arXiv:2212.00947v1 [math.FA] 2 Dec 2022

QUANTITATIVE BOUNDS FOR UNCONDITIONAL PAIRS OF FRAMES
PETER BALAZS, DANIEL FREEMAN, ROXANA POPESCU, AND MICHAEL SPECKBACHER

ABSTRACT. We formulate a quantitative finite-dimensional conjecture about frame multi-
pliers and prove that it is equivalent to Conjecture 1 in [SB2]. We then present solutions
to the conjecture for certain classes of frame multipliers. In particular, we prove that there
is a universal constant x > 0 so that for all C,8 > 0 and N € N the following is true.
Let (x;)7, and (f;)}; be sequences in a finite dimensional Hilbert space which satisfy
[lz;]] = ||f;]] for all 1 < j < N and

N
H Zaj<x,fj>xjH <Clzf,  forallze Y and |e;| = 1.
j=1

If the frame operator for (fj)évzl has eigenvalues A; > ... > Ay and Ay < M1 Z;Ai1 Aj
then (fj)j-vzl has Bessel bound x32C. The same holds for (z;)X

=1

1. INTRODUCTION

A frame for a finite dimensional or infinite dimensional separable Hilbert space H is a
sequence of vectors (xj)ﬁ-v:l C H (where N € N or N = 0o) for which there exist constants
0 < A < B, called frame bounds, such that

N
(1.1) Allz]|* < Z [(x, 2;)|> < B||z|?, for all x € H.

i=1

The ratio B/A is called the condition number of (z;)¥

N, We say that (z;)} is Bessel if

it satisfies the upper bound of (1.1) for some B < oo and call B a Bessel bound. A frame
is called tight if it has condition number 1. The analysis operator of X = (xj)j-vzl is the
map Ux : H — (3 given by Ux(x) = ((z,z;))}., for all z € H and the frame operator of
X = (x;)}L, is the positive operator Sx : H — H given by Sx = UyxUx. Note that (z;)},
has Bessel bound B if and only if ||Sx|| = ||Ux]||* < B.
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For a choice of £ = (g;)}.; with |g;| = 1 for all 1 < j < N we let D¢ : €5 — (] be the
map Dg(b;), = (e;0;)72,. It immediately follows that if X = (z;)%, and F = (f;)}_, are
both sequences in H with Bessel bound B and analysis operators Uy and Ugr then

N

(12)  |U%DeUpz| = H S eile, f)agl| < Bzl forall 2 € H and all € = ().
j=1

This idea can be generalized further through the introduction of frame multipliers [B1, SB1].

Let X = (z;)L, and F' = (f;)}_, be sequences in a Hilbert space H, and let m = (m;)_, be

a sequence of scalars called the symbol. The corresponding frame multiplier M,, x p : H — H

is given by
N

(1.3) M,y x pr = Zm]—(x, fivxj, for all x € H.
j=1

These operators are closely related to the concept of weighted frames [BAG], i.e. sequences
(djx;), where (d;) is a sequence of scalars and (z;) is a sequence of vectors. Note that if (d;),

is a sequence of non-zero scalars then the frame multipliers M and My, (z,),(f;) are

) (d52;),d; " )
equal. However, the sequences (d;z;)_; and (d]_ fj)j-vzl may have very different frame bounds

N

from (z;)}, and (f;)}Z;. The following conjectures that if we are given an unconditionally

convergent multiplier then we can shift the weights to get two Bessel sequences.

Conjecture 1.1 ([SB2|). Let M,, x,r be an unconditionally convergent multiplier on a sep-
arable Hilbert space H. Then there exists sequences of scalars (c;)52, and (d;)32, such that
¢c;dj = my for all j € N and both (c;x;)32, and (d;f;)32, are Bessel.

This idea of shifting weights is also considered in [HLLL| for the case where the multi-
plier is constant 1 and the sequences satisfy a reproducing formula. Suppose that (:L’j);?‘;l
and (f;)52, are sequences in a Hilbert space H such that x = ) (z, f;)z;, and the series
converges unconditionally for all # € H. Then there exists a sequence (d;)?2; such that
(djz;)52, and (d_j_1 fi)32, are both frames of H if and only if the induced operator valued
map M5 (a;)32, = > a;f; ® x; is a completely bounded map between the C*-algebra
and the C*-algebra B(H) (where B(H) is the space of bounded operators on H) [HLLL].

Many problems for infinite-dimensional Hilbert spaces have corresponding quantitative
problems for finite-dimensional Hilbert spaces. Notably, the Kadison-Singer Problem was a
famous and long open question about operators on infinite dimensional Hilbert spaces which
was shown to be equivalent to the Feichtinger Conjecture [CCLV], the Paving Conjecture [A],
Weaver’s Conjecture [W], and the Bourgain-Tzafriri Conjecture [BT]. Marcus, Spielman, and

Srivastava [MSS] solved the Kadison-Singer Problem by proving a very strong quantitative
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and finite-dimensional theorem which directly implied Weaver’s Conjecture and has since
been applied to solve many other problems in applied harmonic analysis and approximation
theory [NOUJ[FS][LT][DKU]. In Section 2 we show that Conjecture 1.1 is equivalent to the

following quantitative and finite-dimensional conjecture.

