Homework 8

1. Let G be a finite group and F any field. Show that there exist fields L and E with $F \subseteq L \subseteq E$ and where E is Galois over L with $Gal(E/L) \cong G$.

2. Find an example of fields $F \subseteq K \subseteq E$ such that K is Galois over F and E is Galois over K, but E is not Galois over F.

3. Problem 18.12 from Isaacs.