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1 Introduction

The building blocks of Gabor and wavelet systems are translations (or time
shifts):

Tag(x) = g(x− a), where a ∈ R;

modulations (or frequency shifts):

Mbg(x) = e2πibx g(x), where b ∈ R;

and dilations:
Drg(x) = r1/2g(rx), where r > 0.

Gabor systems employ the compositions

MbTag(x) = e2πibxg(x− a),

which are called time-frequency shifts, while wavelet systems use the compo-
sitions

DrTag(x) = r1/2g(rx− a),

which are called time-scale shifts.
Explicitly, a Gabor system has the form
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G(g, Λ) = {MbTag}(a,b)∈Λ,

where Λ is an index set contained in R2, while a wavelet system is

W(g, Γ ) = {DrTag}(a,r)∈Γ ,

where Γ ⊆ R × (0,∞). Typically we are interested in constructing Gabor
systems or wavelet systems that are bases or frames for L2(R). In this case Λ
or Γ will be countable index sets. However, the “local” properties of Gabor
and wavelet systems (by which we mean the properties of finite subsets) are
often of key interest. In particular, given any set of vectors in a vector space,
one of the first and most fundamental questions we can ask about this set is
whether it is finitely linearly independent, i.e., whether every finite subset of
the collection is linearly independent. It is known that there exist nontrivial
functions g ∈ L2(R) and finite sets Γ such that the finite wavelet system
W(g, Γ ) is linearly dependent. It is not known whether there exist nontrivial
functions g ∈ L2(R) and finite sets Λ such that the finite Gabor system G(g, Λ)
is linearly dependent.

In this chapter we will give a short report on the current status of the HRT
Conjecture, and also comment on its relation to a longstanding conjecture in
algebra known as the Zero Divisor Conjecture. We begin in Section 2 with
some examples that illustrate that finite wavelet systems can be linearly de-
pendent. We formulate the HRT Conjecture in Section 3, and in Section 4 we
review some of the main partial results related to linear independence of time-
frequency shifts that are currently known. Finally, in Section 5 we discuss the
relationship between the HRT Conjecture and the Zero Divisor Conjecture.

2 Linear Dependence of Time-Scale Shifts

The fact that wavelet systems can be linearly dependent is the starting point
for the construction of compactly supported wavelet bases through a multires-
olution analysis. The first step in the construction of a compactly supported
wavelet via this method is actually the construction of a compactly supported
scaling function. A scaling function is a function ϕ ∈ L2(R) that satisfies a
refinement equation of the form

ϕ(x) =
N∑
k=0

ck ϕ(2x− k)

and additionally is such that {ϕ(x−k)}k∈Z is an orthonormal system in L2(R).
While the integer translates of a scaling function are orthonormal, and hence
linearly independent, if we rewrite the refinement equation as

ϕ =
N∑
k=0

2−1/2ckD2Tkϕ,
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then we see that the refinement equation is a statement that the collection of
time-scale shifts

{DrTaϕ}(a,r)∈Γ
with

Γ = {(0, 1)} ∪ {(k, 2) : k = 0, . . . , N}

is linearly dependent. Here is an example.

Example 1. The Haar wavelet is

ψ = χ
[0, 12 ] − χ

[ 12 ,1]
.

Haar proved directly in [Haa10] that{
D2nTkψ

}
k,n∈Z,

which today we call the Haar system, is an orthonormal basis for L2(R).
Of course, since the Haar system is a collection of orthonormal functions,
it is finitely linearly independent. However, if we wish to construct the Haar
system using the modern framework of multiresolution analysis, we first begin
by constructing the corresponding scaling function. For the Haar system, the
scaling function is the box function

ϕ = χ
[0,1].

This function satisfies the refinement equation

ϕ(x) = ϕ(2x) + ϕ(2x− 1).