Conjecture 1.2. There exists a universal constant k > 0 so that the following holds. Let

C >0 andlet M, \~ .\~ (v be a multiplier on a finite dimensional Hilbert space H
(m3)3:17(x1)3:17(f3)3:1

such that

N
(1.4) H S eyl fa|| < Clel, foralle € H and || = 1.
j=1

Then there exists sequences of constants (c;)"y and (d;)Ny such that c¢;d; = m; for all

1 <j < N and both (c;x;)iL, and (d;f;)}L, are Ck-Bessel.

By expressing Conjecture 1.1 in a quantitative and finite dimensional way, we hope to
open the problem to new methods and techniques. Conjecture 1.1 has been solved for a
large number of important classes of sequences [SB2|. Likewise, we will solve Conjecture 1.2
for certain important cases. Our results are distinctly different from what has been done
in infinite-dimensions, and we will make use of probabilistic methods which are inherently
finite-dimensional. The following theorem solves Conjecture 1.1 in the case where the largest
eigenvalue of the frame operator is proportional to the average of the eigenvalues.

Theorem 1.3. Let C, 3 >0 and N, M € N. Suppose that (z;)_, and (f;)[L, are sequences

in an M-dimensional Hilbert space which satisfy ||z;|| = || f;|| for all1 < j < N and

N
(1.5) H Zq(a:, five;|| < Ozl for all z € 03" and |g;| = 1.

j=1
If the frame operator for (f;)i, has eigenvalues Ny > ... > Xy satisfying Ay < % Z;‘il Aj
then (f;)%_, has Bessel bound 31Ky *3*°C, where K is the universal constant given by Khint-
chine’s Inequality (Theorem 4.4). The same holds for (x;)},.

Note that if ( fj)j-vzl is a frame of an M-dimensional Hilbert space and A\ > ... > A\, are

the eigenvalues of the frame operator of (f;)}_; then (f;)}.; has condition number Ay /Ay

Thus, if (z;)}., and (f;)}L, are frames with condition number 8 and ||z;|| = || f;]| for all
1 < j < N then (z;), and (f;)", both have Bessel bound 2L K *3?C where C' satisfies

(1.5). This gives the following corollary for pairs of equi-norm tight frames.



4 PETER BALAZS, DANIEL FREEMAN, ROXANA POPESCU, AND MICHAEL SPECKBACHER

Corollary 1.4. Let (:)sj)j-vzl and (fj)é-vzl be tight frames for a finite dimensional Hilbert space
with ||z;|| = || f;]| for all1 < j < N. Let C > 0 be the least constant such that

H i%’(% fi)w;

Then, the tight frames (x;)i, and (f;)2, have the same frame bound B = M~" Zjvzl |25
and C < B < %Kf‘lC.

< C|l=||, for all x € 6" and |e;] = 1.

In Theorem 1.3 we made an assumption about the eigenvalues of the frame operators for

(z;))2, and (f;)}Z;. In the following theorem we do not assume anything about the frame

N

structure of (x;)}; and (f;)%, but we require a uniform lower bound [|z;||[| f;]| > b for all

1 < j < N. This gives a quantitative version of one direction of Proposition 1.1 in [SB2].

Proposition 1.5. Let b,C' > 0 and N € NU {oo}. Let ()i, (f;)}L, be sequences in a
Hilbert space H such that ||x;||| f;|| > b for all1 < j < N and that

N
H 3 e, fj>xjH <Cllzll,  forallz € H and |&j| = 1.
7j=1

Then (djx;)I, and (d;' ;)12 have Bessel bound b=*C?* where d; = ||a;|| 72| f]|*/* for all
1<j<N.

Note that the Bessel bound given in Proposition 1.5 scales as C? instead of C' as in
Conjecture 1.2. Furthermore, we give an example in Section 3 which shows that the scaling
of C? is necessary here. However, this does not contradict Conjecture 1.2 as the choice of
(d;)iZ, specified in Proposition 1.5 is not necessarily the optimal choice for Conjecture 1.2.

The paper is organized as follows. In Section 2 we prove that Conjecture 1.1 is equivalent
to Conjecture 1.2. In Section 3 we use the Parallelogram Law to give a short proof of

Proposition 1.5. We prove our main results, including Theorem 1.3, in Section 4.

2. FRAME MULTIPLIERS IN FINITE DIMENSIONS

Our goal for this section is to prove that Conjecture 1.1 on unconditionally convergent
frame multipliers for infinite dimensional Hilbert spaces is equivalent to Conjecture 1.2 on

uniform quantitative bounds for frame multipliers on finite dimensional Hilbert spaces.

Theorem 2.1. The following are equivalent.

