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Abstract. The Rado-Horn Theorem gives a characterization of those sets of vectors
which can be written as the union of a fixed number of linearly independent sets. In
this paper we study the redundant case. We show that then the span of the vectors can
be written as the direct sum of a subspace which directly fails the Rado-Horn criteria
and a subspace for which the Rado-Horn criteria hold. As a corollary, we characterize
those sets of vectors which, after the deletion of a fixed number of vectors, can be
written as the finite union of linearly independent sets.

1. Introduction

The Rado-Horn Theorem [1, 2] gives a characterization of vectors which can be
written as the finite union of M linearly independent sets.

Theorem 1 (Rado-Horn). Let I be a countable index set, {fi : i ∈ I} be a collection
of vectors in a vector space, and M ∈ N. Then the following conditions are equivalent.

(i) There exists a partition {Ij : j = 1, . . . ,M} such that for each 1 ≤ j ≤ M ,
{fi : i ∈ Ij} is linearly independent.

(ii) For all finite J ⊂ I,

|J |
dim span ({fi : i ∈ J})

≤ M. (1)

The terminology “Rado-Horn Theorem”was introduced, to our knowledge, in the
paper [3]. This theorem has had at least two interesting applications in analysis;
namely, a characterization of Sidon sets in Π∞

k=1Zp [4, 5] and progress on the Feichtinger
conjecture in [6]. There have also been at least three proofs, all in a similar spirit, of
the Rado-Horn Theorem published [7, 2, 1]. Pisier, when discussing a characterization
of Sidon sets in Π∞

k=1Zp states “. . . d’un lemme d’algébre dû à Rado-Horn dont la
démonstration est relativement délicate. [5, p. 704]”

In this paper, we prove a generalization of the Rado-Horn Theorem to the redundant
case; that is, we consider the case that, after fixing M ∈ N, the collection of vectors
{fi : i ∈ I} cannot be partitioned into M linearly independent sets. It is not hard
to see (see Corollary 4) that the partition that maximizes the sum of the dimensions
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of the spans of the vectors is a partition into linearly independent sets in the case
that the hypotheses of the Rado-Horn Theorem are satisfied. Our idea is to study the
partition maximizing this sum in the case that the hypotheses of Rado-Horn are not
satisfied. In particular, for this case, there must be some set J ⊂ I such that (1) fails.
We prove in Theorem 11 that then there is a partition of the vectors {fi : i ∈ I} that,
in some sense, “tries” to be linearly independent. In particular, after partitioning,
it becomes much easier to see which vectors are the obstacles to partitioning the set
of vectors into linearly independent sets. Our proof is unfortunately no less delicate
than the original proofs of the Rado-Horn Theorem, despite the addition of the idea
of maximizing the sums of the dimensions of the partition at the beginning. However,
we do obtain as a corollary to our main theorem the following formally stronger result
than the Rado-Horn Theorem.

Theorem 2. Let I be a countable index set, {fi : i ∈ I} be a collection of vectors in a
vector space, and K,M ∈ N. Then the following conditions are equivalent.

(i) There exists a subset H ⊂ I with |H| = K such that {fi : i ∈ I \ H} can be
written as the union of M linearly independent sets.

(ii) For every finite J ⊂ I,

|J | −K

dim span ({fi : i ∈ J})
≤ M. (2)

This paper is organized as follows. In Section 2 we discuss our main idea of proof,
state some preliminary results, and introduce the notion of a chain which will be
employed heavily throughout. Section 3 contains two redundant versions of the Rado-
Horn Theorem for a finite collection of vectors (Theorem 11 and Theorem 12). The
proof of Theorem 2, which is the redundant version for an arbitrary countable collection
of vectors, is then given in Section 4.

2. Preliminary results

We begin by fixing notation. All vectors will be assumed to be in an arbitrary vector
space. Given a collection {fi : i ∈ I}, and a subset J ⊂ I, we define FJ = {fi : i ∈ J}.

2.1. Partitions that maximize the sum of dimensions. The most difficult part
of the proof of Theorem 1 is the finite case. So, our main concern is understanding
and extending Theorem 1 in the finite case. To this end, our main idea is to partition
I into {Ij : j = 1, . . . ,M} that maximizes

M∑
j=1

dim span (FIj
). (3)

Using Theorem 1 it is an easy matter to show that, if it is possible to partition the
set FI into M linearly independent sets, then the partition maximizing (3) does it.

