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What Is the Role of
Algebra in Applied

Mathematics?
David A. Cox

W
hen I first encountered abstract al-
gebra in the late 1960s, I was drawn
to its power and beauty. One of the
liberating ideas of the subject is that
in dealing with algebraic structures,

you do not need to worry about what the objects
are; rather, it is how they behave that is important.
Algebra is a wonderful language for describing the
behavior of mathematical objects.

My fascination with algebra led me to algebraic
geometry, which was then among the most ab-
stract areas of pure mathematics. At the time, I
would never have predicted that twenty-five years
later I would be writing papers with computer sci-
entists, where we use algebraic geometry and com-
mutative algebra to solve problems in geometric
modeling. The algebra that I learned as pure and
abstract has come to have significant applications.

What do these and other applications imply
about the relation between algebra and applied
mathematics? The purpose of this essay is to ex-
plore some aspects of this relation in the hope of
provoking useful discussions between pure and
applied mathematics. Here, “applied mathemat-
ics” includes not only what students learn in math-
ematics and applied mathematics departments,
but also the mathematics learned in computer 

science, engineeering, and operations research 
departments.

I begin with examples from geometric modeling,
economics, and splines to illustrate the possible 
applications of algebra. I then discuss computer 
algebra and conclude with remarks on the role of
algebra in the applied mathematics curriculum.

Geometric Modeling, Cramer’s Rule, 
and Modules
My first example concerns an unexpected applica-
tion of Cramer’s Rule and the Hilbert-Burch Theorem
on the structure of certain free resolutions. While
Cramer’s Rule should be familiar, free resolutions
(whatever they are) may sound rather abstract. As
we will see, there are questions in geometric mod-
eling where these topics arise naturally.

My part of the story begins with the research of
Tom Sederberg and Falai Chen on parametric curves
in the plane. If we are given relatively prime poly-
nomials a(t), b(t), and c(t) of degree n, then the
parametric equations

(1) x =
a(t)
c(t)

and y =
b(t)
c(t)

describe a curve in the plane. To think about this
geometrically, Sederberg and Chen [23] considered
lines defined by

(2) A(t)x + B(t)y + C(t) = 0,

where A(t), B(t), and C(t) are polynomials depend-
ing on the parameter t . As we vary t , the line varies
also, hence the name moving line. A moving line
follows a parametrization if for every value of the
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parameter, the point lies on the corresponding
line. In other words, (1) is a solution of (2) for all
t . When we perform this substitution and clear de-
nominators, we get the equation

(3) A(t)a(t) + B(t)b(t) + C(t)c(t) ≡ 0,

where ≡ indicates that equality holds for all t , i.e.,
A(t)a(t) + B(t)b(t) + C(t)c(t) is the zero polynomial.

What algebraic structures are being used here?
Since we are working over the real numbers R , we
have the polynomial ring R = R[t]. Then, moving
lines A(t)x + B(t)y + C(t) = 0 that follow (1) corre-
spond to elements of the set

{(A(t), B(t), C(t)) ∈ R3 |
A(t)a(t) + B(t)b(t) + C(t)c(t) ≡ 0}.(4)

This is an R-submodule of the free R-module R3 .
In commutative algebra, we say that (3) is a syzygy
and that (4) is a syzygy module.

In the mid-1990s, Sederberg asked me if I had
seen equation (3). I said, “Yes, this equation defines
the syzygy module of a(t), b(t), and c(t) .” As I ex-
pected, Tom asked me what “syzygy” means. I ex-
plained that in astronomy, a syzygy refers to the
alignment of three celestial bodies along a straight
or nearly straight line. The term was introduced into
mathematics by Sylvester in 1853 [27]. These days,
a syzygy can refer to either a polynomial relation
between invariants or a linear relation with poly-
nomial coefficients as in (3).

But then Tom did something unexpected: he
asked me what “module” means! At first, I was
shocked that he didn’t know such a basic term, but
then I remembered that civil engineers don’t take
courses in abstract algebra. (Tom’s degree is in
civil engineering, though he is now in computer sci-
ence.) Vectors of polynomials occur frequently in
Tom’s research, and modules over polynomial rings
are the natural language for discussing such ob-
jects. Yet Tom had never heard the term “module”
until I mentioned it to him.