(1) For every unconditonally convergent frame multiplier M)z, (25052 (f)32, 0N @ Sep-

o
j=1

arable Hilbert space H there exists sequences of constants (c;)32, and (d;)32, such
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that c;d; = my for all j € N and both (c;x;)32, and (d;f;)32, are Bessel.

(2) There ezists a universal constant k > 0 so that the following holds. Let C' > 0 and
let My, oy (5, be a multiplier on a finite dimensional Hilbert space H such
that

H S eyl fa|| < Clel, foralle € H and || = 1.
7j=1

Then there exists sequences of scalars (¢;)'—, and (d;)"_, such that c;d; = my for all

1 <j < n and both (cjz;)_y and (d;f;)}, are Cr-Bessel.

Proof. We first assume that (2) is true and will prove that (1) is true. Let Mim;)22 1 (2)320,(£)32

be an unconditionally convergent frame multiplier on a separable Hilbert space H. That is,
(2.1) Zajmj (z, fi)x, converges for all x € H and |g;| = 1.
j=1

For each m,n € N and (g;)”

j=m

with |e;] = 1 for all m < j < n we let T( _ be the fi-

-
nite rank operator on H defined by Tion () = > iemEimy{x, fi)x; for all x € H. Let
x € H and for the sake of contradiction we assume that SUD(- )

=m

Ty, (2)]| = oo.
By piecing finite sequences together, we can create an infinite sequence (g;)32, such that
SUP,,<p | Tieyn_,, (x)|| = o0o. This contradicts that > oy eymy(z, fj)x; converges. Hence, for
all z € H there exists C; > 0 so that ||T(o)»_ (2)[| < Cyl[z| for all (¢)}_,,. By the Uniform

Boundedness Principle there exists a uniform constant C' > 0 so that [|T{.n_ (2)|| < C|z||
for all (¢)7_,, and all z € H. Thus, we have for all N € N that

N
(2.2) H Zajmj<m, fj>a:jH < C||x|, for all z € span, ;- yx; and [g;| = 1.
j=1

By (2), there exists (cy;)7—; and (dn;)7—; such that cy;dy; = m; for all j € N and
both (cnj2;), and (dy,;f;)), are kC-Bessel. Without loss of generality, we assume that
m; # 0, x; # 0, and f; # 0 for all j € N. Thus, we have that |cy ;| < &C|x;|~ and
ldn ;| < &C|| f;||7* for all j € N. As ey jdy; = m;, we have for all j € N that

(2.3)  |myls CTHf1 < lewyl < Clws |7, and |myls™ C™H layll < ldws| < wCIIHIT

Thus, for each j € N we have positive uniform upper and lower bounds on (cy;)3_; and
(dnj)¥=1- After passing to a subsequence, we may assume that there exists (c;)32; and

(d;)32, so that limy o ey = ¢; and limy oo dy; = d; for all j € N. By (2.3) we have
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that ¢; and d; are non-zero and that cjd_j = m,; for all j € N. For all n < N we have that
(envjzj)j=; and (dy;f;)j=; are KC-Bessel. Thus by taking the limit, we have for all n € N
that (c;x;)7_, and (d;f;)}—, are kC-Bessel. Hence, (c;r;)32, and (d;f;);2, are xC-Bessel.
This proves (1).

We now assume that (2) is false. Thus, for all k& € N there exists C > 0 and a multiplier

() () K )y O finite dimensional Hilbert space Hy such that

Nk
H Zsjmk,j@, ey xe sl < Cillzll, for all z € Hj, and |¢;| = 1,
j=1
but that for all sequences of scalars (c;)7%, and (d;)j%, such that cjd; =m; forall 1 < j <my
we have that either (cjzy;)5L, or (d;fi ;)55 is not kCj-Bessel. By scaling both (zy, ;)7 and
(fi)3, by G '? we have that M,
that

n n, 18 a multiplier on H such
k) (O P (2 £ )T P k

H Zeﬂmk] (z, Cy 1/2f1w> 1/25%7]‘

< ||z, for all x € Hy and || =1

but that for all sequences of scalars (¢;)7%, and (d;)7%, such that ¢;d; = m; forall 1 < j <k
we have that either (c]Ck /2:B;”)nk or (d-C’k 1/2fk7j)nk is not k-Bessel.
We now let H = @72 | Hy, and let Mmj) © @) ()32 be the multiplier on H which is the

direct sum of the multipliers (M(m (O P ) (M )

by t € N, where, if £ € N, and 1 < j < ny are such that ¢t = Zlel n; +j then m; = my, ;,
Ty = C’k_lﬂxm and f, = C'k_lﬂfjk. Let x € H and let ()72, be a sequence of scalars with
ey =*1forallt € N. For each k € Nand 1 < j < ny we let 5 ; = &, where t = Zfz_ll n;+7J.
Thus, we have that

) ht That is, we enumerate

H Z€tmt z, ft Ty

i H igmmkﬂpmx e xk,jHQ

[ee]
<D I1Puall = il
k=1

Thus, the multiplier M, )0 | (2,)22, ()52, 18 unconditionally convergent. However, there does
not exist scalars (¢;)%°, and (d;)$, such that c;d; = m, for all t € N and both (¢,2,)2°, and
(dyfy)2, are Bessel. Thus we have that (1) is false.