Proposition 3. Suppose {fi : i ∈ I} is a finite collection of vectors contained in a
vector space, and I is partitioned into sets {Ij : j = 1, . . . ,M}. Then the following
conditions are equivalent.
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(i) For every j ∈ {1, . . . ,M}, FIj
is linearly independent.

(ii)
∑M

j=1 dim span (FIj
) = |I|.

Proof. (i) ⇒ (ii). Clearly,
∑M

j=1 dim span (FIj
) =

∑M
j=1 |Ij| = |I|.

(ii) ⇒ (i). Note that

|I| =
M∑

j=1

dim span (FIj
) ≤

M∑
j=1

|Ij| = |I|.

Therefore, dim span (FIj
) = |Ij| for each 1 ≤ j ≤ M and FIj

is linearly independent. �

Corollary 4. Given a finite collection of vectors FI satisfying (1), if we partition I
into {Ij : j = 1, . . . ,M} such that (3) is maximized, then FIj

is linearly independent
for each 1 ≤ j ≤ M .

Proof. By applying Theorem 1, we obtain a partition {Dj : j = 1, . . . ,M} of I such
that each FDj

is linearly independent. So,

|I| =
M∑

j=1

dim span (FDj
) ≤

M∑
j=1

dim span (FIj
) ≤ |I|

Therefore, FIj
is linearly independent for each 1 ≤ j ≤ M by Proposition 3. �

The following easy example gives some idea as to the difficulties involved in parti-
tioning vectors into linearly independent sets.

Example 5. Let f1 = (1, 0), f2 = (0, 1), f3 = (1, 1), and f4 = (1, 1). Then, if one
starts with the wrong linearly independent set, F1 = {f1, f2}, then one needs three
sets to get each set linearly independent, while the alternative partition F1 = {f1, f3},
F2 = {f2, f4} uses only two.

The next lemma will be needed in the proof of Theorem 11.

Lemma 6. Let {fi : i ∈ I} be a finite collection of vectors in a vector space. Let

M ∈ N and {Ij : j = 1, . . . ,M} be a partition of I that maximizes
∑M

j=1 dim span (FIj
)

over all partitions of I, and let p ∈ {1, . . . ,M}. If fk ∈ Ip and fk =
∑

l∈Ip,l 6=k αlfl,

then fk ∈ span (FIj
) for all 1 ≤ j ≤ M .

Proof. Assuming the hypothesis of the lemma, if fk =
∑

l∈Ip,l 6=k αlfl, then removing

fk from Ip keeps dim span (FIp) constant. Since we know that {Ij : j = 1, . . . ,M}
maximizes the sum of the dimensions of the spans, moving fk into another Ij, j 6= p
cannot increase dim span (FIj

), and the result follows. �

2.2. Notion of a chain. As part of the proof of our main theorem, we will be modi-
fying our partition that maximizes (3) by moving linearly dependent vectors from one
set to another. The following definition will be used to help us keep track of which
vectors are being moved.
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Definition 7. Let FI = {fi : i ∈ I} be a collection of vectors in a vector space. Let {Ij :
j = 1, . . . ,M} be a partition of I and let L be a subset of I1. We define a chain of length
n starting in L and ending at an ∈ I to be a finite sequence {(a1, b1), . . . , (an, bn)},
where ai ∈ I and bi ∈ {1, . . . ,M}, such that

• a1 ∈ L,
• b1 = 1,
• for 2 ≤ i ≤ n, ai ∈ Ibi

and fai
= αfai−1

+
∑

j∈Ibi
,j 6=ai

αjfj for some α 6= 0, and

• ai 6= ak for i 6= k.

A chain of length n starting in L and ending at an ∈ I is a chain of minimal length
starting in L and ending at an if every chain starting in L and ending at an has length
greater than or equal to n.

Lemma 8. Let (a1, b1), . . . , (an, bn) be a chain of minimal length starting in L and
ending at an. Then, for each 1 ≤ i ≤ n, (a1, b1), . . . , (ai, bi) is a chain of minimal
length starting in L and ending at ai.