This made me realize that our conception of “ap-
plied algebra” may need to be enlarged. I will say
more about this below, but first let me finish the
story of moving lines. Sederberg and Chen had the
insight that when two moving lines follow the pa-
rametrization (1), their common point of intersec-
tion describes the curve. Looking deeper, they also
noticed that there are always two moving lines

(5)
p := A1(t)x+ B1(t)y + C1(t) = 0,
q := A2(t)x+ B2(t)y + C2(t) = 0

that follow the parametrization and have the fol-
lowing special properties:
• All moving lines that follow the parametrization

come from polynomial linear combinations 
of p and q , i.e., moving lines of the form

h1p + h2q = 0, where h1 and h2 are polynomi-
als in t .

• If a, b, and c have degree n in t , then p has de-
gree µ in t and q has degree n− µ , where µ is
an integer satisfying 0 ≤ µ ≤ �n/2�.

• Up to a constant and appropriate signs, the
polynomials a(t), b(t), and c(t) are the 2× 2
minors of the matrix(

A1(t) B1(t) C1(t)
A2(t) B2(t) C2(t)

)
.

• The equation of the curve is given by the resul-
tant

Resultant(p, q, t) = 0.

The moving lines p and q are called a µ-basis. Thus
the µ-basis determines both the parametrization
(via the third bullet) and the equation of the curve
(via the fourth). See [7] for the details.

From the point of view of commutative algebra,
the first bullet says that the syzygy module is free
with basis (At (i), Bi(t), Ci(t)), i = 1,2 . For anyone
who knows the theory of modules over a principal
ideal domain, this is no surprise. But the degree re-
striction in the second bullet is quite different: it
tells us that we are really working in the homoge-
neous situation, where we replace a(t), b(t), and c(t)
with homogeneous polynomials a(s, t), b(s, t),
and c(s, t) of degree n. This gives the ideal

I = 〈a(s, t), b(s, t), c(s, t)〉 ⊂ S = R[s, t],

and as shown in [6] and [7], the first two bullets
translate into the following free resolution of the
ideal I:

0→ S(−n+ µ)⊕ S(−2n+ µ)(6)


A1 A2

B1 B2

C1 C2




���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→

S(−n)3

(
a b c

)
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→ I → 0

(the notation S(−n) keeps track of degrees), and
the third bullet implies that a, b, and c are the
2× 2 minors of the 3× 2 matrix in (6). This is a
special case of the Hilbert-Burch Theorem (see [6]).1

While this might seem sophisticated, some parts
make perfect sense. If you take the moving line

1This special case was discovered by Franz Meyer in 1887
[19], who conjectured similar results for the syzygy mod-
ule of a1, . . . , an ∈ S . Hilbert, in his great paper of 1890
[16], created the basic theory of what we now call com-
mutative algebra. His first application was Meyer’s con-
jecture, which he proved via the original version of the
Hilbert-Burch Theorem.
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equations (5) and solve for x and y via Cramer’s
Rule, you get

(7)

x =
det

(
−C1 B1
−C2 B2

)
det

(
A1 B1
A2 B2

) =
det

(
B1 C1
B2 C2

)
det

(
A1 B1
A2 B2

) ,

y =
det

(
A1 −C1
A2 −C2

)
det

(
A1 B1
A2 B2

) =
−det

(
A1 C1
A2 C2

)
det

(
A1 B1
A2 B2

) .

Comparing this to the original parametrization (1),
it should be no surprise that a, b, and c are the
2× 2 minors of the matrix formed by the µ-basis.
When Sederberg and Chen saw this consequence
of Cramer’s Rule, they knew they were on the right
track; Hilbert may have been led to his version of
the Hilbert-Burch Theorem by similar reasoning.

Remember that when Sederberg and Chen con-
jectured this in the late 1990s, Sederberg did not
know what a module was. To me, this suggests
that modules may have a place in the applied math-
ematics curriculum.