Consequently, the set of three functions{
ϕ, D2ϕ, D2T1ϕ

}
is linearly dependent. Once we have the scaling function, the machinery of
multiresolution analysis tells us that the wavelet

ψ(x) = ϕ(2x) − ϕ(2x− 1)

can be used to generate an orthonormal basis for L2(R). ♦

For a detailed description of what a multiresolution analysis is and how it
leads to a wavelet orthonormal basis, we refer to [Hei11, Chap. 12] or [Dau92].

Here is a modern example of a compactly supported scaling function.

Example 2. The Daubechies D4 scaling function is the function that satisfies
the refinement equation

D4(x) = 1+
√

3
4 D4(2x) + 3+

√
3

4 D4(2x− 1)

+ 3−
√

3
4 D4(2x− 2) + 1−

√
3

4 D4(2x− 3). (1)
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It can be shown that there is a unique (up to scale) compactly supported func-
tion D4 ∈ L2(R) that satisfies this refinement equation. This function, which
is continuous and supported in the interval [0, 3] is illustrated in Figure 1.
It is not obvious from the picture, but it is true that the integer translates
{D4(x − k)}k∈Z are orthonormal. The scaling function D4 generates a mul-
tiresolution analysis, and because of this it follows that the wavelet

W4(x) = 1−
√

3
4 D4(2x) − 3−

√
3

4 D4(2x− 1)

+ 3+
√

3
4 D4(2x− 2) − 1+

√
3

4 D4(2x− 3)

can be used to generate an orthonormal basis for L2(R). Specifically, the
wavelet system {

D2nTkW4

}
k,n∈Z

is an orthonormal basis for L2(R). However, the point we are making here is
that the refinement equation (1) implies that the finite collection of time-scale
shifts {

D4, D2D4, D2T1D4, D2T2D4, D2T3D4

}
is linearly dependent. ♦

Fig. 1. The Daubechies D4 scaling function (top), and the corresponding wavelet
W4 (bottom).

3 Gabor Systems and the HRT Conjecture

Now we turn to Gabor systems. We will need to employ the Fourier transform,
which for an integrable function g we normalize as

ĝ(ξ) =
∫ ∞
−∞

g(x) e−2πiξx dx.

The Fourier transform extends to a unitary operator that maps L2(R) onto
itself. We have the following relations between translation, modulation, and
the Fourier transform:

(Tag)∧ = M−aĝ and (Mbg)∧(ξ) = Tbĝ.

Although translations and modulations do not commute, we have

MbTag(x) = e2πibxg(x− a) and TaMbg(x) = e2πib(x−a)g(x− a),
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and therefore
TaMbg = e−2πiabMbTag. (2)

We can easily show that if we only consider translations alone, then we
will always obtain linearly independent collections. To see why, let g ∈ L2(R)
be nontrivial (not zero a.e.) and let a1, . . . , aN be any distinct points in R. If

N∑
k=1

ck g(x− ak) = 0 a.e.,

then by applying the Fourier transform we obtain

N∑
k=1

ck e
−2πiakξ ĝ(ξ) = 0 a.e.

However, ĝ is not the zero function, so this implies that

N∑
k=1

ck e
−2πiakξ = 0 a.e.

Multiplying through by e2πia1ξ we obtain

m(ξ) = c1 +
N∑
k=2

ck e
−2πi(ak−a1)ξ = 0 a.e.

But m is a nonharmonic trigonometric polynomial, and therefore can be ex-
tended to an analytic function on the complex plane. An analytic function
cannot vanish on any set that has an accumulation point without being iden-
tically zero. Hence m(ξ) = 0 for every ξ, which implies that c1 = 0. Iterating,
we obtain c2 = · · · = cN = 0.

Similarly, any finite set of modulations of g is linearly independent. How-
ever, as soon as we combine translations with modulations, the situation be-
comes much less clear. In particular, if we fix a finite Gabor system{

Mbk
Tak

g : k = 1, . . . , N
}

and we assume that
N∑
k=1

ckMbk
Tak

g = 0 a.e., (3)

then all that we obtain by applying the Fourier transform is that

N∑
k=1

ck Tbk
M−ak

ĝ = 0 a.e.