Proof. By induction it suffices to show that (a1, b1), . . . , (an−1, bn−1) is a chain of min-
imal length. Suppose, for the sake of contradiction, that there did exist a chain
(u1, v1), . . . , (uk, vk) such that uk = an−1 and k < n − 1. Since (a1, b1), . . . , (an, bn)
is a chain,

fan = αfan−1 +
∑

j∈Ibn ,j 6=an

αjfj

for some α 6= 0. Therefore, either (u1, v1), . . . , (uk, vk), (an, bn) is a chain or an = ui for
some i ≤ k, either of which contradicts the minimality of n. �

3. Redundant versions of the Rado-Horn Theorem in the finite case

In this section, we will prove a generalization of the finite version of the Rado-Horn
Theorem, which is where the main difficulty in proving the Rado-Horn Theorem lies. In
the papers [1, 2], the extensions to countable sets are given by a version of Tychonoff’s
Theorem. A similar extension of a corollary to our main theorem will also be given
for the countable case. As mentioned in the introduction, the key to our development
is understanding the partition of the indexing set that maximizes the sums of the
dimensions in the following technical lemma.

Lemma 9. Let {fi : i ∈ I} be a countable collection of vectors, and M ∈ N. There

exists a partition I1, . . . , IM of I maximizing
∑M

j=1 dim span (FIj
) such that FI2 , . . . , FIm

are linearly independent. Moreover, let L = {i ∈ I1 : fi =
∑

j∈I1,j 6=i αjfj}, L0 = {i ∈
I : there is a chain starting in L and ending at i}, and Lj = L0 ∩ Ij for 1 ≤ j ≤ M . If
(a1, b1), . . . , (an, bn) is a chain of minimal length starting in L and ending at an, then
fan ∈ span (FLm) for all 1 ≤ m ≤ M .

Proof. The first part of the lemma follows immediately from Lemma 6. We show that,
if (a1, b1), . . . , (an, bn) is a chain of minimal length starting in L and ending at an, then
fan ∈ span (FLm) for each 1 ≤ m ≤ M .



A REDUNDANT VERSION OF THE RADO-HORN THEOREM 5

For n = 1, fix m ∈ {1, . . . ,M}, and observe that a1 ∈ L. Hence, by Lemma 6, we
can write fa1 =

∑
l∈Im

αlfl. For each l such that αl 6= 0, (a1, 1), (l,m) is a chain ending
at l. Therefore, fa1 ∈ span (FLm), as desired.

Since FI2 , . . . , FIM
are linearly independent, L = {i ∈ I1 : fi =

∑
j∈I1,j 6=i αjfj}, and

(a1, b1), . . . , (an, bn) is a chain of minimal length, it follows that for each 1 ≤ i < n,
bi 6= bi+1.

Therefore, proceeding by induction, we can define

U1
k = Ik, 1 ≤ k ≤ M,

and for 2 ≤ i ≤ n,

U i
k = U i−1

k for k 6= bi−1, k 6= bi,

U i
bi

= U i−1
bi

∪ {ai−1},
U i

bi−1
= U i−1

bi−1
\ {ai−1}.

Claim 10. For each 1 ≤ i ≤ n, fai
can be written as the sum

fai
=

∑
j∈Ibi

,j 6∈{ap:1≤p≤n}

αjfj +
∑

j∈U i
bi
∩{ap:1≤p<i}

αjfj. (4)

Proof of claim. For the case i = 1, note that a1 ∈ L implies that fa1 =
∑

j∈L,j 6=a1
αjfj

for some choice of αj. By Lemma 8 none of these j ∈ L can be in {ap : 1 ≤ p ≤ n}
since this would not be a chain of minimal length. Recalling that bi = 1, the claim is
proven for i = 1.

Proceeding by induction, let i ∈ {1, . . . , n} and we assume (4) is true for 1 ≤ k < i.
We will show that it is also true for i. Note that

fai
= αfai−1

+
∑

j∈Ibi
,j 6=ai

αjfj (5)

= αfai−1
+

∑
j∈Ibi

∩U i
bi

,j 6=ai

αjfj +
∑

j∈Ibi
\U i

bi

αjfj

= αfai−1
+

∑
j∈Ibi

∩U i
bi

,j 6=ai

αjfj +
∑

j∈Ibi
∩{ap:1≤p<i−1}

αjfj, (6)

where we have used in the last two lines that Ibi
∩ {ap : 1 ≤ p < i − 1} = Ibi

\ U i
bi
.

