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Abstract. We extend the concept of weaving Hilbert space frames to the Banach space set-
ting. Similar to frames in a Hilbert space, we show that for any two approximate Schauder
frames for a Banach space, every weaving is an approximate Schauder frame if and only if there
is a uniform constant C ≥ 1 such that every weaving is a C-approximate Schauder frame. We
also study weaving Schauder bases, where it is necessary to introduce two notions of weav-
ing. On one hand, we can ask if two Schauder bases are woven when considered as Schauder
frames with their biorthogonal functionals, and alternatively, we can ask if each weaving of
two Schauder bases remains a Schauder basis. We will prove that these two notions coincide
when all weavings are unconditional, but otherwise they can be different. Lastly, we prove two
perturbation theorems for approximate Schauder frames.

1. Introduction

The concept of weaving Hilbert space frames was first introduced in [BCGLL]. Two frames
{x0

j}j∈J and {x1
j}j∈J for a Hilbert space H are called woven if there exist constants 0 < A ≤ B

so that the weaving {x0
j}j∈σ ∪ {x1

j}j∈σc is a frame with bounds A,B for every σ ⊂ J .
Weaving frames is motivated by distributed signal processing. We can think of each j ∈ J

as a sensor or node, and for each one we measure a signal with either x0
j or x1

j . Can a signal
be recovered robustly regardless of how the measurements are taken at each node? Another
way to think of this is if (x0

j)j∈J and (x1
j)j∈J are two sensor networks then we are interested in

whenever parts of one network can be used to replace parts of the other. In [BCGLL], [CL],
and [DV] the sensors are modeled by inner product with a vector in a frame or Riesz basis
for a Hilbert space. In this paper, we extend the concept of weaving frames to the Banach
space setting. We will model sensors by evaluation by linear functionals associated with an
approximate Schauder frame or Schauder basis. We will be specifically considering weaving
two bases or frames together, but we note that all of our results can be easily extended to
weaving any finite number of bases or frames.

We begin by recalling the definition of a frame for a Hilbert space.
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Definition 1.1. A set of vectors (xj)j∈J in a Hilbert space H is called a frame for H if there
exists positive constants A and B (called lower and upper frame bounds respectively) such that

A‖x‖2 ≤
∑
j∈J

|〈x, xj〉|2 ≤ B‖x‖2 for all x ∈ H. (1)

Given a set of vectors (xj)j∈J in a Hilbert space H, we define an operator S : H → H
(called the frame operator) by S(x) :=

∑
j∈J〈x, xj〉xj, for all x ∈ H, assuming that the series

converges. The frame operator can be used to give a simple characterization of frames. Indeed,
(xj)j∈J is a frame if and only if the frame operator is well defined, bounded, and has bounded
inverse. Furthermore, suppose that (xj)j∈J is a frame with frame operator S, optimal lower
frame bound A, and optimal upper frame bound B. Then ‖S‖ = B and ‖S−1‖ = A−1.

The characterization of a frame in terms of the frame operator is a useful perspective when
considering how to generalize frame theory to Banach spaces. Frames have been generalized to
Banach spaces in multiple ways. One way is to generalize the frame inequality (1) as in [G, FG],
but the following definition of a Schauder frame and approximate Schauder frame instead
generalizes the definition of the frame operator. Schauder frames were first used in [CDOSZ]
with the goal of creating a procedure to represent vectors using quantized coefficients and are
a generalization of framings of Banach spaces which were introduced in [CHL]. Approximate
Schauder frames were defined in [FOSZ] and were used in the construction of a Schauder frame
for Lp(Rd) with p > 2 formed by translations of a single function.

Definition 1.2. Let X be a Banach space with dual space X∗. A sequence (xj, fj)
∞
j=1 in X×X∗

is called an approximate Schauder frame for X if the operator S : X → X (called the frame
operator) defined by S(x) :=

∑∞
j=1 fj(x)xj is well defined and is bounded with bounded inverse.

We say that (xj, fj)
∞
j=1 is a C-approximate Schauder frame if ‖S‖, ‖S−1‖ ≤ C. We say that

(xj, fj)
∞
j=1 is a Schauder frame if the frame operator equals the identity operator.

An approximate Schauder frame is called unconditional if the series
∑
fπ(j)(x)xπ(j) con-

verges to S(x) for every permutation π of N. For Cu ≥ 1, an unconditional approximate
Schauder frame is called Cu-unconditional if for all x ∈ X and all choices of εj ∈ {−1, 1},
‖
∑

j∈N εjfj(x)xj‖ ≤ Cu‖S(x)‖. For Cs ≥ 1, an unconditional approximate Schauder frame is

Cs-suppression unconditional if for all x ∈ X and all Γ ⊆ N, ‖
∑

j∈Γ fj(x)xj‖ ≤ Cs‖S(x)‖. As
is the case for unconditional Schauder bases, we have that an approximate Schauder frame is
unconditional if and only if it is suppression unconditional and Cs ≤ Cu ≤ 2Cs.

Note that if (xj, fj)
∞
j=1 is an approximate Schauder frame for a Banach space X with frame

operator S then (xj, (S
−1)∗fj)

∞
j=1 is a Schauder frame for X. This is a generalization of the

often used result that if (xj)
∞
j=1 is a frame for a Hilbert space H with frame operator S then

(S−1/2xj)
∞
j=1 is a Parseval frame for H.

Our goal is to extend the notion of weaving frames in a Hilbert space to weaving frames and
bases for Banach spaces and to prove the analogous results in this setting. This is a different
generalization of weaving frames than given in [DV], where they instead consider weaving
together infinitely many Hilbert space frames.
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Since ordering plays a crucial role, we index the weavings with elements from {0, 1}N, the set
of functions from N to {0, 1}. Note that {0, 1}N is a compact Hausdorff space in the product
topology. We will repeatedly make use of this fact.

Definition 1.3. [BCGLL, Definition 3] Let (x0
j)
∞
j=1 and (x1

j)
∞
j=1 be two frames for a Hilbert

space H. We say that (x0
j)
∞
j=1 and (x1

j)
∞
j=1 are woven if there are positive constants A and B

such that for every function σ ∈ {0, 1}N we have that (x
σ(j)
j )∞j=1 is a frame for H with lower

frame bound A and upper frame bound B.

We give the following natural generalization of weaving frames for Hilbert spaces to weaving
approximate Schauder frames for Banach spaces.

Definition 1.4. Let (x0
j , f

0
j )∞j=1 and (x1

j , f
1
j )∞j=1 be two approximate Schauder frames for a

Banach space X. A sequence (x
σ(j)
j , f

σ(j)
j )∞j=1 with σ ∈ {0, 1}N is called a weaving of (x0

j , f
0
j )∞j=1

and (x1
j , f

1
j )∞j=1. Given C ≥ 1, we say that (x0

j , f
0
j )∞j=1 and (x1

j , f
1
j )∞j=1 are C-woven if every

weaving is a C-approximate Schauder frame. We say that (x0
j , f

0
j )∞j=1 and (x1

j , f
1
j )∞j=1 are woven

if they are C-woven for some C ≥ 1.

Note that this is a true generalization of the definition of woven frames for Hilbert spaces as
two frames (x0

j)
∞
j=1 and (x1

j)
∞
j=1 of a Hilbert space H are woven if and only if the approximate

Schauder frames (x0
j , x

0
j)
∞
j=1 and (x1

j , x
1
j)
∞
j=1 are woven (where we identify a vector y ∈ H with

the linear functional x 7→ 〈x, y〉).
A Riesz basis for a Hilbert space H is any sequence of vectors that is the image of some

orthonormal basis under an invertible operator (this is equivalent to being a semi-normalized
unconditional basis for a Hilbert space). In [BCGLL], it is proven that if (x0

j)
∞
j=1 and (x1

j)
∞
j=1 are

two Riesz bases for a Hilbert space H then (x
σ(j)
j )∞j=1 is a Riesz basis for H for all σ ∈ {0, 1}N if

and only if (x
σ(j)
j )∞j=1 is a frame for H for all σ ∈ {0, 1}N. Thus, there is no need to distinguish

between two Riesz bases having all weavings be Riesz bases and two Riesz bases having all
weavings be frames. However, we will show that these two notions are not always the same for
Schauder bases and thus we will require a second definition of weaving in this context.