Economics, Cramer’s Rule, and Symbolic
Linear Algebra
Recently I had a conversation with a colleague
about the role of Cramer’s Rule in linear algebra.
Although Cramer’s Rule played an important role
in the historical development of linear algebra, it
seems less relevant these days, especially with the
emphasis on solving equations by Gaussian elim-
ination. Moreover, Cramer’s Rule is useless when
a system of equations has an ill-conditioned coef-
ficient matrix. For these reasons, my colleague was
wondering if the topic should be omitted—why
burden students with an unnecessary formula?
I’ve always loved Cramer’s Rule for its intrinsic
beauty, but this approach doesn’t always work for
those students who prefer to view mathematics
through its applications. After some thought, I re-
alized that while Cramer’s Rule may be useless for
numerical linear algebra, it has a valid place in the
larger world of applied linear algebra.

To see the difference, note that the use of
Cramer’s Rule in (7) is applied—it’s part of geo-
metric modeling—and is nonnumerical. For an-
other nonnumerical application of Cramer’s Rule,
consider the following elementary example from
economics. The IS-LM model analyzes the interac-
tion between total national income and the money
supply, following ideas of John Maynard Keynes.
As explained in [24, pp. 115–7], we want to un-
derstand

Y = total national product
and

r = interest rate

in terms of policy parameters (e.g., the money sup-
ply) and behavioral parameters (e.g., the marginal

propensity to save). When linearized at an equi-
librium point, the IS-LM model gives the equations

sY + ar = Io +G
mY − hr =Ms −Mo,

where s, a,m,h, Io,G,Ms,Mo are positive parame-
ters (for example, Ms is the money supply, and s
is the marginal propensity to save). The goal is to
see how Y and r vary when we vary the parame-
ters. This is where Cramer’s Rule shines: it gives
formulas for Y and r that make such questions easy
to answer.

The link between this example and (7) is that in
both cases we applied Cramer’s Rule to equations
depending on parameters. It follows that applied
linear algebra has both numerical and symbolic as-
pects. Do our current linear algebra courses do
justice to both? Right now, the main place a sym-
bolic parameter occurs is in the expression
det(A− λIn) for the characteristic polynomial of an
n× n matrix A . As the above examples indicate,
determinants with symbolic parameters have a
more substantial role to play, even at the elemen-
tary level.

The link becomes even deeper when we think
about what it means algebraically to do linear alge-
bra with parameters. For simplicity, assume that the
independent parameters t1, . . . , tn appear rationally
in the equations (e.g., no square roots or exponentials
of parameters). Since linear algebra needs a field, 
it is natural to work over the rational function field
K = R(t1, . . . , tn). However, there are many situations
where the parameters appear polynomially 
and denominators cause problems. This means 
doing linear algebra over the polynomial ring R =
R[t1, . . . , tn]. Here, “vectors” become vectors of poly-
nomials, i.e., elements of a free module over R. For
example, given a, b, c ∈ R = R[t], the polynomial 
solutions (A,B,C) ∈ R3 of the linear equation
Aa + Bb + Cc = 0 form the syzygy module (4).

Splines and Modules
For another example of how linear algebra relates
to modules, we turn to the study of multivariate
splines. Consider the spline illustrated in Figure 1.

Figure 1. A polynomial spline.
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Here, we have a square centered at the origin, to-
gether with a spline built using the polynomials
f1, f2, f3, f4 ∈ R = R[x, y] indicated in the figure. In
practice, the degrees of the polynomials are fixed
in advance, but we will postpone doing so in order
to reveal the underlying algebraic structure. To ob-
tain a C1 spline, the polynomials must satisfy

(8)
f1 − f2, f3 − f4 ∈ 〈x2〉,
f2 − f3, f1 − f4 ∈ 〈y2〉,

where 〈x2〉 is the ideal of R = R[x, y] generated by
x2, and similarly for 〈y2〉 . Then

(9)
{
(f1, . . . , f4) ∈ R4| f1, f2, f3, f4 satisfy (8)

}
is easily seen to be a submodule of R4. Furthermore,
one can show (see Exercise 5 of [6, Sec. 8.3]) that
this submodule is free of rank four with basis

(1,1,1,1), (0, x2, x2,0), (y2, y2,0,0), (x2, y2,0,0).

In other words, every spline in (9) can be written
uniquely as a polynomial linear combination of
the above four splines.

