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QUANTITATIVE BOUNDS FOR UNCONDITIONAL PAIRS OF FRAMES

PETER BALAZS, DANIEL FREEMAN, ROXANA POPESCU, AND MICHAEL SPECKBACHER

Abstract. We formulate a quantitative finite-dimensional conjecture about frame multi-

pliers and prove that it is equivalent to Conjecture 1 in [SB2]. We then present solutions

to the conjecture for certain classes of frame multipliers. In particular, we prove that there

is a universal constant κ > 0 so that for all C, β > 0 and N ∈ N the following is true.

Let (xj)
N
j=1

and (fj)
N
j=1

be sequences in a finite dimensional Hilbert space which satisfy

‖xj‖ = ‖fj‖ for all 1 ≤ j ≤ N and

∥

∥

∥

N
∑

j=1

εj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖, for all x ∈ ℓM

2
and |εj | = 1.

If the frame operator for (fj)
N
j=1

has eigenvalues λ1 ≥ ... ≥ λM and λ1 ≤ βM−1
∑M

j=1
λj

then (fj)
N
j=1

has Bessel bound κβ2C. The same holds for (xj)
N
j=1

.

1. Introduction

A frame for a finite dimensional or infinite dimensional separable Hilbert space H is a

sequence of vectors (xj)
N
j=1 ⊂ H (where N ∈ N or N = ∞) for which there exist constants

0 < A ≤ B, called frame bounds, such that

(1.1) A‖x‖2 ≤

N
∑

i=1

|〈x, xj〉|
2 ≤ B‖x‖2, for all x ∈ H.

The ratio B/A is called the condition number of (xj)
N
j=1. We say that (xj)

N
j=1 is Bessel if

it satisfies the upper bound of (1.1) for some B < ∞ and call B a Bessel bound. A frame

is called tight if it has condition number 1. The analysis operator of X = (xj)
N
j=1 is the

map UX : H → ℓN2 given by UX(x) = (〈x, xj〉)
N
j=1 for all x ∈ H and the frame operator of

X = (xj)
N
j=1 is the positive operator SX : H → H given by SX = U∗

XUX . Note that (xj)
N
j=1

has Bessel bound B if and only if ‖SX‖ = ‖UX‖
2 ≤ B.
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For a choice of E = (εj)
N
j=1 with |εj| = 1 for all 1 ≤ j ≤ N we let DE : ℓN2 → ℓN2 be the

map DE(bj)
N
j=1 = (εjbj)

N
j=1. It immediately follows that if X = (xj)

N
j=1 and F = (fj)

N
j=1 are

both sequences in H with Bessel bound B and analysis operators UX and UF then

(1.2) ‖U∗
XDEUFx‖ =

∥

∥

∥

N
∑

j=1

εj〈x, fj〉xj

∥

∥

∥
≤ B‖x‖, for all x ∈ H and all E = (εj)

N
j=1.

This idea can be generalized further through the introduction of frame multipliers [B1, SB1].

Let X = (xj)
N
j=1 and F = (fj)

N
j=1 be sequences in a Hilbert space H , and let m = (mj)

N
j=1 be

a sequence of scalars called the symbol. The corresponding frame multiplier Mm,X,F : H → H

is given by

(1.3) Mm,X,Fx =

N
∑

j=1

mj〈x, fj〉xj , for all x ∈ H .

These operators are closely related to the concept of weighted frames [BAG], i.e. sequences

(djxj), where (dj) is a sequence of scalars and (xj) is a sequence of vectors. Note that if (dj)
N
j=1

is a sequence of non-zero scalars then the frame multipliersM
m,(djxj),(d

−1

j fj)
andMm,(xj),(fj) are

equal. However, the sequences (djxj)
n
j=1 and (d

−1

j fj)
N
j=1 may have very different frame bounds

from (xj)
N
j=1 and (fj)

N
j=1. The following conjectures that if we are given an unconditionally

convergent multiplier then we can shift the weights to get two Bessel sequences.