In view of the commutation relation in equation (2), we can rewrite this as
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N∑
k=1

cke
2πiakbk M−ak

Tbk
ĝ = 0 a.e.,

which is an equation of exactly the same nature as equation (3). The Fourier
transform yields no simplification here.

At first glance, this may seem to be only a minor stumbling block—surely
another approach, perhaps another transform, will show that Gabor systems
are finitely linearly independent. Yet this most basic question about a set of
vectors in L2(R) remains unanswered today. The following conjecture, today
known as the Linear Independence of Time-Frequency Translates Conjecture
or the HRT Conjecture, first appeared in print in [HRT96].

Conjecture 1 (HRT Conjecture). If g in L2(R) is not the zero function and
Λ =

{
(ak, bk) : k = 1, . . . , N

}
is a set of finitely many distinct points in R2,

then
G(g, Λ) =

{
Mbk

Tak
g : k = 1, . . . , N

}
is linearly independent. ♦

Various partial results on this conjecture are known (we will discuss these
in Section 4). However, even the following very restricted version of the conjec-
ture is open as of the time of writing. Here S(R) denotes the Schwartz class of
all infinitely differentiable functions which, along with all of their derivatives,
have faster than polynomial decay at infinity.

Conjecture 2 (HRT Subconjecture). If g ∈ S(R)\{0}, then{
g(x), g(x− 1), e2πixg(x), e2πi

√
2xg(x−

√
2)
}

(4)

is linearly independent. ♦

We observe that the set of functions that appears in equation (4) is the
Gabor system G(g, Λ) where

Λ =
{

(0, 0), (1, 0), (0, 1) (
√

2,
√

2)
}
. (5)

4 Partial Results

We will briefly list some of the main partial results that are available on the
HRT Conjecture. These are approximately ordered chronologically, but due
to vastly differing time lengths from research to publication, this particular
ordering should not be interpreted as anything other than a convenience for
presentation purposes. Further, no attempt has been made to state all partial
results from every paper, nor to state them precisely; this list simply serves
as a brief summary of the literature on Conjecture 1. A few of the results
below extend to systems in L2(Rd), but for the most part there are substantial
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obstacles in moving to higher dimensions. For a discussion of why this is so we
refer to the survey paper [Hei06] (that paper also presents context, motivation,
and related results that are not discussed here).

The paper [HRT96] which originally presented the HRT conjecture in-
cluded the following results.

• G(g, Λ) is independent if g is compactly supported, or just supported
within a half-line [a,∞) or (−∞, a].

• G(g, Λ) is independent if g(x) = p(x)e−x
2
, where p is a polynomial.

• G(g, Λ) is independent if N ≤ 3.
• If G(g, Λ) is independent, then there exists an ε > 0 such that G(g, Λ′) is

independent for all Λ′ = {(a′k, b′k) : k = 1, . . . , N} such that |ak − a′k| < ε
and |bk − b′k| < ε for k = 1, . . . , N.

• If G(g, Λ) is independent, then there exists an ε > 0 such that G(h,Λ) is
independent for all ‖h− g‖2 < ε.

Since the set of compactly supported functions is dense in L2(R), if Λ is
a fixed finite set then by applying the final perturbation result listed above it
follows that there exists an open, dense subset U of L2(R) such that G(g, Λ)
is linearly independent for all g ∈ U .

Linnell proved in [Lin99] that

• G(g, Λ) is independent if Λ is a finite subset of a translate of a full-rank
lattice in R2, i.e., if Λ ⊆ A(Z2) + z where A is an invertible 2× 2 matrix
and z ∈ R2.

In particular, any set of three points in R2 is contained in a translate of a full-
rank lattice, so this gives another proof that G(g, Λ) is independent if N ≤ 3.
However, four points in R2 need not be contained in a translate of a full-rank
lattice. In particular, the set of points Λ given in equation (5) is not contained
in any translate of any full-rank lattice.

In [CL01], Christensen and Lindner obtain

• estimates of the frame bounds of a finite Gabor system G(g, Λ).