O
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3. LOWER BOUNDS AND THE PARALLELOGRAM LAW

The parallelogram law states that if (xj)ﬁ-v:l is a sequence of vectors in a Hilbert space
then
N , N
(3.1) 2 S || D = Dl
ej=41  j=1 j=1

That is, if (g;)}_, is a sequence of independent mean-0 random variables with [e;] = 1 then

we have the following formula for the expectation.

N
>l
j=1

Note that Conjecture 1.2 concerns pairs of vectors (z;)L, and (f;)7, such that the inequality

N 2
(32) EH Zgjxj =
j=1

I ijlej (x, fj)z;|| < Cllz|| is satisfied for all vectors x and all |¢;| = 1. This inequality
naturally lends itself to the parallelogram law. We now restate and prove Proposition 1.5
from the introduction.

Proposition 3.1. Let b,C' > 0 and N € NU {oo}. Let (z;)iL,, (f;)}L, be sequences in a
Hilbert space H such that ||x;|||| f;]] > b for all 1 < j < N and that

N
(3.3) H S el fia|| < Cllall,  for allw € H and |g5] = 1.
7=1

Then (d;z;), and (d;' f;)%, have Bessel bound b='C?* where d; = ||x;||*2|| f;||*/* for all
1<j<N.

Proof. We first assume that N € N is finite. Let (q—)j-vzl be a sequence of independent mean-0
random variables with |¢;| = 1. Let x € H. We have that,

N 2
Cllol? 2 B >t i)

_EHZ@ x, fj d:z:JH2

Mz

|(z, d; i 0l2||z]||2 by the parallelogram law,

Jj=1

N
> d ) Pl

J=1



8 PETER BALAZS, DANIEL FREEMAN, ROXANA POPESCU, AND MICHAEL SPECKBACHER

>bZ| d;' f)I?

This gives that (d;'f;)}., has Bessel bound b='C?. For all |¢;| = 1, the adjoint of the
operator S(z) = Z] 1€j{@, fj)x; is the operator S*(f) = Zjvzl g;(f,z;)f;. Thus, the roles
of (f;)IL, and (z;)_, may be interchanged. The same argument we used for (al_j_1 fi)iL, now
proves that (d;z;)}_; has Bessel bound b~'C?.

For the case N = oo, we have that (d;z;)32, and (d;'f;)52, have Bessel bound b~'C?
if and only if (d;x;)7_, and (d;'f;)"_; have Bessel bound b~'C? for all n € N. Thus, the
infinite case follows from the finite case.

U

For the infinite case, it was previously known that if (x;)32, and (f;)72, satisfy the hypoth-
esis of Proposition 3.1 then (d;z;)"_, and (d; f]) _, are both Bessel [SB2]. The contribution
of Proposition 3.1 is that it provides an explicit Bessel bound.

Note that the Bessel bound given in Proposition 3.1 scales as C? instead of C' as in

Conjecture 1.2. The following example shows that this is necessary.

Example 3.2. Let (e;)Y., be the unit vector basis of €5 . We let x; = e; and f; = ey for all
1 <5< N. Then we hcwe that,

N
(3.4) H Zgj<x7€1>€jH < N'Y2|z||, for all x € €5 and |g;| = 1.
=1

Note that equality in (3.4) is achieved for x = e;. We have the values b = 1 and C = N'/?
for Proposition 3.1, which gives that (x;)_, and (f;)’_, must have Bessel bound b='C? = N.

Furthermore, N is exactly the Bessel bound of (f;)., = (e1)’,.

We have that the sequence of pairs (e;, el)év , in Example 3.2 satisfies the unconditionality
inequality with constant N2 and yet (el)N has Bessel bound N. However, we can shift
weights so that (N'/%e;); and (N~'/*e;)Y, each have Bessel bound N'/2. This shows
that it may be necessary to shift weights to minimize the maximum of the Bessel bounds of
(djz;), and (d;'f;)%, even when [|z;]| = || f;]| for all 1 < j < N.