A sequence (xj)
∞
j=1 in a Banach space X is a Schauder basis for X if for every x ∈ X

there exists a unique sequence of scalars (aj)
∞
j=1 such that x =

∑∞
j=1 ajxj, and a basis is

called unconditional if the series converges in every order for every x ∈ X. The biorthogonal
functionals of (xj)

∞
j=1 is the sequence (x∗j)

∞
j=1 in X∗ such that x∗j(x) = aj for all j ∈ N. A

sequence (xj)
∞
j=1 in a Banach space X is called a basic sequence if it is a basis of its closed span

[xj]
∞
j=1. The basis constant of a basic sequence (xj)

∞
j=1 is the least constant C ≥ 1 such that

‖
∑n

j=1 ajxj‖ ≤ C‖
∑N

j=1 ajxj‖ for all choices of scalars (aj)
N
j=1 and all n ≤ N .

Definition 1.5. Let (x0
j)
∞
j=1 and (x1

j)
∞
j=1 be two Schauder bases for a Banach space X. A

sequence (x
σ(j)
j )∞j=1 with σ ∈ {0, 1}N is called a weaving of (x0

j)
∞
j=1 and (x1

j)
∞
j=1. We say that

(x0
j)
∞
j=1 and (x1

j)
∞
j=1 are woven if every weaving is a Schauder basis for X.
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Let (x0
j)
∞
j=1 and (x1

j)
∞
j=1 be two Schauder bases for a Banach space X with biorthogonal func-

tionals (x0∗
j )∞j=1 and (x1∗

j )∞j=1. This implies that (x0
j , x

0∗
j )∞j=1 and (x1

j , x
1∗
j )∞j=1 are both Schauder

frames for X. We can now consider whether or not the two bases (x0
j)
∞
j=1 and (x1

j)
∞
j=1 are woven

and whether or not the two Schauder frames (x0
j , x

0∗
j )∞j=1 and (x1

j , x
1∗
j )∞j=1 are woven. In Example

3.2, we show that it is possible for two Schauder bases to be woven but for the corresponding
Schauder frames to not be woven.

The key idea for why it is possible for (x0
j)
∞
j=1 and (x1

j)
∞
j=1 to be woven as Schauder bases

but (x0
j , x

0∗
j )∞j=1 and (x1

j , x
1∗
j )∞j=1 not be woven as approximate Schauder frames is that when

we weave approximate Schauder frames we are weaving both two sequences of vectors and
two sequences of functionals, but if we weave two Schauder bases and obtain a basis, the
new corresponding biorthogonal functionals can be completely unrelated to the biorthogonal
functionals of the two bases that we started with. This gives us more flexibility when weaving
Schauder bases, but it is actually a problem when we consider our motivation as determining
when different sensor networks can be combined. In that context, the given linear functionals
are fundamental components of the sensors and thus we cannot change them based on what
weaving we choose to use. For this reason, it is important for applications for two Schauder
bases to be woven both as bases and as approximate Schauder frames.

In Theorem 4.5 we prove a number of equivalent properties, including that if (x0
j)
∞
j=1 and

(x1
j)
∞
j=1 are two unconditional Schauder bases then every weaving of (x0

j)
∞
j=1 and (x1

j)
∞
j=1 is an

unconditional basis if and only if every weaving of (x0
j , x

0∗
j )∞j=1 and (x1

j , x
1∗
j )∞j=1 is an uncon-

ditional approximate Schauder frame. Thus, the problem of two bases being woven but their
corresponding Schauder frames not being woven is avoided when all weavings are unconditional.
In Theorem 4.5 we prove as well that if (x0

j)
∞
j=1 and (x1

j)
∞
j=1 are two unconditional Schauder

bases of a Banach space X then every weaving of (x0
j)
∞
j=1 and (x1

j)
∞
j=1 is an unconditional basis

of X if and only if every weaving is an unconditional basic sequence. Surprisingly, we show
that this is not always the case if some weavings are conditional, and in Example 3.5 we give
two unconditional Schauder bases for `1 such that every weaving is a basic sequence, but there
exists a weaving which is not a Schauder basis for all of `1.

Lastly, in Section 5 we prove two perturbation theorems for approximate Schauder frames
and prove that these result in woven approximate Schauder frames.

For a thorough approach to the basics of frame theory, see [CK, CL2, C]. For background
on Banach space theory see [FHHMPZ] and [LT].

2. Uniform constants for woven approximate Schauder frames

One of the major results in [BCGLL] is a proof that if (x0
j)
∞
j=1 and (x1

j)
∞
j=1 are two frames

for a Hilbert space H, then every weaving is a frame for H if and only if there is a uniform
constant C ≥ 1 such that (x0

j)
∞
j=1 and (x1

j)
∞
j=1 are C-woven. We shall prove in Theorem 2.4 that

this same uniformity result holds more generally for approximate Schauder frames.
Let (x0

j , f
0
j )∞j=1 and (x1

j , f
1
j )∞j=1 be two approximate Schauder frames of X such that every

weaving is an approximate Schauder frame. For I ⊆ N and σ ∈ {0, 1}N, we define a linear
4



operator Pσ,I : X → X by Pσ,I(x) =
∑

j∈I f
σ(j)
j (x)x

σ(j)
j . Note that this series will converge

for every interval I ⊆ N, but that the series may not converge if the approximate Schauder
frame is conditional and I is not an interval. In this notation, we have that Pσ,N is the frame

operator of the weaving (x
σ(j)
j , f

σ(j)
j )∞j=1. Thus, to prove that two approximate Schauder frames

(x0
j , f

0
j )∞j=1 and (x1

j , f
1
j )∞j=1 are C-woven, we need to prove that ‖Pσ,N‖ ≤ C and ‖P−1

σ,N‖ ≤ C for

all σ ∈ {0, 1}N.

Lemma 2.1. Let (x0
j , f

0
j )∞j=1 and (x1

j , f
1
j )∞j=1 be two approximate Schauder frames for X such

that every weaving is an approximate Schauder frame for X. If x ∈ X and ε > 0, then there
exists N ∈ N such that ‖Pσ,[m,n]x‖ < ε for all σ ∈ {0, 1}N and n ≥ m ≥ N .

Proof. Let x ∈ X and ε > 0. Assume the contrary that for all N ∈ N, we may choose
σ ∈ {0, 1}N and n ≥ m ≥ N such that ‖Pσ,[m,n]x‖ ≥ ε. We may then inductively choose (σj)

∞
j=1

and m1 ≤ n1 < m2 ≤ n2 < ... such that ‖Pσj ,[mj ,nj ]x‖ ≥ ε. As, ([mj, nj])
∞
j=1 is a sequence

of disjoint intervals, we may choose σ ∈ {0, 1}N such that σ|[mj ,nj ] = σj|[mj ,nj ] for all j ∈ N.

Thus, we have that ‖Pσ,[mj ,nj ]x‖ ≥ ε for all j ∈ N. Since we assumed that (x
σ(j)
j , f

σ(j)
j ) is an

approximate Schauder frame, this contradicts the fact that Pσ,Nx converges. �

Lemma 2.2. Let (x0
j , f

0
j )∞j=1 and (x1

j , f
1
j )∞j=1 be two approximate Schauder frames for X such

that every weaving is an approximate Schauder frame for X. There exists a constant D > 0
such that ‖Pσ,[m,n]‖ ≤ D for all σ ∈ {0, 1}N and m,n ∈ N.

Proof. Let x ∈ X. By Lemma 2.1 there exists N ∈ N such that ‖Pσ,[n,∞)x‖ < 1 for all
σ ∈ {0, 1}N and all n ≥ N . We have that

sup
σ∈{0,1}N,n≤N

‖Pσ,[n,∞)x‖ ≤ sup
σ∈{0,1}N,n≤N

‖Pσ,[n,N)x‖+ sup
σ∈{0,1}N

‖Pσ,[N,∞)x‖.

Thus, we have

sup
σ∈{0,1}N,n≤N

‖Pσ,[n,∞)x‖ <∞

as supσ ‖Pσ,[N,∞)x‖ ≤ 1 and the set {Pσ,[n,N)x}σ∈{0,1}N,n≤N is finite. Hence, there exists a

constant K > 0 such that ‖Pσ,[n,∞)x‖ ≤ K for all σ ∈ {0, 1}N and all n ∈ N. Therefore, for all
m,n ∈ N with m ≤ n we have that

‖Pσ,[m,n]x‖ = ‖Pσ,[m,∞)x− Pσ,[n+1,∞)x‖ ≤ 2K.