To see how this relates to linear algebra, consider
C1 splines of degree ≤ k . It is straightforward to
reduce (8) to a system of linear equations involv-
ing the coefficients of f1, f2, f3, f4 . Solving these
equations by standard techniques gives a good
method for finding splines. But since we understand
the module (9), we can answer this question in-
stantly: the splines of degree ≤ k are given uniquely
by

g1 · (1,1,1,1) + g2 · (0, x2, x2,0)

+ g3 · (y2, y2,0,0) + g4 · (x2, y2,0,0),

where g1, g2, g3, and g4 have degrees at most
k, k− 2, k− 2, and k− 4, respectively. Since the
space of polynomials in x, y of degree ≤ k has 

dimension 
(
k+2
2

)
, it follows that the space of C1

polynomial splines for Figure 1 of degree ≤ k has
dimension

(10)

(
k + 2

2

)
+ 2

(
k
2

)
+

(
k− 2

2

)
.

More generally, in 1973 Strang [26] conjectured a
formula for the dimension of the space of Cr poly-
nomial splines for a given triangulation of the
plane. This was proved in 1988 by Billera [1] using
the above methods. An introduction to splines
from the module point of view can be found in [6].

In geometric modeling, the idea of fixing the de-
gree of a moving line or surface has also proved
to be useful; see [5] for a survey. In general, there
is a lovely interplay between working with poly-
nomials of fixed degree (studied via linear algebra)
and polynomials of arbitrary degree (studied via
modules). This leads to the notions of Hilbert func-
tions and Hilbert polynomials. For example, the

spline module (9) has Hilbert function (10), which
is a polynomial in k for k ≥ 2.

The examples discussed so far were chosen to
illustrate how

the theory of modules over polynomial rings 
= linear algebra with parameters

= symbolic linear algebra

arises naturally in a variety of applied contexts. This
subject also has a rich theoretical side that uses 
sophisticated tools from algebraic geometry and
commutative algebra, yet its central problem is
solving linear equations over polynomial rings. A
clear statement of this philosophy appears in the
introduction to Eisenbud’s recent book The Geom-
etry of Syzygies [12, p. xii].

Computer Algebra and Applied Algebra
The last forty years have witnessed the emergence
of substantial computational power and the dis-
covery (in some cases, rediscovery) of fundamen-
tal algorithms for symbolic computation. These
interlinked developments have resulted in a tremen-
dous burst of research, both pure and applied.
Books in this area range from undergraduate 
textbooks to technical monographs, some aimed at
researchers in algebraic geometry and commuta-
tive algebra, others intended for more diverse 
audiences.

Computer algebra encompasses a wide variety
of subjects, including coset enumeration, Galois 
theory, modular arithmetic, symbolic integration, 
symbolic summation, difference equations, power 
series, and special functions, among others. As
one might expect, polynomials play an important
role in computer algebra, where one finds algo-
rithms for greatest common divisors, factoriza-
tion, Gröbner bases, resultants, characteristic sets,
quantifier elimination, and cylindrical algebraic
decomposition. Introductions to computer alge-
bra include the survey [2] and the texts [3], [4], [9],
[13], [14], [20], [28], and [29]. Computer algebra 
can be used to solve problems in robotics, splines, 
integer programming, differential equations, sta-
tistics, coding theory, computational chemistry, 
computer-aided geometric design, geometric 
theorem proving, and systems of polynomial equa-
tions. These and other applications are described
in [2], [6], [8], [10], [15], and [28]. The bibliographies
of these books reveal a vast literature of applica-
tions of computer algebra.

How does computer algebra relate to the appli-
cations of polynomial algebra described earlier in
the article? For those parts of the applied mathe-
matics community where the computational tools
are of paramount importance, the computer alge-
bra books mentioned above may be the solution.
(Not yet the perfect solution, since the books don’t
always make full use of the language of abstract
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algebra, and those that do sometimes assume too
much or require a steep learning curve.) But for
many applied communities, computational tools are
not the central issue; rather, the focus is on un-
derstanding the overall structure of the problems
being studied. This is where the language of alge-
bra can be helpful. This is why applied mathe-
matics may want to think about how to give its stu-
dents better access to algebra.

The Algebra Curriculum
Where does a student of applied mathematics learn
algebra? This question can have many different
answers:
• Some students learn algebra as an undergradu-

ate mathematics major.
• Some learn algebra in a graduate algebra course.
• Some learn algebra in specialized courses in an

area of applied mathematics where algebra is es-
pecially relevant.

• Some learn algebra later in their research career.
• Some never need algebra.