In principle, sufficiently strong estimates of the frame bounds of finite Gabor
systems could be combined with the perturbation theorems in [HRT96] to
yield a proof of the HRT Conjecture. Unfortunately, the results of [CL01]
do not seem to be conducive for advancing this type of approach. A short
introduction to frame theory can be found in [Hei13].

Rzeszotnik, in an unpublished work, proved that

• G(g, Λ) is independent if

Λ =
{

(0, 0), (1, 0), (0, 1) (
√

2, 0)
}
.
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This set Λ, like the one given in equation (5), is not contained in any translate
of a full-rank lattice in R2. On the other hand, the points in this set Λ lie on
two parallel lines, while the four points in equation (5) do not.

An equivalent formulation of the HRT Conjecture is that if c1, . . . , cN are
not all zero, then the kernel of the operator

T =
N∑
k=1

ckMbk
Tak

is {0}, or, in other words, 0 is not an eigenvalue of T. This suggests that it
would be interesting to investigate the spectrum of such a linear combination
of time-frequency shift operators. Now, if T had a nonzero eigenvalue λ, then
for some nonzero function g we would have

Tg =
N∑
k=1

ckMbk
Tak

g = λg.

Setting a0 = b0 = 0 and c0 = −λ, it follows that

N∑
k=0

ckMbk
Tak

g = 0,

and hence 0 is an eigenvalue of the operator S =
∑N
k=0 ckMbk

Tak
, which

is simply another finite linear combination of time-frequency shift operators.
Consequently we can restate the HRT Conjecture in terms of eigenvalues as
follows.

Conjecture 3 (Spectral Version of the HRT Conjecture). If

Λ =
{

(ak, bk) : k = 1, . . . , N
}

is a set of finitely many distinct points in R2 and c1, . . . , cN are not all zero,
then the point spectrum of

T =
N∑
k=1

ckMbk
Tak

is empty (i.e., T has no eigenvalues). ♦

Balan proved in [Bal08] that

• the operator T cannot have an isolated eigenvalue of finite multiplicity.

Consequently, if the point spectrum of T is not empty, then it can only
contain eigenvalues of infinite multiplicity, or eigenvalues that also belong
to the continuous spectrum of T. Further results on the spectral properties
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of T have been obtained by Balan and Krishtal in [BK10]. In particular, a
consequence of the results of that paper is that if Λ is the set of four points
specified in equation (5), then the corresponding operator T has no isolated
eigenvalues.

Linnell’s proof that G(g, Λ) is linearly independent if Λ is a finite subset
of a shift of a full-rank lattice was obtained through the machinery of von
Neumann algebras. In [BS10],

• a different proof of Linnell’s result was derived through time-frequency
methods.

Interestingly, Demeter and Gautam obtained in [DG12]

• yet another proof of Linnell’s result, this time based on the spectral theory
of random Schrödinger operators.

Demeter in [Dem10], and Demeter and Zaharescu in [DZ12], focused on
the case where Λ contains four distinct points. These two papers prove that

• G(g, Λ) is independent if #Λ = 4 and Λ is a subset of two parallel lines in
R2.

In particular, this recovers the result by Rzeszotnik that was stated earlier.
One of the results obtained in [HRT96] is that G(g, Λ) is linearly indepen-

dent if g has the particular form g(x) = p(x)e−x
2

where p is a polynomial.
No other results related to decay conditions seem to have been obtained until
quite recently. In [BS13] it is proved that

• G(g, Λ) is linearly independent if

lim
x→∞

|g(x)| ecx
2

= 0 for all c > 0,

and

• G(g, Λ) is linearly independent if

lim
x→∞

|g(x)| ecx log x = 0 for all c > 0.

However, the case where |g(x)| ecx → 0 for all c > 0 remains open. Note that
while functions in the Schwartz class S(R) have extremely rapid decay, they
need not decay at an exponential rate.