Hence, {Pσ,[m,n]}σ∈{0,1}N,m≤n is a set of bounded operators such that for all x ∈ X, {Pσ,[m,n]x}
is uniformly bounded in norm. By the uniform boundedness principle, the set of operators
{Pσ,[m,n]} is uniformly bounded in norm. �

Lemma 2.3. Let (x0
j , f

0
j )∞j=1 and (x1

j , f
1
j )∞j=1 be two approximate Schauder frames of X such

that every weaving is an approximate Schauder frame of X. For all x ∈ X there exists δ > 0
such that for all σ ∈ {0, 1}N we have that ‖Pσ,Nx‖ ≥ δ‖x‖
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Proof. Let x ∈ X such that x 6= 0. By Lemma 2.1, for all n ∈ N there exists Mn ∈ N such that
‖Pγ,[Mn,∞)x‖ < 1

n
for all γ ∈ {0, 1}N. Assume for the sake of contradiction that for all n ∈ N

there exists σn ∈ {0, 1}N such that ‖Pσn,Nx‖ < 1/n. After passing to a subsequence, we may
assume that (σn)∞n=1 converges to some σ ∈ {0, 1}N and σn|[1,Mn) = σ|[1,Mn) for all n ∈ N. For
each n ∈ N, we have the following upperbound on the norm of Pσ,Nx.

‖Pσ,Nx‖ = ‖Pσn,Nx− Pσn,[Mn,∞)x+ Pσ,[Mn,∞)x‖
≤ ‖Pσn,Nx‖+ ‖Pσn,[Mn,∞)x‖+ ‖Pσ,[Mn,∞)x‖
< 1/n+ 1/n+ 1/n

Thus, ‖Pσ,Nx‖ < 3/n for all n ∈ N and hence Pσ,Nx = 0. This contradicts that (x
σ(j)
j , f

σ(j)
j )∞j=1

is an approximate Schauder frame. �

Theorem 2.4. Given two approximate Schauder frames for a Banach space X, they are woven
if and only if every weaving is an approximate Schauder frame. That is, if every weaving is an
approximate Schauder frame then there is a uniform constant C ≥ 1 such that every weaving is a
C-approximate Schauder frame. Furthermore, if every weaving is an unconditional approximate
Schauder frame then there exists a constant D ≥ 1 such that every weaving is a D-unconditional
approximate Schauder frame.

Proof. Let (x0
j , f

0
j )∞j=1 and (x1

j , f
1
j )∞j=1 be two approximate Schauder frames of X such that every

weaving is an approximate Schauder frame. Let y ∈ X. By Lemma 2.3, there exists δ > 0
such that ‖y‖ = ‖Pσ,N(P−1

σ,Ny)‖ ≥ δ‖P−1
σ,Ny‖ for all σ ∈ {0, 1}N. Thus, ‖P−1

σ,Ny‖ ≤ (1/δ)‖y‖
for all σ ∈ {0, 1}N. We have that {P−1

σ,N}σ∈{0,1}N is a collection of bounded operators such

that supσ∈{0,1}N ‖P−1
σ,Nx‖ < ∞ for all x ∈ X. Hence, supσ∈{0,1}N ‖P−1

σ,N‖ < ∞ by the uniform
boundedness principle. Also, supσ∈{0,1}N ‖Pσ,N‖ < ∞ by Lemma 2.2. Thus, there is a uniform

constant C ≥ 1 such that ‖Pσ,N‖ ≤ C and ‖P−1
σ,N‖ ≤ C for all σ ∈ {0, 1}N and hence (x0

j , f
0
j )∞j=1

and (x1
j , f

1
j )∞j=1 are C-woven approximate Schauder frames of X.

We now assume that every weaving of (x0
j , f

0
j )∞j=1 and (x1

j , f
1
j )∞j=1 is an unconditional ap-

proximate Schauder frame. We have that there exists C ≥ 1 such that every weaving of
(x0

j , f
0
j )∞j=1 and (x1

j , f
1
j )∞j=1 is a C-approximate Schauder frame. For the sake of contradiction

we assume that for all n ∈ N, there exists σn ∈ {0, 1}N such that the approximate Schauder

(x
σn(j)
j , f

σn(j)
j )∞j=1 is not n-suppression unconditional. After passing to a subsequence, we may

assume that there exists σ ∈ {0, 1}N such that σn → σ in the product topology of {0, 1}N and
that σn|[1,n] = σ|[1,n] for all n ∈ N. We choose a subsequence (mn)∞n=1 of N such that there exists
a finite set Γn ⊆ [1,mn] and xn ∈ X with ‖xn‖ = 1 so that ‖Pσn,Γnxn‖ ≥ n‖Pσn,Nxn‖ ≥ nC−1.

We inductively define a sequence of natural numbers (Mn)∞n=1 by M1 = m1 and for n ∈
N we let Mn+1 = mMn . Let γ ∈ {0, 1}N be such that γ|[1,m1] = σ1|[1,m1] and for n ∈ N,
γ|(Mn,Mn+1] = σMn|(Mn,Mn+1]. Let D ≥ 1 be the suppression unconditionality constant of the

weaving (x
σ(j)
j , f

σ(j)
j )∞j=1. For n ∈ N, we have that

‖Pγ,ΓMn∩(Mn,Mn+1]‖ = ‖PσMn ,ΓMn∩(Mn,Mn+1]‖
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≥ ‖PσMn ,ΓMn‖ − ‖PσMn ,ΓMn∩[1,Mn]‖
= ‖PσMn ,ΓMn‖ − ‖Pσ,ΓMn∩[1,Mn]‖ ≥MnC

−1 −DC.

Thus, we have that supn∈N ‖Pγ,ΓMn∩(Mn,Mn+1]‖ = ∞ and hence (x
γ(j)
j , f

γ(j)
j )∞j=1 is not uncondi-

tional.
�

3. Weaving bases

We now consider the case of weaving Schauder bases instead of approximate Schauder frames.
Recall that if (xj)

∞
j=1 is a Schauder basic sequence then we say that it is C-basic for some C ≥ 1

if ‖
∑N

j=1 ajxj‖ ≤ C‖
∑∞

j=1 ajxj‖ for all N ∈ N and all sequences of scalars (aj)
∞
j=1 such that∑∞

j=1 ajxj converges. We say that an unconditional Schauder basic sequence is C-suppression

unconditional if ‖
∑

j∈E ajxj‖ ≤ C‖
∑∞

j=1 ajxj‖ for all E ⊆ N and all sequences of scalars

(aj)
∞
j=1 such that

∑∞
j=1 ajxj converges.

In Section 2 we proved that if every weaving of two approximate Schauder frames is an
approximate Schauder frame then there is a uniform constant C ≥ 1 such that the two approx-
imate Schauder frames are C-woven. We now prove that this same uniformity theorem holds
for weaving Schauder bases. The proof will follow the same concatonation argument as in the
furthermore part of the proof of Theorem 2.4.

Proposition 3.1. Let (x0
j)
∞
j=1 and (x1

j)
∞
j=1 be two Schauder basic sequences in a Banach space

X. If (x
σ(j)
j )∞j=1 is a basic sequence for all σ ∈ {0, 1}N, then there is a uniform constant C ≥ 1

such that for all σ ∈ {0, 1}N, (x
σ(j)
j )∞j=1 is C-basic. Likewise, if (x

σ(j)
j )∞j=1 is an unconditional

basic sequence for all σ ∈ {0, 1}N, then there is a uniform constant D ≥ 1 such that for all

σ ∈ {0, 1}N, (x
σ(j)
j )∞j=1 is D-unconditional.

Proof. Assume by way of contradiction that (x
σ(j)
j )∞j=1 is a basic sequence for all σ ∈ {0, 1}N,

but that for all n ∈ N, there exists σn ∈ {0, 1}N such that (x
σn(j)
j )∞j=1 is not n-basic. After

passing to a subsequence, we may assume that there exists σ ∈ {0, 1}N such that σn → σ in

the product topology of {0, 1}N. Let C ≥ 1 be such that (x
σ(j)
j )∞j=1 is C-basic. After passing

to a further subsequence, we may assume that σn|[1,n] = σ|[1,n] for all n ∈ N. Thus, for all

n ∈ N, (x
σn(j)
j )nj=1 is C-basic, and hence (x

σn(j)
j )∞j=n+1 is not (n − C)-basic. Let (mn)∞n=1 be

an increasing subsequence of natural numbers such that for all n ∈ N, (x
σn(j)
j )mnj=n+1 is not

(n− C)-basic. We can now create γ ∈ {0, 1}N by γ|[1,m1] = σ1|[1,m1], γ|(m1,mm1 ] = σm1|(m1,mm1 ],

γ|(mm1 ,mmm1
] = σmm1

|(mm1 ,mmm1
], and so on. We have that (x

γ(j)
j )∞j=1 is not basic because it

is formed by concatonating finite length basic sequences whose basis constants go to infinity,
which is a contradiction.