Conjecture 1.1 ([SB2]). Let Mm,X,F be an unconditionally convergent multiplier on a sep-

arable Hilbert space H. Then there exists sequences of scalars (cj)
∞
j=1 and (dj)

∞
j=1 such that

cjdj = mj for all j ∈ N and both (cjxj)
∞
j=1 and (djfj)

∞
j=1 are Bessel.

This idea of shifting weights is also considered in [HLLL] for the case where the multi-

plier is constant 1 and the sequences satisfy a reproducing formula. Suppose that (xj)
∞
j=1

and (fj)
∞
j=1 are sequences in a Hilbert space H such that x =

∑

〈x, fj〉xj , and the series

converges unconditionally for all x ∈ H . Then there exists a sequence (dj)
∞
j=1 such that

(djxj)
∞
j=1 and (dj

−1
fj)

∞
j=1 are both frames of H if and only if the induced operator valued

map M
F,X(aj)

∞
j=1 =

∑

ajfj ⊗ xj is a completely bounded map between the C∗-algebra ℓ∞

and the C∗-algebra B(H) (where B(H) is the space of bounded operators on H) [HLLL].

Many problems for infinite-dimensional Hilbert spaces have corresponding quantitative

problems for finite-dimensional Hilbert spaces. Notably, the Kadison-Singer Problem was a

famous and long open question about operators on infinite dimensional Hilbert spaces which

was shown to be equivalent to the Feichtinger Conjecture [CCLV], the Paving Conjecture [A],

Weaver’s Conjecture [W], and the Bourgain-Tzafriri Conjecture [BT]. Marcus, Spielman, and

Srivastava [MSS] solved the Kadison-Singer Problem by proving a very strong quantitative
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and finite-dimensional theorem which directly implied Weaver’s Conjecture and has since

been applied to solve many other problems in applied harmonic analysis and approximation

theory [NOU][FS][LT][DKU]. In Section 2 we show that Conjecture 1.1 is equivalent to the

following quantitative and finite-dimensional conjecture.

Conjecture 1.2. There exists a universal constant κ > 0 so that the following holds. Let

C > 0 and let M(mj)Nj=1
,(xj)Nj=1

,(fj)Nj=1

be a multiplier on a finite dimensional Hilbert space H

such that

(1.4)
∥

∥

∥

N
∑

j=1

εjmj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖, for all x ∈ H and |εj| = 1.

Then there exists sequences of constants (cj)
N
j=1 and (dj)

N
j=1 such that cjdj = mj for all

1 ≤ j ≤ N and both (cjxj)
N
j=1 and (djfj)

N
j=1 are Cκ-Bessel.

By expressing Conjecture 1.1 in a quantitative and finite dimensional way, we hope to

open the problem to new methods and techniques. Conjecture 1.1 has been solved for a

large number of important classes of sequences [SB2]. Likewise, we will solve Conjecture 1.2

for certain important cases. Our results are distinctly different from what has been done

in infinite-dimensions, and we will make use of probabilistic methods which are inherently

finite-dimensional. The following theorem solves Conjecture 1.1 in the case where the largest

eigenvalue of the frame operator is proportional to the average of the eigenvalues.

Theorem 1.3. Let C, β > 0 and N,M ∈ N. Suppose that (xj)
N
j=1 and (fj)

N
j=1 are sequences

in an M-dimensional Hilbert space which satisfy ‖xj‖ = ‖fj‖ for all 1 ≤ j ≤ N and

(1.5)
∥

∥

∥

N
∑

j=1

εj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖, for all x ∈ ℓM2 and |εj| = 1.

If the frame operator for (fj)
N
j=1 has eigenvalues λ1 ≥ ... ≥ λM satisfying λ1 ≤ β

M

∑M
j=1 λj

then (fj)
N
j=1 has Bessel bound

27
4
K−4

1 β2C, where K1 is the universal constant given by Khint-

chine’s Inequality (Theorem 4.4). The same holds for (xj)
N
j=1.

Note that if (fj)
N
j=1 is a frame of an M-dimensional Hilbert space and λ1 ≥ ... ≥ λM are

the eigenvalues of the frame operator of (fj)
N
j=1 then (fj)

N
j=1 has condition number λ1/λM .