4. PAIRS OF EQUI-NORM FRAMES

The flexibility of choosing a sequence of scalars (d;)Y_; is the most challenging aspect of

7j=1
Conjecture 1.2. One reason for the difficulty is that the Bessel bounds for (d;z;)L, and
(d; PRy ;=1 are global properties that apply to all z € H, where as modifying the value for

dy, for some fixed 1 < k < N makes a local change in one dimension for the frame operators
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for (djz;)}, and (d;'f;)),. Intuitively, a common problem in many different areas of
mathematics is that it is difficult to optimize a global property through local modifications.
Another difficulty is that the optimal Bessel bound of the sequence (d; :5]) 1 1s a continuous
but it is not a smooth function of (d])j»vzl. Indeed, for
the simplest case where (z;)_; is an orthonormal basis, we have that the optimal Bessel

function of the variables (d;)I,,
bound for (d;z;)"., is B = maxi<j<y |d;]. In Proposition 3.1 we explicitly choose d; =
251172\ f;]|*/? by using the local hypothesis ||z;||||f;|| > b for all 1 < j < N. This works
well for large b > 0, but (as shown in Example 3.2) this choice of (d;)}_; may yield very

large Bessel bound when b is small relative to the unconditionality constant C'. Because it is

N
7=1

optimal choice is d; = d . = 1. That is, choosmg d; = dj = 1 will minimize the maximum

very difficult to choose the sequence (d;)5_; in general, we Wlll identify a situation where the

of the Bessel bounds of (d;x;)X.; and (d; f]) . We will make use of the following simple
lemma.

Lemma 4.1. Let (:)5]) | be a finite frame for €31 with frame operator Sx, upper frame bound
B, and lower frame bound A. Then the following hold:

(i) trace(Sx) = 311, [l
(i1)) AM < trace(Sx) < BM,
(iii) If (x;)3., is B-tight, then trace(Sx) = BM.

(i) Let Ux be the analysis operator of (x j)jzl which has the following matrixz form,

UX: . = |1 Cp ... Cypg

| | L v

Then, the sequence of columns (cj)j]‘il of Ux 1is a basis for the column space and has upper

frame bound B and lower frame bound A.

Proof. The operator Sy : €31 — ¢} is defined by Sx(x) = Z?{:l(x, z;)x; for all x € (. Let
(ex)2L, be an orthonormal basis for /7. Then,

N M
trace(Sx) = |(€k,Ij>\2 = Z Z| eka% Z H%Hz

This gives (i). Conditions (ii) and (iii) follow easily (see [B2, Cor. 5.2]).
Note that the upper frame bound B is the largest eigenvalue of the frame operator Sy =

UxUx and is hence the square of the largest singular value of Ux. As Ux and Uy have the
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same non-zero singular values, B is the upper frame bound of (cj)jj‘/il. Likewise, A is the
lower frame bound of (¢;)7.;. O
The following proposition gives a case where the optimal choice for (dj)j-vzl is constant 1.
That is, we provide a situation where the local optimization of having ||d;z;|| = ||d;" f;]| gives
the global optimization of minimizing max{B;x, B4-1r} where B,y is the Bessel bound of
(djz;), and By-1p is the Bessel bound of (d;lfj)j-v:l. Furthermore, this minimizes the
condition numbers for both (d;z;)L, and (d;lfj)jyzl to be 1 as in the sense of weighted
frames [BAG].

Proposition 4.2. Let (x;)}., and (f;)}L, be finite frames for € with ||z;|| = || f;||, for all
1< j<N. Let A> 0 be a lower frame bound for either (xj)ﬁ-v:l or (fj)évzl. Then for all
non-zero scalars (d;)i_,, if B is a Bessel bound for both (d;x;)L, and (dijfj)jyzl then B must
be at least A.

In particular, we have that if (x;)}, and (f;)}L, are both tight frames then they are both
A-tight for some A > 0 and

A= min max{Byx, Bs-1r},
d=(d;) N,

where Byx s the optimal Bessel bound of (djxj)é-v:l and Bg-1p is the optimal Bessel bound

of (dj* fi)1y.

Proof. Without loss of generality, we assume that A is a lower frame bound for (z;)}_,. Let
(d;);Z, be a sequence of non-zero scalars. Let Sgx be the frame operator of (d;z;)., and
Sy-1p be the frame operator of (dijfj)é-vzl. We will prove that the trace of Syx + Sg-1p is at
least 2AM. Lemma 4.1 (ii) then gives that the minimal Bessel bound of either (d;z;)., or
(dijfj)é-v:l must be greater than or equal to A.

By Lemma 4.1 (i) we have that

n n

trace(Sax) = D |dil*llzll?,  and  trace(Sqip) = D 141

Jj=1 J=1

By adding these equations together, we get that

N
trace(Sax + Sa-1) = ) |d;Pllz;|* + s =21 £

J=1

N
=D (PP +1d,2)llwsl* as flay]l = [ fill for all 1 < j < N,
j=1
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n
> Z 2||z; 7 as t* +¢? is minimized at ¢ = 1,
J=1

= 2 trace(Sx) by Lemma 4.1 (i),
>2AM by Lemma 4.1 (ii).