7



A similar argument shows that if for all σ ∈ {0, 1}N, (x
σ(j)
j )∞j=1 is an unconditional basic

sequence then there is a universal constant D ≥ 1 such that for all σ ∈ {0, 1}N, (x
σ(j)
j )∞j=1 is

D-unconditional. �

Suppose that (x0
j)
∞
j=1 and (x1

j)
∞
j=1 are two Schauder bases for a Banach space X with biorthog-

onal functionals (x0∗
j )∞j=1 and (x1∗

j )∞j=1. We can consider the problem of whether or not (x0
j)
∞
j=1

and (x1
j)
∞
j=1 are woven Schauder bases, and we can consider the problem of whether or not

(x0
j , x

0∗
j )∞j=1 and (x1

j , x
1∗
j )∞j=1 are woven approximate Schauder frames. The first natural ques-

tion to ask is if these two notions are equivalent. In other words, are (x0
j)
∞
j=1 and (x1

j)
∞
j=1 woven

Schauder bases if and only if (x0
j , x

0∗
j )∞j=1 and (x1

j , x
1∗
j )∞j=1 are woven approximate Schauder

frames? Surprisingly, the answer is no.

Example 3.2. We have the following examples in c0 and `1.

(1) Let (ej)
∞
j=1 be the standard unit vector basis for c0 with biorthogonal functionals (e∗j)

∞
j=1,

and let (sj)
∞
j=1 be the summing basis for c0 with biorthogonal functionals (s∗j)

∞
j=1. That

is, sj =
∑j

i=1 ei for all j ∈ N. Then, (sj)
∞
j=1 is a conditional Schauder basis for c0 which

is woven with the unconditional Schauder basis (ej)
∞
j=1, but (sj, s

∗
j)
∞
j=1 and (ej, e

∗
j)
∞
j=1

are not woven approximate Schauder frames.
(2) Let (ej)

∞
j=1 be the standard unit vector basis for `1 with biorthogonal functionals (e∗j)

∞
j=1.

Let x1 = e1 and xn = en− en−1 for n > 1. Then, (xj)
∞
j=1 is a conditional Schauder basis

for `1 which is woven with the unconditional Schauder basis (ej)
∞
j=1, but (xj, x

∗
j)
∞
j=1 and

(ej, e
∗
j)
∞
j=1 are not woven approximate Schauder frames, where (x∗j)

∞
j=1 is the sequence

of biorthogonal functionals to (xj)
∞
j=1.

Example 3.2 shows that it is possible for a conditional Schauder basis to be woven with an
unconditional Schauder basis. The following proposition shows that this is impossible for woven
approximate Schauder frames.

Proposition 3.3. Let (x0
j , f

0
j )∞j=1 and (x1

j , f
1
j )∞j=1 be C-approximate Schauder frames for a Ba-

nach space X. Suppose that (x0
j , f

0
j )∞j=1 is K-suppression unconditional and that (x1

j , f
1
j )∞j=1 is

not D-suppression unconditional. Then (x0
j , f

0
j )∞j=1 and (x1

j , f
1
j )∞j=1 are not (DC−1−KC)-woven.

Proof. Let S0 be the frame operator for (x0
j , f

0
j )∞j=1 and let S1 be the frame operator for

(x1
j , f

1
j )∞j=1. Let x ∈ X and A ⊂ N such that ‖

∑
j∈A f

1
j (x)x1

j‖ > D‖S1x‖ ≥ DC−1‖x‖. Let

σ ∈ {0, 1}N be the characteristic function of A. Then∥∥∥∥∑
j∈N

f
σ(j)
j (x)x

σ(j)
j

∥∥∥∥ ≥ ∥∥∥∥∑
j∈A

f 1
j (x)x1

j

∥∥∥∥− ∥∥∥∥∑
j 6∈A

f 0
j (x)x0

j

∥∥∥∥
> D‖S1x‖ −K‖S0x‖
≥ DC−1‖x‖ −KC‖x‖.
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Thus the frame operator of (x
σ(j)
j , f

σ(j)
j )∞j=1 has norm greater than (DC−1 − KC) and hence

(x0
j , f

0
j )∞j=1 and (x1

j , f
1
j )∞j=1 are not (DC−1 −KC)-woven. �

We conclude the section with two examples that again demonstrate the significance of condi-
tional compared to unconditional convergence. The next construction shows that it is possible
for two woven unconditional Schauder bases to have some conditional weavings.

Example 3.4. Let (ej)
∞
j=1 be the standard unit vector basis for `1. Define (x0

j)
∞
j=1 by x0

2n−1 = en
and x0

2n = e2n − e2n−1 for all n ∈ N and define (x1
j)
∞
j=1 by x1

1 = e1, x1
2 = e2, and x1

2n−1 =

e2n−1 − e2n−2 and x1
2n = e2n for all n ≥ 2. Then (x0

j)
∞
j=1 and (x1

j)
∞
j=1 are woven Schauder bases,

each of which are unconditional. However, the alternating weaving given by (x1
1, x

0
2, x

1
3, x

0
4, ...) =

(e1, e2 − e1, e3 − e2, e4 − e3, ...) is the same conditional basis used in Example 3.2.

The following construction shows it is possible for all the weavings of two unconditional
Schauder bases to be Schauder basic sequences, but there exists a weaving which does not have
dense span. In [BCGLL], it is proven that this is impossible for Riesz bases for Hilbert spaces,
and in Theorem 4.5 we prove that this is impossible if all weavings are unconditional.

Example 3.5. Let (ej)
∞
j=1 be the standard unit vector basis for `1. Define (x0

j)
∞
j=1 by x0

2n−1 =

e2n−1+e2n and x0
2n = e2n−1−e2n for all n ∈ N and define (x1

j)
∞
j=1 by x1

1 = e1 and x1
2n = e2n+e2n+1

and x1
2n+1 = e2n−e2n+1 for all n ∈ N. Then (x0

j)
∞
j=1 and (x1

j)
∞
j=1 are both unconditional Schauder

bases of `1 and every weaving is a Schauder basic sequence. However, the alternating weaving
(x0

1, x
1
2, x

0
3, x

1
4, ...) = (e1 + e2, e2 + e3, e3 + e4, e4 + e5, ...) does not contain e1 in its closed span

and thus is not a basis.

4. Weaving unconditional Schauder bases

In this section, we consider weaving unconditional bases. First, we show that two woven
unconditional bases are necessarily equivalent. We conclude the section by proving that two
unconditional bases that are woven and have all unconditional weavings is equivalent to five
other characterizations, including in particular that all weavings are unconditional basic se-
quences and all weavings of the corresponding approximate Schauder frames are unconditional
approximate Schauder frames. Recall that in Section 3 we gave counterexamples to these equiv-
alences when it is not the case that all weavings are unconditional. We first cite the following
theorem, which can be found in [LT] along with a thorough introduction to Banach lattices.

Theorem 4.1. Let (xj)
∞
j=1 be an unconditional basis for a Banach lattice X. There exists a

constant D ≥ 1 such that for every n ∈ N and sequence of scalars (aj)
n
j=1, we have that

D−1

∥∥∥∥∥∥
(

n∑
j=1

|ajxj|2
)1/2

∥∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
j=1

ajxj

∥∥∥∥∥ ≤ D

∥∥∥∥∥∥
(

n∑
j=1

|ajxj|2
)1/2

∥∥∥∥∥∥ .
When we apply Theorem 4.1, the Banach lattice structure for X will be defined by a different

1-unconditional basis (uj)
∞
j=1 with biorthogonal functionals (u∗j)

∞
j=1. In this case, if (xj)

∞
j=1 is a
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sequence in X, and (aj)
n
j=1 is a finite sequence of scalars then the vector

(∑n
j=1 |ajxj|2

)1/2

is

given by (
n∑
j=1

|ajxj|2
)1/2

=
∞∑
j=1

(
n∑
j=1

|aju∗j(xj)|2
)1/2

uj. (2)

We have previously given an example of a conditional Schauder basis for `1 such that every
weaving with the unit vector basis for `1 is a Schauder basis. In particular, this gives an
example of two non-equivalent Schauder bases for a Banach space X such that every weaving
is a Schauder basis for X. Our next result shows that this is impossible if both bases are
unconditional. Recall that two Schauder basic sequences (xj)

∞
j=1 and (yj)

∞
j=1 are said to be

equivalent if there are constants c, C > 0 such that c‖
∑
ajxj‖ ≤ ‖

∑
ajyj‖ ≤ C‖

∑
ajxj‖ for

all (aj)
∞
j=1 ∈ c00.

Theorem 4.2. Let (x0
j)
∞
j=1 and (x1

j)
∞
j=1 be two semi-normalized unconditional bases for a Ba-

nach space X such that for all σ ∈ {0, 1}N, (x
σ(j)
j )∞j=1 is a basic sequence. Then, (x0

j)
∞
j=1 and

(x1
j)
∞
j=1 are equivalent.

