Homework 6

1. Prove that there does not exist a linear transformation from \mathbb{R}^5 to \mathbb{R}^2 whose null space equals $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}.$

2. Let V be a vector space and T : $V \rightarrow V$ be a linear transformation such that T(T(v)) = T(v) for each $v \in V$. Prove that

$$V = null(T) \oplus Im(T)$$