Now, suppose for the sake of contradiction that there is a j ∈ Ibi
∩U i

bi
such that αj 6= 0

and j = ap for some p > i. Then, (a1, b1), . . . , (ai−1, bi−1), (ap, bi) is a chain, which
contradicts the minimality of the chain (a1, b1), . . . , (an, bn). So, using the induction
hypothesis on the last term in (6) and combining terms, one obtains

fai
= αfai−1

+
∑

j∈Ibi
,j 6∈{ap:1≤p≤n}

αjfj +
∑

j∈U i
bi
∩{ap:1≤p<i}

αjfj.

�
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Continuing the proof of Lemma 9, by Claim 10 and the fact that Ibi
\ {ap : 1 ≤

p ≤ n} ⊂ Uk
bi

for all 1 ≤ k ≤ n, we have that fai
∈ span (FU i

bi
\{ai}). Therefore,

dim span (FU i
bi
) = dim span (FU i+1

bi

). In particular,

M∑
k=1

dim span (FU i
k
) =

M∑
k=1

dim span (FIk
) (7)

is a maximum for each i.
We turn now to finishing the proof of the lemma; namely, we show that fan ∈

span (FLm) for each 1 ≤ m ≤ M . By (7), Claim 10, and Lemma 6, fan ∈ span (FUn
m
)

for each 1 ≤ m ≤ M . Therefore, for m 6= bn, there exist α0
j such that

fan =
∑
j∈Un

m

α0
jfj =

∑
j∈Un

m∩Im

α0
jfj +

∑
j∈Un

m\Im

α0
jfj

=
∑

j∈Un
m∩Im

α0
jfj +

∑
j∈{ap:bp+1=m,1≤p<n−1}

α0
jfj. (8)

By definition of a chain, for each ap such that bp+1 = m and 1 ≤ p < n− 1,

fap = αpfap+1 +
∑

j∈Im,j 6=ap+1

αp
jfj, (9)

for some choice of αp
j and some αp 6= 0.

Fix j0 such that α0
j0
6= 0 in (8). We show that j0 ∈ Lm, which finishes the proof

of the lemma. Clearly, if j0 ∈ {a1, . . . , an}, then we are done, so we assume that
j0 6∈ {a1, . . . , an}.

Case 1: There is some 1 ≤ p < n − 1 such that bp+1 = m and αp
j0
6= 0. Then, one

can solve (9) for fj0 to obtain

fj0 = βfap +
∑

j∈Im,j 6=j0,j 6=ap

βjfj

for some β 6= 0. Hence, (a1, b1), . . . , (ap, bp), (j0, m) is a chain and j0 ∈ Lm.
Case 2: For each 1 ≤ p < n− 1 such that bp+1 = m, we have αp

j0
= 0. We have

fan =
∑

j∈Un
m∩Im

α0
jfj +

∑
j∈{ap:bp+1=m,1≤p<n−1}

α0
jfj

=
∑

j∈Un
m∩Im

α0
jfj +

∑
p∈{p:bp+1=m,1≤p<n−1}

α0
ap

fap

=
∑

j∈Un
m∩Im

α0
jfj +

∑
p∈{p:bp+1=m,1≤p<n−1}

α0
ap

(
αpfap+1 +

∑
j∈Im,j 6=ap+1

αp
jfj

)
= α0

j0
fj0 +

∑
j∈Im,j 6=j0

α̃jfj,

where the first equality is (8), the second equality is a re-indexing, the third equality
follows from (9), and the last equality holds for some choice of α̃j by combining sums,
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since αp
j0

= 0 for all 1 ≤ p < n−1 such that bp+1 = m, and j0 6∈ {a1, . . . , an}. Therefore,
(a1, b1), . . . , (an, bn), (j0, m) is a chain and j0 ∈ Lm. �

Theorem 11. Let {fi : i ∈ I} be a finite collection of vectors in a vector space X and
M ∈ N. Then the following conditions are equivalent.