The last bullet reflects the reality that applied
mathematics is an immense enterprise. In spite of
my belief in the value of abstract algebra, it is not
essential that all applied mathematicians learn the
subject.

For the first four bullets, let me offer some re-
flections on the role of algebra in each situation.

Virtually all undergraduate mathematics ma-
jors study abstract algebra. While this seems to
solve the problem for these students, let me point
out that in the U.S., such courses rarely discuss
modules, and they often don’t say much about
polynomial rings in several variables (the focus 
is more on the univariate case). Furthermore, the 
abstraction can make the course seem less relevant
to students whose interests lie in applied mathe-
matics. In awareness of this problem, some algebra
texts focus on applications (see [17] for a recent ex-
ample), and some “pure” texts include numerous
applied examples and a few (such as [18] and [22])
have sections on Gröbner bases. But the biggest
weakness of any undergraduate algebra course is
that many applied mathematicians have back-
grounds in subjects like physics, engineering, or 
operations research. They never see such a course.

A graduate course in abstract algebra is more
likely to cover modules and polynomial rings in sev-
eral variables, and graduate texts like [11] and [21]
have sections on Gröbner bases. But does such a
course seem relevant to students in applied math-
ematics? Or is it just something they need for the
qualifying exams?2 Another complication is that
there is more algebra that people need to know. For

example, given the increasing importance of
noncommutative structures (e.g., vertex algebras),
there is the worry that algebra texts may devote too
much space to the commutative case. So there
might not be time to discuss topics like Gröbner
bases, even if they are in the book. My guess is that
in order for algebra courses to serve the needs of
all students, there should be a greater emphasis on
examples that illustrate the usefulness of algebra
as a language for describing mathematical objects
in pure and applied situations. But as above, the
biggest weakness is that applied mathematics 
students will never see such a course unless they
are in a department that includes both pure and
applied mathematics. In applied mathematics, 
engineering, or operations research departments,
students are unlikely to encounter a general course
in abstract algebra. Furthermore, when such stu-
dents try to take abstract algebra in a pure math-
ematics department, they are likely to encounter
a version of the course aimed at future algebraists.

Specialized courses in areas of applied mathe-
matics may be one of the best ways to introduce
students to the algebra relevant for their research.
This works well in areas of applied mathematics
where the use of algebra has a clear utility and a
good track record. But who was the first person to
teach such a course? Where did that person learn
algebra? Also, if such courses become the main
source of algebra in applied mathematics, then we
run the risk of limiting the scope of how algebra
can be used.

Some of the most interesting uses of algebra are
the unexpected ones. This is part of what makes
mathematics so much fun. As happened with Seder-
berg, applied mathematicians sometimes find that
algebra is relevant to the problem they are work-
ing on. Sometimes the tools of algebra solve the
problem, while other times the language of alge-
bra clarifies the issues and structures involved and
helps the researcher focus on what is essential
(which in turn can generate juicy problems for the
algebraists to explore). But how does the researcher
come to realize that algebra is relevant? I see two
ways this can happen:
• Talk to a mathematician who knows algebra. 

Here, the challenge is on the pure side of mathe-
matics: are algebraists trained in such a way 
that they can talk to nonexperts and make 
sense? Given the importance of what is called
“technology transfer” in the U.S., how do we 
make students in pure mathematics better able 
to communicate with people far outside their 
speciality?

• Remember some algebra learned earlier. Aside
from the algebra courses or specialized courses
discussed above, applied mathematicians could
also be exposed to algebra by having certain 
applied courses take the opportunity to use the

2One answer is that in the U.S., many applied mathemati-
cians end up at four-year colleges, where they teach a 
wide variety of courses, often including abstract algebra.
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language of algebra. This could happen in an 
applied linear algebra course that addresses the
numerical and symbolic aspects of the subject
or in a numerical analysis course that discusses
some topics from Stetter’s recent book Numer-
ical Polynomial Algebra [25].3

In some ways, it all comes down to communication
between pure and applied mathematics. There is
already a lot, but there needs to be more.

The questions and suggestions posed in this 
article are preliminary and should be taken with a
grain of salt. Their main purpose is to stimulate 
conversations about the proper role of algebra in
applied mathematics. I am firmly convinced that
algebra has a lot to offer, once we collectively fig-
ure out the best way to make use of this amazing
language.
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