Proof. After renorming, we may assume that (x1
j)
∞
j=1 is 1-unconditional. Let X have the Banach

lattice structure defined by the 1-unconditional basis (x1
j)
∞
j=1. Let D be the constant given in

Theorem 4.1. As every weaving of (x0
j)
∞
j=1 and (x1

j)
∞
j=1 is a basic sequence, there is a constant

C > 0 such that |x1∗
j (x0

j)| ≥ C for all j ∈ N. For any (aj)
∞
j=1 ∈ c00, we have the following

estimate:∥∥∥∥∥
∞∑
j=1

ajx
0
j

∥∥∥∥∥ ≥ D−1

∥∥∥∥∥∥
(
∞∑
j=1

|ajx0
j |2
)1/2

∥∥∥∥∥∥ by Theorem 4.1,

= D−1

∥∥∥∥∥∥
∞∑
j=1

(
∞∑
j=1

|ajx1∗
j (x0

j)|2
)1/2

x1
j

∥∥∥∥∥∥ by (2),

≥ CD−1

∥∥∥∥∥
∞∑
j=1

ajx
1
j

∥∥∥∥∥ as (x1
j) is 1-unconditional and |x1∗

j (x0
j)| ≥ C for all j ∈ N.

Therefore, we have that the basis (x0
j)
∞
j=1 dominates the basis (x1)∞j=1, and by the same argument

(x1
j)
∞
j=1 dominates (x0)∞j=1. Hence, (x0

j)
∞
j=1 and (x1)∞j=1 are equivalent. �

Note that in proving Theorem 4.2 it was only required that there exists C > 0 such that
|x0∗
j (x1

j)| ≥ C and |x1∗
j (x0

j)| ≥ C for j ∈ N which is a much weaker property than (x0
j)
∞
j=1 and

(x1
j)
∞
j=1 are woven.

The following lemmas will be used in characterizing when every weaving of two unconditional
Schauder bases is also an unconditional Schauder basis.
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Lemma 4.3. Suppose X is a Banach space having subspaces Y and Z. Let P : X → Y be a
projection from X onto Y and assume P |Z : Z → Y is invertible. Then Q = (P |Z)−1P is a
projection onto Z.

Proof. The fact that Q is onto Z is clear. We check Q is a projection:

Q2 = (P |Z)−1
(
P (P |Z)−1P

)
= (P |Z)−1P = Q

since if x ∈ X, then Px ∈ Y and so P (P |Z)−1Px = Px. �

For a Banach space X with subspaces X0, X1 ⊆ X, the distance between X0 and X1 measures
how close a point in the sphere of one space can be to a point in the other space. That is,

d(X0, X1) = inf{‖x− y‖ : x ∈ SXj , y ∈ X1−j and j ∈ {0, 1}.}

Lemma 4.4. Suppose X is a Banach space and X = X1 ⊕X2 = Y1 ⊕ Y2 for some subspaces
X1, X2, Y1, Y2 of X. Assume P is a projection onto X1 with (I − P ) a projection onto X2,
and Q is a projection on Y1 with (I − Q) projecting onto Y2. Assume Q|X1 : X1 → Y1 and
(I − P )|Y2 : Y2 → X2 are invertible and d(X1, Y2) > 0. Then X = X1 ⊕ Y2.

Proof. By Lemma 4.3, we have that (Q|X1)
−1Q is a projection onto X1 and

(
(I−P )|Y2

)−1
(I−P )

is a projection onto Y2. Furthermore, both

(Q|X1)
−1Q

(
(I − P )|Y2

)−1
(I − P ) = 0 and

(
(I − P )|Y2

)−1
(I − P )(Q|X1)

−1Q = 0.

Thus, the operator R : X → X defined by

R := (Q|X1)
−1Q+

(
(I − P )|Y2

)−1
(I − P )

is a projection from X onto X1 ⊕ Y2. We will show that the projection R is one-to-one (and
hence the identity map) to prove that X = X1 ⊕ Y2. Let x ∈ X be so that Rx = 0. Then

‖Rx‖ = ‖(Q|X1)
−1Qx+

(
(I − P )|Y2

)−1
(I − P )x‖ = 0

and since d(X1, Y2) > 0, it follows that

(Q|X1)
−1Qx = 0 and

(
(I − P )|Y2

)−1
(I − P )x = 0.

Thus, Qx = 0 = (I−P )x so that x = Px = (I−Q)x. However, since (Q|X1)
−1Q is a projection

onto X1, we have Px = (Q|X1)
−1QPx = (Q|X1)

−1Qx = 0 and therefore x = 0. �

Given a sequence (xj)j∈N in a Banach space X and a set Γ ⊆ N, we let [xj]j∈Γ denote the
subspace span{xj}j∈Γ.

Theorem 4.5. Let (x0
j)
∞
j=1 and (x1

j)
∞
j=1 be two C-unconditional bases for a Banach space X

with biorthogonal functionals (x0∗
j )∞j=1 and (x1∗

j )∞j=1, respectively. The following are equivalent:

(i) For every σ ∈ {0, 1}N, (x
σ(j)
j )∞j=1 is an unconditional basis for X.

(ii) There is a K > 0 so that for any σ ∈ {0, 1}N, (x
σ(j)
j )∞j=1 is a K-unconditional basis for X.

(iii) For every σ ∈ {0, 1}N, (x
σ(j)
j , x

σ(j)∗
j )∞j=1 is an unconditional approximate Schauder frame.
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(iv) For every σ ∈ {0, 1}N, (x
σ(j)
j )∞j=1 is an unconditional basic sequence.

(v) There exists a D > 0 so that for every σ ∈ {0, 1}N,

d
(
[x0
j ]j∈σ−1(0), [x

1
j ]j∈σ−1(1)

)
≥ D−1.

(vi) There exists E > 0 such that for any σ ∈ {0, 1}N, if P is the basis projection of (x0
j)
∞
j=1

onto [x0
j ]j∈σ−1(0) and Q is the basis projection of (x1

j)
∞
j=1 onto [x1

j ]j∈σ−1(0) then

P |[x1j ]j∈σ−1(0)
: [x1

j ]j∈σ−1(0)→ [x0
j ]j∈σ−1(0) and Q|[x0j ]j∈σ−1(0)

: [x0
j ]j∈σ−1(0)→ [x1

j ]j∈σ−1(0)

are invertible with inverses having norm at most E.

Proof. Note that (i)⇒(ii) follows from Proposition 3.1, and that (ii)⇒(iv) is immediate. We
will prove (iv)⇒(v)⇒(vi)⇒(i) and (iii)⇒(vi)⇒(iii).

The case (iv)⇒(v) is well known, but we include a short proof here for completeness. By

Proposition 3.1 there exists K > 0 such that (x
σ(j)
j )j∈N is K-suppression unconditional for all

σ ∈ {0, 1}N. Let σ ∈ {0, 1}N, x ∈ [x0
j ]j∈σ−1(0), and y ∈ [x1

j ]j∈σ−1(1). We have that ‖x − y‖ ≥
1
K
‖x‖, and hence d

(
[x0
j ]j∈σ−1(0), [x

1
j ]j∈σ−1(1)

)
≥ 1

K
.

For (v)⇒(vi), we assume that (v) holds for some D > 0. Let σ ∈ {0, 1}N. For Γ ⊆ N we let
PΓ be the basis projection of (x0

j)
∞
j=1 onto [x0

j ]j∈Γ. Note that this implies that I − PΓ = PΓc is

the basis projection of (x0
j)
∞
j=1 onto [x0

j ]j∈Γc . Let x ∈ [x1
j ]j∈σ−1(0) with ‖x‖ = 1. Then∥∥Pσ−1(0)(x)

∥∥ =
∥∥x− (x− Pσ−1(0)(x))

∥∥ ≥ d
(
[x1
j ]j∈σ−1(0), [x

0
j ]j∈σ−1(1)

)
≥ D−1. (3)

Thus, we have that Pσ−1(0) is an isomorphism of [x1
j ]j∈σ−1(0) onto a closed subspace of [x0

j ]σ−1(0)

with inverse having norm at most E := D. It remains to prove that Pσ−1(0)

(
[x1
j ]σ−1(0)

)
is dense

in [x0
j ]j∈σ−1(0).