Thus trace(Syx + Sq-1r) > 2AM and our proof is complete. O

Proposition 4.2 gives a general situation where we know the optimal values for the sequence

(d;)=,. That is, if (x;))2, and (f;))L, are both tight frames with ||lz;|| = || f;||, for all

1 < j < N then choosing d; =1 for all 1 < 7 < N will minimize the maximum of the Bessel
bounds of (d;z;)", and (d;"'f;)",. Other than specific examples, this is the only general

situation where the optimal values for (dj)é-vzl are known, and we will solve Conjecture 1.2

completely for this case. In particular, Theorem 4.6 gives that if such frames (xj)é-v:l and

(f;)iL, satisfy (1.4) for some constant C' > 0 then (z;)%_, and (f;)’_, both have Bessel

bound %K 4C. Note that this case includes many important examples of frames, including
the finite unit norm tight frames. A sequence (x;)i_, in £} is called a finite unit norm
tight frame or FUNTF if (x;)_, is a tight frame and [|z;|| = 1 for all 1 < j < N. Finite
unit norm tight frames (FUNTFs) were introduced in [BF], and are of particular interest in
both theory and applications [BH][CFK][CMS]. If (z;)}_, is a FUNTF for £ then its frame
bound is exactly NM~!. An equi-norm tight frame is a tight frame where all the vectors

have the same norm, and in finite dimensions is just a rescaling of a FUNTF. This gives the

N

following corollary for Proposition 3.1 for the case that ()}, and (f;)_, are frames which

are both equi-norm and tight.

Corollary 4.3. Let C > 1 and M,N € N. Suppose that (x;))_, and (f;)}_, are both

equi-norm tight frames with

H ﬁ:ﬁj@a fi)w;

Then (dx;)Ny and (d7 f;)X., have Bessel bound NY2M~Y2C where d = ||z || /2| f1]|/2.

< Oz, for all x € 63" and |g;| = 1.

Proof. As ()}, and (f;)}_, are both equi-norm tight frames there exists a constant b > 0
so that ||z;||[|f;|| = b for all 1 < 57 < N. We apply Proposition 3.1 to obtain that the
sequences (dz;)M, and (d7' f;)}L; have Bessel bound b~'C?. As (b~"/?dx;), is a FUNTF,
it has frame bound NM~'. By scaling, (dz;)}, is a tight frame with frame bound bNM .
This gives that bNM ™! < b~'C% Hence, b < N"V2M'Y2C. As (dx;)}L; is a tight frame
with frame bound bNM ™" we get that (dx;)}_; has Bessel bound N'/2M~Y/2C. Likewise,

- i) as besse oun - .
(d7'£;)Y_, has Bessel bound N/2M~1/2C 0
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One interesting aspect of Corollary 4.3 is that it gives a Bessel bound for the case of equi-
norm tight frames which does not explicitly state the value of ||z;|| and ||f;||. The Bessel
bound given in Corollary 4.3 depends on both N and M. There exist length N FUNTFs for
(3 for all N > M, and hence the Bessel bound NY/2M~1/2C' can be arbitrarily large. One
of our goals for the remainder of this section is to improve this by giving a uniform Bessel
bound which is independent of N and M. Our proof will be probabilistic and will rely on
the following case of Khintchine’s Inequality (see for example Lemma 6.29 in [FHHSPZ] for
the general statement).

Theorem 4.4 (Khintchine’s Inequality). There ezists a constant Ky > 0 such that for all
M e N and all scalars (a;)},,

2NZ ‘Zéa]

§j=+1 j=1

/2

> K, (Z |a]|2>

That is, if (6;)}_, is a sequence of independent symmetric random variables with 6; = +1,

then we have the following lower bound for the expectation,

N
E’ Z 5jaj
j=1

We use the notation K for the constant in Khintchine’s inequality because it gives a

> Kl[(a;)354 ] -

bound on the ¢;-norm. Khintchine’s inequality may be used to compare any pair of ¢, and
¢,norms for 1 < p,q < oo (with a constant which depends on p, ¢), but we will only need
it for comparing the ¢; and /5 norms. We are now ready to prove the following solution to
Conjecture 1.2 for the case of families of equi-norm vectors. We will extend this to more
general sets of vectors in Theorem 4.6.

Lemma 4.5. Let C, D, > 0 and N € N. Suppose that (:Bj)j-vzl and (fj)j-vzl are both

sequences in a finite dimensional Hilbert space which satisfy ||x;|| = || f;]| = D for all 1 <
71 < N and

N

H Zq(a:, fiva|| < Ozl for allz € 03" and |g;| = 1.

j=1
If the frame operator for (f])N has eigenvalues \y > ... > Ay satisfying A\ < ]@ ijl
then (f]) 1 has Bessel bound 27K 162C, where K is the constant in Khintchine’s inequality.

szewzse if the frame opemtor for (:5])] 1 has eigenvalues N\y > ... > Ay which satisfy

A; then (z;)%. has Bessel bound 2L K1 *3%C.
Z] 1 J

Proof. Let M € N and assume that (z;)}; and (f;)}_, are sequences of vectors in £3'. Let

S > 0 be such that \; < M1 Z]Nil Aj where A\ > ... > Ay are the eigenvalues of the
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frame operator of (f;)}_;. Let [a;;]nxar be the analysis matrix for the frame (f;)[L, and let

