals [α, β] with

0 < α < β, β < min{aα, α + 2π}, [α, β] ∩ 2πZ = φ, α and β rational. Observe

that ∪{J : J ∈ J+} = (0,∞)\2πZ. Let J− = {[−β,−α]: [α, β] ∈ J+}, and

J = J+ ∪ J−. Then
⋃

J∈J
J = R\2πZ.

Let J1, J2, . . . be an enumeration of J , and let L1 = J1, and

Lj+1 = Jj+1\(J1 ∪ · · · ∪ Jj) for j ≥ 1.

Then {Lj : j ∈ N} is a measurable partition of R\2πZ.

Let G ⊆ R be a measurable set. Clearly we may assume G\2πZ = φ. Let

Gj = G∩Lj . Then {Gj} is a measurable partition of G satisfying our requirements.

If G is Borel then each Gj is Borel.

We adapt the above proof to the general case. Replace F with FAt , E with the

n-cube [−π, π)× · · ·× [−π, π), and d(·) and t(·) with the corresponding projections

from R
n\{0} to FAt and from R

n to E, respectively.

If K ⊂ Rn has the property in paragraph one relative to these, the same argument

shows that K is the intersection of two dilation-A wavelet sets. The boundary ∂C

of the n-cube C = [0, 2π)×· · ·× [0, 2π) is an m-null set. Let Q = ∪{(∂C)+2π/: / ∈
Z

(n)}. By construction ∂FAt is also an m-null set. If J = Br(y) is a ball in Rn

contained in one of the annuli (At)�FAt and which is also bounded away from Q,

then J satisfies the property of K. Let J be the set of all such balls which have

rational center and radius. Enumerate J , define Lj as above, and observe that

{Lj : j ∈ N} is a partition of Rn modulo a null set. As above, if G ⊆ R
n is a

measurable, the partition {G ∩ Lj : j ∈ N} satisfies our requirements. �

Remark 6. Theorem 1 can be improved in several further ways.

(i) It is not necessary that m be nonatomic in Theorem 1. All that is needed is that

{θ} is not an atom for m.

(ii) The hypothesis that E contains a nhood of θ in Theorem 1 can be replaced with

the hypothesis that for each ε > 0 there exists δ ∈ D such that δ(F ) ⊆ E∩Bε(θ).

If we let F̃ = ∪{δ(F ): δ ∈ D} ∪ {θ}, then this is equivalent to the requirement

that E contain a subset of F̃ which is a nhood of θ in the relative topology of F̃

in X. Remark 2 generalizes as well.
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(iii) Theorem 1 remains true, in the general form of Remark 2 and (i), (ii) above,

if we drop the hypotheses that E and F are bounded and F is bounded away

from θ. To adapt the proof, write E =
∞⋃

i=0

Ei, F =
∞⋃

i=0

Fi, {Ei}, {Fi} disjoint,

bounded, Fi bounded away from θ, and such that E0 and F0 play the role of E, F

in the proof of Theorem 1; so E0 contains a nhood of θ and F0 has nonempty

interior. Then, for k ≥ 1, in the kth induction step (in which Gk1 and Gk2 are

constructed), replace E with E0 ∪ E1 ∪ · · · ∪ Ek and F with F0 ∪ F1 ∪ · · · ∪ Fk.

The proof, thus modified, is easily seen to be valid.
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