Let y ∈ span(x0
j)j∈σ−1(0) with ‖y‖ = 1. As (x0

j)
∞
j=1 and (x1

j)
∞
j=1 are unconditional bases there

existsN ∈ N such that y ∈ span1≤j≤Nx
0
j and for all Γ ⊂ (N,∞) we have that

∥∥∑
j∈Γ x

1∗
j (y)x1

j

∥∥ <
ε. For n ≥ N , we let σn ∈ {0, 1}N be defined by σn|[1,n) = σ|[1,n) and σn(j) = 1 for j ≥ n.

A simple induction argument gives that (x
σn(j)
j )∞j=1 is an unconditional basis for X as we have

changed only finitely many of the coordinates of (x1
j)
∞
j=1 and d

(
[x0
j ]j∈σ−1

n (0), [x
1
j ]j∈σ−1

n (1)

)
> 0.

Furthermore, Pσ−1
n (0) is an isomorphism of [x1

j ]j∈σ−1
n (0) onto [x0

j ]j∈σ−1
n (0) because these spaces are

finite dimensional and have the same dimension. Hence, for each n ≥ N there exists unique
zn ∈ span(x1

j)j∈σ−1
n (0) such that y = Pσ−1

n (0)(zn) =
∑

j∈σ−1
n (0) x

0∗
j (zn)x0

j and ‖zn‖ ≤ D by (3).
Therefore,

Pσ−1(0)zn − y =
∑

j∈σ−1(0)

x0∗
j (zn)x0

j −
∑

j∈σ−1
n (0)

x0∗
j (zn)x0

j =
∑

j∈σ−1(0)∩(n,∞)

x0∗
j (zn)x0

j . (4)

If (Pσ−1(0)zn)∞n=1 has a sequence of convex combinations which converges to y then we can
conclude that y ∈ Pσ−1(0)([x

1
j ]j∈σ−1(0)) as the set is closed and convex. We assume by contra-

diction that this is not the case. Since any convex combination of y is itself, there exists F > 0
12



such that for all n ≥ N ,∥∥∥∥∥∥
∑

i∈σ−1(0)∩(n,∞)

∞∑
j=n

x0∗
i (ajzj)x

0
i

∥∥∥∥∥∥ > 2F for all (aj)
∞
j=n ∈ [0, 1]N with

∞∑
j=n

aj = 1. (5)

Let εn ↘ 0 such that
∑∞

n=1 nεn < 1 and
∑∞

n=1 εn < F . We inductively choose a subsequence
(Mn)∞n=−1 of N with M−1 = 1 and M0 = N + 1 and sequences (yn)∞n=1, (wn)∞n=0 ⊆ X such that

(a)
∥∥∑

i∈σ−1(0)∩[Mn+1,∞) x
0∗
i (zMj

)x0
i

∥∥ < εn+1 for all 1 ≤ j ≤ n and n ∈ N.

(b) yn :=
∑

i∈σ−1(0)∩[Mn,Mn+1) x
0∗
i (zMn)x0

i for all n ∈ N and
∥∥∑

j∈N ajyj
∥∥ > F for all

(aj)j∈N ∈ [0, 1]N with
∑

j∈N aj = 1.

(c) wn := lim
j→∞

∑
i∈σ−1(0)∩[Mn−1,Mn) x

1∗
i (zMj

)x1
i for all n ≥ 0.

(d)
∥∥wn −∑i∈σ−1(0)∩[Mn−1,Mn) x

1∗
i (zMj

)x1
i

∥∥ < εj/j for all j > n ≥ 0.

Note that (a) can be achieved because the series converges and we are only working with finitely
many zj at each step. We have that (b) follows from (5), (a), and

∑∞
n=1 εn < F . The definition

of wn in (c) can be made because the sum is over the finite interval [Mn−1,Mn) and the sequence
(zMj

)∞j=n+1 is bounded, so we may pass to a subsequence of (Mj)j∈N in which the limit exists.
Finally, since the limit exists by (c), we can pass to yet another subsequence of (Mj)j∈N to
obtain (d).

For all n ∈ N, we set vn :=
∑

i∈σ−1(0)∩[Mn−1,Mn) x
1∗
i (zMn)x1

i and obtain the following:

(e)
∥∥zMn − (vn +

∑n−1
j=0 wj)

∥∥ < εn for all n ∈ N.

(f)
∥∥Pσ−1(0)zMn − (y + yn)

∥∥ < εn+1 for all n ∈ N.

We have that (e) follows from (d) and the fact that zMn ∈ [x1
j ]
Mn−1
j=1 . We have that (f) follows

from (a), (b), and (3).
Let M ∈ N and Ω = σ−1(0) ∩ ∪2M

n=1[M2n−1,M2n). Then

1

2M

2M∑
n=1

(−1)nv2n ∈ [x1
i ]i∈Ω and

1

2M

2M∑
n=1

(−1)n(Pσ−1(1)zM2n + y2n) ∈ [x0
i ]i∈N\Ω. (6)

Since (yn)∞n=N is a block sequence of (x0
j)j∈σ−1(0), it is also C-unconditional and therefore by (b)

we have that ∥∥∥∥∥ 1

2M

2M∑
n=1

(−1)n
(
Pσ−1(1)zM2n + y2n

)∥∥∥∥∥ ≥ C−1

∥∥∥∥∥ 1

2M

2M∑
n=1

y2n

∥∥∥∥∥ > C−1F. (7)

As (wi)
∞
i=0 is a block sequence of (x1

i )
∞
i=1, we have for all n ∈ N and Γ ⊆ {0, 1, ..., n} that∥∥∥∥∥∑

i∈Γ

wi

∥∥∥∥∥ ≤ C

∥∥∥∥∥
n∑
i=1

wi

∥∥∥∥∥ = C

∥∥∥∥∥∥ lim
j→∞

∑
i∈σ−1(0)∩[1,Mn)

x1∗
i (zMj

)x1
i

∥∥∥∥∥∥ ≤ lim sup
j→∞

C2‖zMj
‖ ≤ C2D. (8)
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Thus, we have the following estimate:∥∥∥∥∥ 1

2M

2M∑
n=1

(−1)n (Pσ−1(1)zM2n + y2n)− 1

2M

2M∑
n=1

(−1)nv2n

∥∥∥∥∥
=

1

2M

∥∥∥∥∥
2M∑
n=1

(−1)n(Pσ−1(1)zM2n + y2n − v2n)

∥∥∥∥∥
≤ 1

2M

∥∥∥∥∥
2M∑
n=1

(−1)n(y + y2n + Pσ−1(1)zM2n − (v2n +
2n−1∑
j=0

wj))

∥∥∥∥∥+
1

2M

∥∥∥∥∥
M∑
j=1

w4j−2 + w4j−1

∥∥∥∥∥
≤ 1

2M

2M∑
n=1

∥∥∥∥∥y + y2n + Pσ−1(1)zM2n − (v2n +
2n−1∑
j=0

wj)

∥∥∥∥∥+
C2D

2M
by (8)

<
1

2M

2M∑
n=1

∥∥Pσ−1(0)zM2n+Pσ−1(1)zM2n−zM2n

∥∥+
1

2M

2M∑
n=1

(ε2n + ε2n+1)+
C2D

2M
by (e) and (f)

<
1

2M
+
C2D

2M
.

The above estimate together with (6) and (7) gives that d([x0
j ]j∈N\Ω, [x

1
j ]j∈Ω) < CF−1(1 +

C2D)(2M)−1. This contradicts (v) by choosing M large enough. An identical proof shows the
claim for Q.

For (vi)⇒(i), we assume that (vi) holds for some E > 0. Let σ ∈ {0, 1}N. For j ∈ σ−1(0) we
let fj :=

(
Q|−1

[x0i ]i∈σ−1(0)
Q
)∗
x0∗
j and for j ∈ σ−1(1) we let fj :=

(
(I − P )|−1

[x1i ]i∈σ−1(1)
(I − P )

)∗
x1∗
j .