Benedetto and Bourouihiya also obtained partial results related to decay.
Without defining terms precisely, they proved in their paper [BB14] that

• G(g, Λ) is linearly independent if g is ultimately positive and b1, . . . , bN
are independent over Q,

and

• G(g, Λ) is linearly independent if #Λ = 4, g is ultimately positive, and
g(x) and g(−x) are ultimately decreasing.
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The most recent paper related to the HRT Conjecture of which we are
aware is [Grö14] by Gröchenig. He proves that

• the lower Riesz bound of a finite section of a Gabor frame that is not
a Riesz basis converges to zero, and in many cases this convergence is
super-fast.

A Gabor frame that is not a Riesz basis is “globally redundant” in some sense.
Even so, if the HRT Conjecture is true then every finite subset of such a frame
must be linearly independent. Gröchenig’s result implies that, from a numer-
ical point of view, such finite subsets rapidly become “nearly dependent”
as their size increases. To quote Gröchenig, this “illustrates the spectacular
difference between a conjectured mathematical truth and a computationally
observable truth.”

Finally, although they do not obtain results directly about Conjecture 1, we
mention that the papers of Kutyniok [Kut02] and Rosenblatt [Ros08] consider
some generalizations of the conjecture.

5 The Zero Divisor Conjecture

In this section we discuss the relation (or lack thereof) between the HRT
Conjecture and the Zero Divisor Conjecture.

First we review some terminology. Let G be a group (with the group
operation written multiplicatively). The complex group algebra of G is the set
of all formal finite linear combinations of elements of G. We write this as

CG =
{∑
g∈G

cgg : cg ∈ C with only finitely many cg 6= 0
}
.

The natural operation of addition in CG is defined by∑
g∈G

cgg +
∑
g∈G

dgg =
∑
g∈G

(cg + dg)g,

and we define multiplication in CG by(∑
g∈G

cgg

)(∑
h∈G

dhg

)
=
∑
g∈G

∑
h∈G

cgdhgh =
∑
g∈G

(∑
h∈G

cgh−1dh

)
g.

All of the above sums are well-defined since only finitely many terms in any
sum are nonzero. More generally, the field C can be replaced by other fields,
but we will restrict our attention here to the complex field.

Suppose that g is an element of G that has finite order n > 1. If we let e
denote the identity element of G and set

α = g − e and β = gn−1 + · · ·+ g + e,
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then

αβ = (g − e)(gn−1 + · · ·+ g + e)

= (gn + · · ·+ g2 + g) − (gn−1 + · · ·+ g + e)

= gn − e

= 0.

Thus, ifG has any nontrivial elements of finite order then CG has zero divisors.
What happens if there are no nontrivial elements of G that have finite order?
In general the answer is unknown, and this is the context of the following Zero
Divisor Conjecture.

Conjecture 4 (Zero Divisor Conjecture). Let G be a torsion-free group (i.e.,
G contains no elements of finite order other than the identity). If α, β ∈ CG,
then

α 6= 0 and β 6= 0 =⇒ αβ 6= 0. ♦

This conjecture is sometimes attributed to Kaplansky (for example, this
is the attribution stated by Wikipedia in the article “Group Ring”). Variants
of the conjecture seem to have appeared in the literature over time. Hig-
man proved one version of the Zero Divisor Conjecture for “locally indicable”
groups in 1940 [Hig40]. Two surveys of the conjecture published in 1977 are
the paper [Sni77] by Snider and Chapter 13 of Passman’s text [Pas77]. Ac-
cording to Snider, Higman’s result was “essentially all that was known until
1974, when Formanek proved the conjecture for supersolvable groups” (see
[For73]). Since then various results have been obtained, but the conjecture re-
mains open in the generality stated. A survey by Linnell of analytic versions
of the zero divisor conjecture can be found in [Lin98].