[b;i]amrx v be the synthesis matrix for the frame (:)sj)ﬁvzl That is,

- fl - a1y ... Aim | | | b171 e bl,N
- fo = a1 ... G2M boa ... ban
= ) . ) , and Ty T ... TN| =
' . |
- fN - ani ... AN M bM,l e bM,N

We now claim that the following two conditions are satisfied.
(1) M a2) 2= )2 =Dforall 1 <i<N,

=1 %ij =195
(ii) Thé sequience of colilmn]s of [a; ;]nxar has Bessel bound SNM ' D2
Note that (i) is simply that ||z;|| = || f;|| = D, for all 1 < j < N. To prove (ii) we note
that A\; is the optimal Bessel bound of ( fj)j-vzl and hence \; is the optimal Bessel bound
of the columns of [a; j]nxa by Lemma 4.1. By taking the trace of the frame operator of
(f;)); we have that 311, X, = S0 [|£5]> = ND2. As, Ay < BM~1 32, \; we have that
A < BNM~'D?. Thus, we have proven that (ii) is true. The rest of the proof is concerned
with bounding ANM~'D? in terms of C' and 3.
Let (d;)}2, be a sequence of independent symmetric random variables with §; = 1. By

taking expectation we calculate,

N M N M
EZ ‘ Zéjam- = ZE’ Z(Sjai,j
i=1 j=1

i=1  j=1

N /M 1/2
> K Z (Z |ai,j|2> by Khintchine’s Inequality,

N
=K,) D=KDN by (i)

Thus, we may fix a particular realization for (d;)}2, such that

(41 S[Sde

i=1  j=1

> K1DN.

For each o > 0, we define a subset I, C {1,2,..., N} by,

M
I, = {z e{l,.,N}: ‘Z@'@m 2 DO‘}-
j=1

By (ii), the vector (Z;‘il dja;;) is in the column space of [a; j|nxn and has norm at most

BY2DN'Y2. We will now calculate a lower bound for the cardinality of I,.
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2>1/2
o N\ 2
= <Z‘Z5j% )
icla  j=1
M
> L7V ‘ > djai
icla  j=1

N M M

= ‘]a‘—1/2 (Z‘Zéjai’j —Z’Zéjai,j )
i=1  j=1 i2l, j=1
N M

> |12 (Z ‘ > djai

i=1  j=1

N M
BY2DNYZ > <Z } > gjai
=1 j=1

by Cauchy-Schwarz,

- (N - IIaI)Da)

> |1,|"1/? (KlDN (N — \Ia\)Da) by (4.1),
> |I,|7Y*(K, — a)DN.

Thus, we have that |I,| > 871(K; — a)?N. We now apply similar estimates to the matrix
;] amrxn restricted to the columns in 1,,.

Let (vj)jj‘/il be a sequence of independent symmetric random variables with v; = £1. By
taking the expectation we calculate,

M M
E) ‘ > b = E‘ > b

i€lo  j=1 i€l j=1
o 1/2
> K, Z (Z |bj7i‘2> by Khintchine’s Inequality,
i€la \j=1

= KlZD by (1),

i€l

= DKi|l,| > DB 'K (K, — a)*N.

Thus, we may fix a particular realization for (v;);Z; such that

(4.2) Z ’ i%‘bi,j

i€ly  j=1

Z 5_1DK1(K1 - Oé)2N.
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We have that = := (M~Y2§;)M, and f := (M~"/2~;)}, are unit norm vectors in £3’. For
1 <i < N, we define

L { phase((z, fi) (@i, )L, if (x, fi) (wi, f) #0,

1, otherwise.

Thus, we have that

Clall 2 | i< S

v

Zgz xz; 2 as Hf” = 17

N
=1

.

N
2 oo f

=1

=M 12‘25&,]
=1 j=1
> M~ Z‘Zéa”

Z% j5i
Z%N

i€l j=1
ST W) i
Zela
> aD?3” 1K1(K1 —a)’)NM™! by (4.2),
4
= 2—7D2ﬁ—1KfNM—1 for a = K, /3.
Thus, BDNM~' < Z3°CK* as ||z = 1. From (ii) we deduce that (f;); has Bessel
bound 2 3?CK; ™. O
In Lemma 4.5 we considered frames (z;), and (f;)}_; such that [|z;|| = || f;|| = D for all
1 <j < N. We will now extend this to the case where ||z;|| = || f;| for all 1 < j < N but
we no longer require that ||x;|| = ||z;|| when ¢ # j. The following theorem is a restatement

of Theorem 1.3 from the introduction along with some immediate corollaries.

Theorem 4.6. Let C,D,3 > 0 and N € N. Suppose that (x;)L, and (f;)L, are both
sequences in a Hilbert space H which satisfy ||z;|| = || f;|| for all1 < j < N and

H ﬁ:ga’@, fi)x;

< C|=|l, forallx € H and || = 1.
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If the frame operator for (f;)i, has eigenvalues Ny > ... > Xy satisfying Ay < % Z;‘il A
then (f;)}_, has Bessel bound 2L Ky *3°C, where K is the constant in Khintchine’s inequality.
In particular, if (f;)%, has condition number (3 then (f;)).; has Bessel bound 2K *3*C
and if (f;)}L, is a tzght frame then (f;)_, has Bessel bound ZKC.
szewzse if the frame operator for (:5]) 1 has eigenvalues \y > ... > Ay which satisfy
Z 1 Aj then (z;)"_, has Bessel bound ZKB2C.