(i) There exists a partition {Ij : j = 1, . . . ,M} of I such that for each 1 ≤ j ≤ M
the set FIj

is linearly independent.
(ii) For all J ⊂ I,

|J |
dim span (FJ)

≤ M. (10)

Moreover, in the case that either of the conditions above fails, there exists a partition
{Ij : j = 1, . . . ,M} of I and a subspace S of X such that the following three conditions
hold.

(a) For all 1 ≤ j ≤ M , S = span {fi : i ∈ Ij and fi ∈ S}.
(b) For J = {i ∈ I : fi ∈ S}, |J |

dim span (FJ )
> M .

(c) For each 1 ≤ j ≤ M ,
∑

i∈Ij ,fi 6∈S αifi ∈ S implies αi = 0 for all i. In particular,

for each 1 ≤ j ≤ M , {fi : i ∈ Ij, fi 6∈ S} is linearly independent.

Proof. We include a proof of the implication (i) ⇒ (ii) for completeness. Let {Ij : 1 ≤
j ≤ M} be a partition of I such that FIj

is linearly independent for 1 ≤ j ≤ M . Let
J ⊂ I and consider Jj = I ∩ Ij, 1 ≤ j ≤ M . Then,

|J | =
M∑

j=1

|Jj| =
M∑

j=1

dim span (FJj
) ≤ M dim span (FJ),

as desired.
We prove (ii) ⇒ (i) and the moreover part together. Let {Ij : j = 1, . . . ,M} be a

partition of I guaranteed to exist by Lemma 9. Suppose that this doesn’t partition FI

into linearly independent sets, i.e. FI1 is not linearly independent. As in Lemma 9, let
L = {i ∈ I1 : fi =

∑
j∈I1,j 6=i αjfj} be the index set of the “linearly dependent vectors”in

I1, L0 = {i ∈ I : there is a chain starting in L ending at i}, and Lj = L0 ∩ Ij, 1 ≤ j ≤
M.

Let S = span (FL0). By Lemma 9, S = span (FLj
) for all 1 ≤ j ≤ M . Moreover, for

1 ≤ j ≤ M , i ∈ Lj implies that i ∈ Ij and fi ∈ S. Therefore,

S ⊂ span {fi : i ∈ Lj} ⊂ span {fi : i ∈ Ij, fi ∈ S} = S,

and (a) is proven.
To see (b), let J = {i ∈ I : fi ∈ S}. By construction, L ⊂ J . Let d = dim(S) and

see that, by (a), dim span (FJ) = d. Moreover,

|J | = |L1|+ · · ·+ |LM | = |L1|+ (M − 1)d > dM,

since L1 is linearly dependent. Therefore, (b) is satisfied.
Finally, we show (c). Let Pj = {i ∈ Ij : fi 6∈ S}, Qj = Ij \ Pj. Suppose g =∑
i∈Pj

αifi ∈ S. By (a), g can also be written as the linear combination g =
∑

i∈Qj
αifi,
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which implies that either αi = 0 for all i ∈ Pj or there exists k ∈ Pj such that
fk =

∑
i∈Ij ,i6=k αifi. Therefore, by our assumption that all linearly dependent vectors

are in I1 and by the definition of L, it follows that k ∈ L and fk ∈ S. This cannot be,
so αi = 0 for all i ∈ Pj. �

In the following result, we prove a more direct generalization of the Rado-Horn
Theorem in the finite case. One main ingredient for the proof is Theorem 11. (Added
after publication: this theorem can also be proven using a generalized version of Rado-
Horn to matroids found in [8].)

Theorem 12. Let I be a finite index set, {fi : i ∈ I} be a collection of vectors in a
vector space, and K,M ∈ N. Then the following conditions are equivalent.

(i) There exists a subset H ⊂ I with |H| = K such that {fi : i ∈ I \ H} can be
written as the union of M linearly independent sets

(ii) For every J ⊂ I,

|J | −K

dim span ({fi : i ∈ J})
≤ M. (11)

Proof. For the implication (i) ⇒ (ii), if J ⊂ I, then

|J | −K

dim span (FJ)
≤ |J ∩ (I \H)|

dim span (FJ\H)
≤ M,

by Theorem 1.
For the reverse direction, let S and the partition {Ij : j = 1, . . . ,M} be as in

Theorem 11. For each 1 ≤ j ≤ M , let Ĩj be a minimal spanning set for FIj
. Let

H = I \ ∪M
j=1Ĩj. Clearly, {Ĩj : 1 ≤ j ≤ M} is a partition of I \H = ∪M

j=1Ĩj such that

each FĨj
is linearly independent; it remains to show that |H| =

∑M
j=1 |Ij \ Ĩj| ≤ K.