There is a natural group associated with time-frequency analysis, the
Heisenberg group H, and therefore we can consider the Zero Divisor Con-
jecture for the special case that G = H. There are several versions of the
Heisenberg group and many isomorphic definitions of each of these. For our
purposes, it is simplest to consider the reduced Heisenberg group defined by

H =
{
zMbTa : z ∈ T, a, b ∈ R

}
,

where T is the unit circle in the complex plane, i.e.,

T = {z ∈ C : |z| = 1}.

In other words, with this definition H is the set of all unit modulus scalar mul-
tiples of time-frequency operators. The group operation is simply composition
of operators, which by equation (2) follows the rule

(zMbTa) (wMdTc) = zwe−2πiadMb+dTa+c.
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The Heisenberg group is noncommutative (but even so, as a locally compact
group it turns out that left and right Haar measure on H coincide, and there-
fore H is unimodular). If we fix any element zMbTa of H, then the nth power
of this element has the form

(zMbTa)n = wnMnbTna,

where wn is a scalar that has unit modulus. Therefore no element of H other
than the identity I = M0T0 has finite order. Consequently, H is torsion-free.

Since H consists of scalar multiples of time-frequency shift operators, its
group algebra CH is the vector space of all finite linear combinations of time-
frequency shift operators:

CH =
{ N∑
k=1

ckMbk
Tak

: N > 0, ck ∈ C, ak ∈ R, bk ∈ R
}
.

The question we wish to answer is whether CH has any zero divisors. So,
suppose that α and β are nonzero elements of CH such that αβ = 0. Since α
and β belong to CH, we can write

α =
M∑
j=1

zjMbjTaj and β =
N∑
k=1

wkMdk
Tck

,

with (aj , bj) 6= (aj′ , bj′) whenever j 6= j′, and similarly for (ck, dk). Since α
and β are each nonzero, we can assume without loss of generality that zj and
wk are nonzero complex scalars for every j and k. For simplicity of notation,
let tjk be the nonzero scalar

tjk = zjwke
−2πiajdk .

Then we have

αβ =
M∑
j=1

N∑
k=1

tjkMbj+dk
Taj+ck

= 0. (6)

Many of the values of aj + ck or bj + dk in equation (6) may coincide. For
convenience, and without loss of generality, we can assume that the aj and ck
are ordered (possibly with duplicates). That is, we can assume that

a1 ≤ a2 ≤ · · · ≤ aM and c1 ≤ c2 ≤ · · · ≤ cN .

Let
I =

{
(j, k) : aj + ck = aM + cN

}
.

Since αβ = 0, for every f ∈ L2(R) we have∑
(j,k)/∈I

tjkMbj+dk
Taj+ck

f(x) +
∑

(j,k)∈I

tjkMbj+dk
TaM+cN

f(x) = 0 a.e. (7)
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Now, if (j, k) /∈ I, then aj + ck < aM + cN . Since there are only finitely many
choices, if we set

r = max{aj + ck : (j, k) /∈ I} and s = aM + cN ,

then we have r < s.
Let f ∈ L2(R) be any function that is nonzero everywhere on (−∞, 0) and

zero on [0,∞). For example, we could take

f(x) = ex χ(−∞,0)(x).

If r < x < s, then for each (j, k) /∈ I we have x − aj − ck ≥ 0 and therefore
f(x − aj − ck) = 0. Thus for such x the first summation in equation (7) is
zero. Consequently, only the second summation in equation (7) remains for
such x. Simplifying, it follows that for a.e. x in the interval (r, s) we have

0 =
∑

(j,k)∈I

tjkMbj+dk
TaM+cN

f(x)

=
∑

(j,k)∈I

tjke
2πi(bj+dk)xf(x− s)

= p(x) f(x− s),

where
p(x) =

∑
(j,k)∈I

tjke
2πi(bj+dk)x. (8)

All of the sums above are finite and f(x−s) 6= 0 for r < x < s, so this implies
that

p = 0 a.e. on (r, s).

But p is a nonharmonic trigonometric polynomial and therefore cannot vanish
on any set of positive measure (indeed, p can have at most countably many
zeros). Therefore, we must have p(x) = 0 for every x ∈ R.