We first prove that (x
σ(i)
i , fi)

∞
i=1 is a biorthogonal system. Let j, k ∈ σ−1(0), then

fj(x
0
k) =

((
Q|−1

[x0i ]i∈σ−1(0)
Q
)∗
x0∗
j

)
(x0

k) = x0∗
j

((
Q|−1

[x0i ]i∈σ−1(0)
Q
)
x0
k

)
= x0∗

j (x0
k) = δj,k

For j ∈ σ−1(0) and k ∈ σ−1(1),

fj(x
1
k) =

((
Q|−1

[x0i ]i∈σ−1(0)
Q
)∗
x0∗
j

)
(x1

k) = x0∗
j

((
Q|−1

[x0i ]i∈σ−1(0)
Q
)
x1
k

)
= x0∗

j (0) = 0

Thus, if j ∈ σ−1(0) and k ∈ N, then fj(x
σ(k)
k ) = δj,k. Likewise, if j ∈ σ−1(1) and k ∈ N, then

fj(x
σ(k)
k ) = δj,k. Thus, (fi)

∞
i=1 are biorthogonal functionals to (x

σ(i)
i )∞i=1. Let Γ ⊆ N and x ∈ X.∥∥∥∥∥∑

i∈Γ

fi(x)x
σ(i)
i

∥∥∥∥∥ ≤
∥∥∥∥∥∥

∑
i∈Γ∩σ−1(0)

(Q|−1
[x0i ]i∈σ−1(0)

Q)∗x0∗
i (x)x0

i

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑

i∈Γ∩σ−1(1)

((I − P )|−1
[x0i ]i∈σ−1(0)

(I − P ))∗x1∗
i (x)x1

i

∥∥∥∥∥∥
≤ C

∥∥∥∥∥∑
i∈N

x0∗
i (Q|−1

[x0i ]i∈σ−1(0)
Qx)x0

i

∥∥∥∥∥+ C

∥∥∥∥∥∑
i∈N

x1∗
i ((I − P )|−1

[x0i ]i∈σ−1(0)
(I − P )x)x1

i

∥∥∥∥∥
= C

∥∥∥Q|−1
[x0i ]i∈σ−1(0)

Qx
∥∥∥+ C

∥∥∥(I − P )|−1
[x0i ]i∈σ−1(0)

(I − P )x
∥∥∥

14



≤ C
∥∥∥Q|−1

[x0i ]i∈σ−1(0)
Q
∥∥∥ ‖x‖+ C

∥∥∥(I − P )|−1
[x0i ]i∈σ−1(0)

(I − P )
∥∥∥ ‖x‖

≤ 2CE‖x‖

Thus, (xσ(i))∞i=1 is an unconditional basic sequence. By Lemma 4.4, we have that [x
σ(i)
i ]i∈N = X

and hence (xσ(i))∞i=1 is an unconditional basis of X.
For (vi)⇒(iii), we assume that (vi) holds for some E > 0. Let σ ∈ {0, 1}N. We let P be the

basis projection of (x0
i )
∞
i=1 onto X1 := [x0

i ]i∈σ−1(0) and Q be the basis projection of (x1
i )
∞
i=1 onto

Y1 := [x1
i ]i∈σ−1(0). Note that (I − P ) is the basis projection of (x0

i )
∞
i=1 onto X2 := [x0

i ]i∈σ−1(1)

and (I −Q) is the basis projection of (x1
i )
∞
i=1 onto Y2 := [x1

i ]i∈σ−1(1). We have that P |Y1 , Q|X1 ,
(I − P )|Y2 , and (I − Q)|Y1 are all invertible with bounded inverses. We let S be the frame

operator of (x
σ(i)
i , x

σ(i)∗
i )∞i=1. Then for all x ∈ X, we have that

S(x) =
∞∑
i=1

x
σ(i)∗
i (x)x

σ(i)
i =

∑
i∈σ−1(0)

x0
i (x)x0

i +
∑

i∈σ−1(1)

x1
i (x)x1

i = P (x) + (I −Q)(x).

Thus, S = P + (I −Q) is the frame operator of (x
σ(i)
i , x

σ(i)∗
i )∞i=1, and hence is well defined and

bounded. We consider the operator T = P |−1
Y1
Q|−1

X1
Q + (I − Q)|−1

X2
(I − P )|−1

Y2
(I − P ) and will

prove that T is the inverse of S and hence (x
σ(i)
i , x

σ(i)∗
i )∞i=1 would be an approximate Schauder

frame. We have that

ST = (P + (I −Q))P |−1
Y1
Q|−1

X1Q+ (P + (I −Q))(I −Q)|−1
X2

(I − P )|−1
Y2

(I − P )

= PP |−1
Y1
Q|−1

X1Q+ (I −Q)(I −Q)|−1
X2

(I − P )|−1
Y2

(I − P )

= Q|−1
X1
Q+ (I − P )|−1

Y2
(I − P ) = I.

where the second equation follows from (I −Q)P |−1
Y1

= 0 = P (I −Q)|−1
X2

and the last equation
by Lemma 4.4. Thus, ST = I. To show TS = I, we have

TS = P |−1
Y1
Q−1
X1Q(P + (I −Q)) + (I −Q)|−1

X2
(I − P )|−1

Y2
(I − P )(P + (I −Q))

= P |−1
Y1
Q−1
X1QP + (I −Q)|−1

X2
(I − P )|−1

Y2
(I − P )(I −Q)

= P−1|Y1P + (I −Q)|−1
X2

(I −Q) = I

where the last equation follows from Lemma 4.4. Hence, we have that T is the inverse of S

and (x
σ(i)
i , x

σ(i)∗
i )∞i=1 is an approximate Schauder frame. We now check that (x

σ(i)
i , x

σ(i)∗
i )∞i=1 is

an unconditonal approximate Schauder frame. Let x ∈ X and Γ ⊆ N. We have that∥∥∥∥∥∑
i∈Γ

x
σ(i)∗
i (x)x

σ(i)
i

∥∥∥∥∥ ≤
∥∥∥∥∥∥

∑
i∈Γ∩σ−1(0)

x0∗
i (x)x0

i

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑

i∈Γ∩σ−1(1)

x1∗
i (x)x1

i

∥∥∥∥∥∥
≤ C

∥∥∥∥∥∑
i∈N

x0∗
i (x)x0

i

∥∥∥∥∥+ C

∥∥∥∥∥∑
i∈N

x1∗
i (x)x1

i

∥∥∥∥∥
= 2C‖x‖.
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Thus, (x
σ(i)
i , x

σ(i)∗
i )∞i=1 is a 2C-unconditional approximate Schauder frame.

For (iii)⇒(vi), we assume that for every φ ∈ {0, 1}N, we have that (x
φ(i)
i , x

φ(i)∗
i )∞i=1 is an

unconditional approximate Schauder frame. By Theorem 2.4 there exists E ≥ 1 such that for

every φ ∈ {0, 1}N, we have that (x
φ(i)
i , x

φ(i)∗
i )∞i=1 is a E-unconditional approximate Schauder

frame whose frame operator S satisfies ‖S‖, ‖S−1‖ ≤ E. Let σ ∈ {0, 1}N and y ∈ [x0
i ]i∈σ−1(0).

We let P be the basis projection of (x0
i )
∞
i=1 onto [x0

i ]i∈σ−1(0) and Q be the basis projection of

(x1
i )
∞
i=1 onto [x1

i ]i∈σ−1(0). Thus, the frame operator of (x
σ(i)
i , x

σ(i)∗
i )∞i=1 is given by S = P+(I−Q).

There exists unique x ∈ X with ‖x‖ ≤ E‖y‖ such that S(x) = y. We have that

y = S(x) = (P + (I −Q))(Q+ (I −Q))x = PQx+ P (I −Q)x+ (I −Q)x

For the sake of contradiction, we assume that (I −Q)x 6= 0. As, y ∈ [x0
i ]i∈σ−1(0), we have that

(I−P )y = 0. Hence, 0 = (I−P )y = (I−P )(I−Q)x. Thus, 0 = (Q+(I−P ))(I−Q)x and hence
the operator (Q+(I−P )) is not invertible. This is a contradiction because (Q+(I−P )) is the

frame operator of (x
1−σ(i)
i , x

(1−σ(i))∗
i )∞i=1. Thus, (I −Q)x = 0 and x = Q(x) ∈ [x1

i ]i∈σ−1(0). This

implies P |[x1i ]i∈σ−1(0)
: [x1

i ]i∈σ−1(0)→ [x0
i ]i∈σ−1(0) is invertible and ‖P |−1

[x1i ]i∈σ−1(0)
‖ ≤ E. Likewise,

Q|[x0i ]i∈σ−1(0)
: [x0

i ]i∈σ−1(0)→ [x1
i ]i∈σ−1(0) is invertible and ‖Q|−1

[x0i ]i∈σ−1(0)
‖ ≤ E. �

5. Perturbations

Perturbation theorems are powerful tools in both creating new coordinate systems and in
showing that coordinate systems are resilient to error. We first recall the following classical
perturbation theorem for Schauder bases which is often referred to as the small perturbation
lemma (see Theorem 6.18 in [FHHMPZ]).

Theorem 5.1. Let (x0
j)
∞
j=1 be a Schauder basis for a Banach space X with biorthogonal func-

tionals (x0∗
j )∞j=1. If (x1

j)
∞
j=1 is a sequence in X such that

∑∞
j=1 ‖x0

j − x1
j‖‖x0∗

j ‖ < 1 then (x1
j)
∞
j=1

is a Schauder basis for X and is equivalent to (x0
j)
∞
j=1. That is, there are constants c, C > 0

such that c‖
∑
ajx

0
j‖ ≤ ‖

∑
ajx

1
j‖ ≤ C‖

∑
ajx

0
j‖ for all (aj)

∞
j=1 ∈ c00.