Proof. Let 8 > 0 be such that \; < M1 Z;‘il Aj where Ay > ... > Ay are the eigenvalues
of the frame operator of (f;)N;

We first will assume that the values ||z;]|* = | f;/|> are non-zero and rational for all
1 < j < N. Thus, there exists K,kq,...,kxy € N such that ||z;]|> = ||f;||* = %’ for all
1 <j < N. We have that

k; N

N
ZZ x,k; 1/2 1/293] = Z(x, fiej, for all z € H.

]:1 =1 ]:1

kj \N ki \N
Thus, the systems ((1 /kijxj) ’ ) and ((1 /kij fj> ’ ) are each equi-norm sequences
i=1/ j=1 i=1/ j=1

with the same frame operator as (z;)_, and (f;)}_, respectively.
We now claim for all z € H that

TR ) SR

j=1 i=1

<7

for all |g; ;| = 1.

kj \N
Assuming the claim, we have by Lemma 4.5 that ((, /% fj> ' ) and consequently also
170 =1

(f;)}-, have Bessel bound 2T K7 *42C. -

We now prove the claim that (4.3) is satisfied. Let x € H. We will first prove that the set
{Zjvzl aj(z, fi)z; o laj] < 1} is contained in conv {Zjvzl gz, fi)xy o g = 1} , the convex
hull of the vectors Z;VZI ej(x, fj)z;. To see this, let (a;)_; be a sequence of scalars and
assume without loss of generality that 0 < |a;| < |ag] < ... < Jay| < 1. We construct a
sequence (b)Y in [0,1] by by = |a1|, by = bs = (|ag| — |a1])/2, by = bs = (|as| — |aa|)/2,...,
bon = bani1 = (1 —|an|)/2. Foreach 1 < j < N and 1 <i < 2N + 1 we now give ¢;;
with |e;,] = 1. For 1 < i < 2j —1 we let ¢;; = phase(a;), and for 25 < i < 2N +1
we let £;;, = (—1)". The telescoping aspect of the construction gives that ZzNH b; = 1.
Furthermore, Z2N+1 biej; = a;, for all 1 < j < N. We have that

2N+1 N 2N+1

ZbZEM:Bf] =3 bigjilw, f)zy Za]a:f]

j=1 =1
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This proves that {Zjv_l ai(z, fi)z;: la;] < 1} C conv{Zj.V_ gilx, fi)xy o g = 1}.
Moreover, every vector Y1, b; Z] L E5.ilx, f)x; in conv {ZJ g, fi)xg gl = 1} has

the following bound on its norm.

Zb Zsﬂzf] Zsﬂzf]

L
<D b
L
Z iCllz]l = Cll.
Thus, we have for all sequences (a;)L, with |a;| <1 that || Zjvzl aj(z, fj)x;l| < C|lz||. To
prove our claim that (4.3) is satisfied we let a; = Zf;l 6]'71']{7;1, for all 1 < j < N. Note that
la;] < 1forall 1 <j < N. Thus we have that

H ZZ% ) k_1/2 —1/2

7j=1 i=1

(zz:gﬂ ) T, fi)x;
= H Z:%(i’% fi)z;

Thus, we have proven our claim that (4.3) is satisfied and the proof is complete for the case

< Cl|z||.

that ||a;||* = || f;]|* are non-zero and rational for all 1 < j < N.
We now consider the general case where ||z;]|> = ||f;||* for all 1 < j < N, but they
may not all be rational. We may throw out any terms which are zero, and thus we assume

without loss of generality that |z;||* = ||f;]|* are non-zero for all 1 < j < N. Let ¢ > 0

and let A\; > ... > Ay be the eigenvalues for the frame operator of ( fj)N We may choose
scalars (ozj)j . which are arbitrarily close to 1 so that ||a;z;||* = |l f;||* is rational for all
1 <5< N and

N
H Zej<ajfj,x>ajxj < (C+¢)lz|, for all z € H and |¢;| = 1.

j=1
Furthermore, we may assume that if v; > ... > 7, are the eigenvalues of the frame operator
for (v f;)5—; then (1 4+¢)7'y; < X < (1 +¢)y, for all 1 <i < M. Hence, by our previous
argument, (v; f;)"_; has Bessel bound 2 K *3%(14¢)*(C'+¢). As the scalars (o;)}_; may be
chosen arbitrarily close to 1 we have that (f;)’_; has Bessel bound 2T K1 *3%(1 +¢)*(C +¢).
As € > 0 was arbitrary, (f;); has Bessel bound 2 K;*52C. O
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