We are tempted to conclude from this that every tjk is zero, but we cannot
do this because some of the values bj + dk may coincide. To deal with this,
note that if (j, k) ∈ I then aj = aM and ck = cN . Therefore, if we choose two
distinct points (j, k) and (j′, k′) in I, then aj = aM = aj′ . Since (aj , bj) must
be distinct from (aj′ , bj′), this implies that bj 6= bj′ . Consequently there is a
unique j0 such that

bj0 = max{bj : (j, k) ∈ I}.

Similarly, there is a unique k0 such that

dk0 = max{dk : (j, k) ∈ I}.

Therefore equation (8) can be rewritten as
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p(x) = tj0k0e
2πi(bj0+dk0 )x +

∑
(j,k)∈I,bj+dk<bj0+dk0

tjke
2πi(bj+dk)x.

As p is identically zero, this implies that tj0k0 = 0. However, this contradicts
the fact that every tjk is nonzero.

In summary, we have shown that the Zero Divisor Conjecture is true when
we take G to be the Heisenberg group H. We state this formally as a theorem.

Theorem 1. If α and β are nonzero elements of CH, then αβ 6= 0. ♦

The proof of Theorem 1 uses an ordering, or indexing, of the elements in
the Heisenberg group. First, we ordered the translations and examined the
largest pair, then we ordered the modulations and again examined the largest
pair. It will not be surprising, then, to see that there are general arguments
which imply that the Heisenberg group satisfies the Zero Divisor Conjecture.
In fact, we will see below that Higman’s original work already implies that
the Heisenberg group satisfies the Zero Divisor Conjecture.

A group is said to be locally indicable if each of its finitely generated
subgroups not equal to the identity maps homomorphically onto Z. Note that,
in particular, if a group is locally indicable, then it has no non-trivial elements
of finite order. Indeed, if g ∈ G is an element of finite order, then the subgroup
〈g〉 generated by g is finite, so there will be no homomorphism from 〈g〉g onto
Z.

Given a homomorphism γ : H → Z, we define the degree of h ∈ H (rel-
ative to γ) to be γ(h). The degree of an element depends on the particular
homomorphism chosen, but in what follows we will not explicitly denote this
dependence. We say an element of the group ring CH is homogeneous of de-
gree a (relative to γ) if it can be put in the form

∑k
j=1 cjej , where for each

1 ≤ j ≤ k, γ(ej) = a. Any element of the group ring CH can be written as

P1 + · · ·+ Pp, (9)

where each Pi is homogeneous of order ai and a1 < a2 < · · · < ap.

Theorem 2. [Hig40] If G is a locally indicable group, and if α and β are
nonzero elements of CG, then αβ 6= 0.

Proof. Write α = m1g1 + · · · + mKgK and β = n1h1 + · · · + nLhL, where
as usual, m1, . . . ,mK and n1, . . . , nK are nonzero complex numbers and
g1, . . . , gK and h1, . . . , hK are in G. We proceed by induction on K + L. If
K + L = 2, then αβ = m1n1g1h1, which is not zero since m1n1 6= 0.

Let n > 2 and assume that αβ 6= 0 whenever the sum of the number of
terms of α and β is less than n; that is, K + L < n. We show that αβ 6= 0
whenever K + L = n. Note that if αβ = 0, then g−1

1 αβh−1
1 = 0, so we

may assume without loss of generality that g1 and h1 are the group identity
element. Let H be the subgroup of G generated by {g1, . . . , gK , h1, . . . , hL},
and let φ be a homomorphism from H onto Z. Write α =

∑r
i=1 Pi and β =
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j=1Qj as in (9), where the degrees of P1, . . . , Pr are a1 < . . . < ar and the

degrees of Q1, . . . , Qs are b1 < . . . < bs. Since φ is onto, it follows that either
r or s is bigger than one; that is, φ can’t map every element of H onto zero.
Then, write

αβ = P1Q1 + · · ·+ PrQs,

where P1Q1 is homogeneous of degree a1 + b1, PrQs is homogeneous of degree
ar + bs, and the terms not listed have degrees strictly between a1 + b1 and
ar + bs. Since αβ 6= P1Q1, it follows that the sum of the number of terms
in P1 and Q1 is less than n. Therefore, by the induction hypothesis, we have
that P1Q1 6= 0 and αβ 6= 0.