Note that if (x1
j)
∞
j=1 is a perturbation of (x0

j)
∞
j=1 in the sense of Theorem 5.1, then every weav-

ing is also a perturbation of (x0
j)
∞
j=1 and hence (x1

j)
∞
j=1 and (x0

j)
∞
j=1 are woven. In other words, a

perturbation of a Schauder basis is a Schauder basis which is woven with it. Perturbation theo-
rems have been considered for Hilbert space frames and Schauder frames as well [BCGLL, CLZ].
However, we note that perturbation theorems are particularly natural in the context of approx-
imate Schauder frames because when a Schauder frame is perturbed, one might expect the
frame operator to be perturbed as well. Hence, the perturbation of a Schauder frame would be
expected to be an approximate Schauder frame, and indeed the name “approximate Schauder
frame” was chosen for this very reason. We prove two perturbation theorems for approximate
Schauder frames and prove they result in woven approximate Schauder frames.
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Theorem 5.2. Suppose (xj, fj)
∞
j=1 is a C-suppression unconditional approximate Schauder

frame for X with frame operator S. If T is a bounded operator satisfying

‖Id− T‖ < C−1,

then (Txj, fj)
∞
j=1 is an unconditional approximate Schauder frame for X and is woven with

(xj, fj)
∞
j=1.

Proof. Set (x0
j , f

0
j )∞j=1 = (xj, fj)

∞
j=1 and (x1

j , f
1
j )∞j=1 = (Txj, fj)

∞
j=1 for ease of notation. Let

x ∈ X and σ ∈ {0, 1}N. We will first prove that the series
∑∞

j=1 f
σ(j)
j (x)x

σ(j)
j is unconditionally

Cauchy and hence the frame operator of (x
σ(j)
j , f

σ(j)
j )∞j=1 is well defined. Let ε > 0 and choose

N ∈ N so that for all J ⊆ N with min(J) ≥ N , we have that (1 + ‖T‖)‖
∑

j∈J fj(x)xj‖ < ε.

For a fixed J ⊆ N with min(J) ≥ N , we have that∥∥∥∥∑
j∈J

f
σ(j)
j (x)x

σ(j)
j

∥∥∥∥ =

∥∥∥∥ ∑
j∈J∩σ−1(0)

fj(x)xj +
∑

j∈J∩σ−1(1)

fj(x)T (xj)

∥∥∥∥
≤
∥∥∥∥ ∑
j∈J∩σ−1(0)

fj(x)xj

∥∥∥∥+

∥∥∥∥ ∑
j∈J∩σ−1(1)

fj(x)xj

∥∥∥∥‖T‖
< ε.

Hence, the frame operator of (x
σ(j)
j , f

σ(j)
j )∞j=1 is well defined and converges unconditionally.

Let σ ∈ {0, 1}N and let Sσ be the frame operator of (x
σ(j)
j , f

σ(j)
j )∞j=1. We will prove that

‖Id − SσS
−1‖ < 1, hence showing that Sσ is bounded with bounded inverse. If x ∈ X and

y = S−1x, then ∥∥(Id− SσS−1)x
∥∥ = ‖Sy − Sσy‖

=

∥∥∥∥∥
∞∑
j=1

f 0
j (y)x0

j −
∞∑
j=1

f
σ(j)
j (y)x

σ(j)
j

∥∥∥∥∥
=

∥∥∥∥∥∥
∑

j∈σ−1(1)

[
fj(y)xj − fj(y)T (xj)

]∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑

j∈σ−1(1)

fj(y)xj

∥∥∥∥∥∥ ‖Id− T‖
≤ C‖Sy‖‖Id− T‖
= C‖x‖‖Id− T‖.

Thus, ‖Id− SσS−1‖ ≤ C‖Id− T‖ < 1, and hence Sσ is bounded with bounded inverse. �

Note that Theorem 5.2 is only stated for the case that (xj, fj)
∞
j=1 is an unconditional ap-

proximate Schauder frame. It is natural to ask if the same conclusion holds for conditional
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approximate Schauder frames as well. This is not possible because if (xj, fj)
∞
j=1 is a conditional

approximate Schauder frame and α is any scalar other than 1 then (xj, fj)
∞
j=1 is not woven

with (αxj, fj)
∞
j=1. However, the following perturbation result holds for both unconditional and

conditional approximate Schauder frames.

Theorem 5.3. If (x0
j , f

0
j )∞j=1 is an approximate Schauder frame for X with frame operator S

and (x1
j , f

1
j )∞j=1 is a sequence in X ×X∗ satisfying

∞∑
j=1

(
‖f 0

j − f 1
j ‖‖x0

j‖+ ‖x0
j − x1

j‖‖f 1
j ‖
)
< ‖S−1‖−1

then (x1
j , f

1
j )∞j=1 is an approximate Schauder frame for X that is woven with (x0

j , f
0
j )∞j=1.

Proof. Let σ ∈ {0, 1}N and x ∈ X. We first show that the series
∑∞

j=1 f
σ(j)
j (x)x

σ(j)
j is Cauchy

and hence the frame operator of (x
σ(j)
j , f

σ(j)
j )∞j=1 is well defined. Let ε > 0 and choose N ∈ N

so that for all m > n ≥ N ,∥∥∥∥∥
m∑
j=n

f 0
j (x)x0

j

∥∥∥∥∥+
m∑
j=n

(‖f 0
j − f 1

j ‖‖x0
j‖+ ‖x0

j − x1
j‖‖f 1

j ‖)‖x‖ < ε.

Thus,∥∥∥∥∥
m∑
j=n

f
σ(j)
j (x)x

σ(j)
j

∥∥∥∥∥ ≤
∥∥∥∥∥

m∑
j=n

f 0
j (x)x0

j

∥∥∥∥∥+

∥∥∥∥∥∥
∑

j∈[n,m]∩σ−1(1)

[
f 0
j (x)x0

j − f 1
j (x)x1

j

]∥∥∥∥∥∥
≤

∥∥∥∥∥
m∑
j=n

f 0
j (x)x0

j

∥∥∥∥∥+
m∑
j=n

[ ∥∥f 0
j (y)x0

j − f 1
j (y)x0

j

∥∥+
∥∥f 1

j (x)x0
j − f 1

j (x)x1
j

∥∥ ]
≤

∥∥∥∥∥
m∑
j=n

f 0
j (x)x0

j

∥∥∥∥∥+
m∑
j=n

(‖f 0
j − f 1

j ‖‖x0
j‖+ ‖x0

j − x1
j‖‖f 1

j ‖)‖x‖

< ε.

Hence, the frame operator of (x
σ(j)
j , f

σ(j)
j )∞j=1 is well defined.

Let σ ∈ {0, 1}N and let T be the frame operator of (x
σ(j)
j , f

σ(j)
j )∞j=1. We will prove that

‖Id − TS−1‖ < 1, hence showing that T is bounded with bounded inverse. If x ∈ X and
y = S−1x, then∥∥(Id− TS−1)x

∥∥ = ‖Sy − Ty‖

=

∥∥∥∥∥
∞∑
j=1

f 0
j (y)x0

j −
∞∑
j=1

f
σ(j)
j (y)x

σ(j)
j

∥∥∥∥∥
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=

∥∥∥∥∥∥
∑

j∈σ−1(1)

[
f 0
j (y)x0

j − f 1
j (y)x1

j

]∥∥∥∥∥∥
≤

∞∑
j=1

‖f 0
j (y)x0

j − f 1
j (y)x1

j‖

≤
∞∑
j=1

‖f 0
j (y)x0

j − f 1
j (y)x0

j‖+ ‖f 1
j (y)x0

j − f 1
j (y)x1

j‖

≤

(
∞∑
j=1

‖f 0
j − f 1

j ‖‖x0
j‖+ ‖x0

j − x1
j‖‖f 1

j ‖

)
‖y‖

≤

(
∞∑
j=1

‖f 0
j − f 1

j ‖‖x0
j‖+ ‖x0

j − x1
j‖‖f 1

j ‖

)
‖S−1‖‖x‖.

Thus, ‖Id − TS−1‖ ≤
(∑∞

j=1 ‖f 0
j − f 1

j ‖‖x0
j‖+ ‖x0

j − x1
j‖‖f 1

j ‖
)
‖S−1‖ < 1 proving that T is

bounded with bounded inverse. �
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