Let Pj = {i ∈ Ij : fi ∈ S} and Qj = Ĩj \ Pj. To this end, we first claim that

Ij \ Ĩj ⊂ Pj for each 1 ≤ j ≤ M. (12)

For this, fix 1 ≤ j ≤ M and let i ∈ Ij \ Ĩj. Assume that i 6∈ Pj. Then, fi 6∈ S and

fi 6∈ Ĩj. Since FĨj
is a spanning set, fi ∈ span {fk : k ∈ Ĩj} ⊂ span {fk : k ∈ Ij, k 6= i}.

Therefore, we can write fi =
∑

k∈Ij ,k 6=i αkfk for some choice of αk. Grouping all of the

terms not in S with fi yields a contradiction to Theorem 11 (c). This proves (12).
Secondly, we will show that FPj∩Ĩj

is a basis for S. Indeed, let f ∈ S. Since the span

of FĨj
contains S, we have that f = g + h, where g ∈ span (FPj∩Ĩj

) and h ∈ span (FQj
).

By Theorem 11 (c) and the fact that f, g ∈ S, h = 0 and f ∈ span (FPj∩Ĩj
).
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Employing (12), the fact that FPj∩Ĩj
is a basis for S, and (11) yields

M∑
j=1

|Ij \ Ĩj| =
M∑

j=1

|Pj \ Ĩj|

=
M∑

j=1

|(Pj \ Ĩj) ∪ (Pj ∩ Ĩj)| −
M∑

j=1

|Pj ∩ Ĩj|

=
M∑

j=1

|Pj| −M dim S

=

∣∣∣∣ m⋃
j=1

Pj

∣∣∣∣−M dim span (F∪Pj
) ≤ K.

This proves the theorem. �

4. Proof of Theorem 2

First, we will require the following technical lemma, which will be the main ingredient
in the proof of Theorem 2.

Lemma 13. Let {fi : i ∈ N} be a collection of vectors in a vector space and let
IN = {i ∈ N : 1 ≤ i ≤ N}. If there exists K ∈ N such that

|J | −K

dim span (FJ)
≤ M (13)

for all finite J ⊂ N, then there exists H ⊂ N such that |H| = K and for all N ≥ 1,
FIN\H can be written as the union of M linearly independent sets.

Proof. Choose the smallest K such that (13) holds. Then, there exists a finite J ⊂ N,

|J | − (K − 1)

dim span (FJ)
> M. (14)

Let A be the largest element in J and fix N ≥ A. By Theorem 12 there exists HN ⊂ IN

such that |HN | ≤ K and FIN\HN
can be written as the union of M linearly independent

sets. By (14), |HN | = K. We show that HN ⊂ IA. If not, then FIA\(HN∩IA) can be
written as the union of M linearly independent sets, but |HN∩IA| < K, which together
with equation (14) would contradict Theorem 12.

So, for every N ≥ A, there exists HN ⊂ IA such that FIN\HN
can be written as the

union of M linearly independent sets. Since there are only finitely many subsets of IA,
there exist N1 < N2 < N3 < · · · such that for all i, j ∈ N we have HNi

= HNj
. Write

H = HN1 . Then, for any N , there exist Ni > N and H = HNi
⊂ IA ⊂ IN such that

FINi
\H can be written as the union of M linearly independent sets. Therefore, FIN\H

can be written as the union of M linearly independent sets. �
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We finish by proving Theorem 2. As in [1, 2], we could extend Theorem 12 to the
countable setting using a selection theorem. Easier in our case is to apply the infinite
version of the Rado-Horn Theorem directly.

Proof of Theorem 2. By Lemma 13 and the implication (i) ⇒ (ii) from the Rado-Horn
Theorem, there is a single set H such that |H| = K and for every finite set J ⊂ I \H,

|J |
dim span (FJ)

≤ M.

Thus, the hypotheses of the infinite version of the Rado-Horn Theorem are satisfied
for I \H, and FI\H can be written as the union of M linearly independent sets. �
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