An easy first example of a group which admits a homomorphism onto
Z is ZN , where the homomorphism can be given by φ(m1, . . . ,mN ) = m1,
for example. Since every finitely generated subgroup of an Abelian group is
isomorphic to ZN

⊕K
i=1 Zai , it follows that every torsion-free Abelian group

is locally indicable. Recall that a group G is solvable if its derived series

GBG(1) BG(2) B · · ·

terminates in the trivial group containing only the identity, where here each
G(i) is the commutator subgroup of the preceding group. It is known that
solvable groups are locally indicable, as well as those groups that contain
a normal solvable subgroup of finite index, see [?]. In particular, since the
Heisenberg group is solvable, it is also locally indicable. In what follows, we
provide a direct proof of this fact.

Below, we represent the Heisenberg group as H = {(a, b, c) : a, b, c ∈ R}
with product (a, b, c) · (x, y, z) = (a + x, b + y, c + z + ay). We gather some
easy facts about H in the following lemma.

Lemma 1. Let H denote the Heisenberg group.

1. (x, y, z)−1 = (−x,−y,−z + xy).
2. The commutator H′ = {aba−1b−1 : a, b ∈ H} is {(0, 0, z) : z ∈ R} and is

isomorphic to (R,+).
3. H′ is the center of H and is a normal subgroup of H.
4. H/H′ is isomorphic to (R2,+).

Note that item (2) implies that H is solvable, since the second derived
subgroup is trivial.

Proposition 1. The Heisenberg group H is locally indicable.

Proof. Let G ⊂ H be a finitely generated subgroup.
Case I: G ⊂ H′. Since H′ is isomorphic to (R,+), this case follows from the
local indicability of (R,+).
Case II: G 6⊂ H′. Note that GH′/H′ is a normal subgroup of H/H′, and
that H/H′ is isomorphic to R2. Since G is finitely generated and GH′/H′ is
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isomorphic to G/(G∩H′) by the second isomorphism theorem, it follows that
GH′/H′ is finitely generated. Therefore, since R2 is locally indicable, there is
a homomorphism φ from GH′/H′ onto Z.

Now, let ψ : G → G/(G ∩H′) be the natural onto homomorphism, and
η : G/(G ∩H′)→ GH′/H′ be an isomorphism. The composition of the maps
φ ◦ η ◦ ψ is an onto homomorphism from G to Z, and H is locally indicable.

Corollary 1. Let α and β be non-zero elements of CH. Then αβ 6= 0.

We remark here that arguments similar to the above can be made to show
that the affine group also has no non-trivial zero divisors. However, as de-
scribed in Section 2, time-scale shifts of functions in L2(R) are not necessarily
linearly independent.

We have shown that no product of two nontrivial finite linear combinations
of time-frequency shifts operators can be the zero operator. We close with a
related, but simpler, observation.

Lemma 2. The set of time-frequency shift operators{
MbTa : a, b ∈ R

}
is a finitely linearly independent set in CH. That is, if

Λ =
{

(ak, bk) : k = 1, . . . , N
}

is a set of finitely many distinct points in R2 and

N∑
k=1

ckMbk
Tak

= 0,

then c1 = · · · = cN = 0.

Proof. If
∑N
k=1 ckMbk

Tak
is the zero operator, then

N∑
k=1

ckMbk
Tak

f = 0 a.e. (10)

for every function f ∈ L2(R). Yet we know that there are at least some func-
tions that have linearly independent time-frequency translates. For example,
by the partial results reviewed earlier this is true for every compactly sup-
ported function, and for the Gaussian function. Taking f to be one of these
functions, equation (10) implies that c1 = · · · = cN = 0. ut
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