Thus, if (xj)
N
j=1 and (fj)

N
j=1 are frames with condition number β and ‖xj‖ = ‖fj‖ for all

1 ≤ j ≤ N then (xj)
N
j=1 and (fj)

N
j=1 both have Bessel bound 27

4
K−4

1 β2C where C satisfies

(1.5). This gives the following corollary for pairs of equi-norm tight frames.
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Corollary 1.4. Let (xj)
N
j=1 and (fj)

N
j=1 be tight frames for a finite dimensional Hilbert space

with ‖xj‖ = ‖fj‖ for all 1 ≤ j ≤ N . Let C > 0 be the least constant such that

∥

∥

∥

N
∑

j=1

εj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖, for all x ∈ ℓM2 and |εj| = 1.

Then the tight frames (xj)
N
j=1 and (fj)

N
j=1 have the same frame bound B = M−1

∑N
j=1 ‖xj‖

2

and C ≤ B ≤ 27
4
K−4

1 C.

In Theorem 1.3 we made an assumption about the eigenvalues of the frame operators for

(xj)
N
j=1 and (fj)

N
j=1. In the following theorem we do not assume anything about the frame

structure of (xj)
N
j=1 and (fj)

N
j=1 but we require a uniform lower bound ‖xj‖‖fj‖ ≥ b for all

1 ≤ j ≤ N . This gives a quantitative version of one direction of Proposition 1.1 in [SB2].

Proposition 1.5. Let b, C > 0 and N ∈ N ∪ {∞}. Let (xj)
N
j=1, (fj)

N
j=1 be sequences in a

Hilbert space H such that ‖xj‖‖fj‖ ≥ b for all 1 ≤ j ≤ N and that

∥

∥

∥

N
∑

j=1

εj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖, for all x ∈ H and |εj| = 1.

Then (djxj)
N
j=1 and (d−1

j fj)
N
j=1 have Bessel bound b−1C2 where dj = ‖xj‖

−1/2‖fj‖
1/2 for all

1 ≤ j ≤ N .

Note that the Bessel bound given in Proposition 1.5 scales as C2 instead of C as in

Conjecture 1.2. Furthermore, we give an example in Section 3 which shows that the scaling

of C2 is necessary here. However, this does not contradict Conjecture 1.2 as the choice of

(dj)
N
j=1 specified in Proposition 1.5 is not necessarily the optimal choice for Conjecture 1.2.

The paper is organized as follows. In Section 2 we prove that Conjecture 1.1 is equivalent

to Conjecture 1.2. In Section 3 we use the Parallelogram Law to give a short proof of

Proposition 1.5. We prove our main results, including Theorem 1.3, in Section 4.

2. Frame multipliers in finite dimensions

Our goal for this section is to prove that Conjecture 1.1 on unconditionally convergent

frame multipliers for infinite dimensional Hilbert spaces is equivalent to Conjecture 1.2 on

uniform quantitative bounds for frame multipliers on finite dimensional Hilbert spaces.

Theorem 2.1. The following are equivalent.

(1) For every unconditonally convergent frame multiplier M(mj )∞j=1
,(xj)∞j=1

,(fj)∞j=1
on a sep-

arable Hilbert space H there exists sequences of constants (cj)
∞
j=1 and (dj)

∞
j=1 such
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that cjdj = mj for all j ∈ N and both (cjxj)
∞
j=1 and (djfj)

∞
j=1 are Bessel.

(2) There exists a universal constant κ > 0 so that the following holds. Let C > 0 and

let M(mj )nj=1
,(xj)nj=1

,(fj)nj=1
be a multiplier on a finite dimensional Hilbert space H such

that
∥

∥

∥

n
∑

j=1

εjmj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖, for all x ∈ H and |εj| = 1.

Then there exists sequences of scalars (cj)
n
j=1 and (dj)

n
j=1 such that cjdj = mj for all

1 ≤ j ≤ n and both (cjxj)
n
j=1 and (djfj)

n
j=1 are Cκ-Bessel.

Proof. We first assume that (2) is true and will prove that (1) is true. LetM(mj )∞j=1
,(xj)∞j=1

,(fj)∞j=1

be an unconditionally convergent frame multiplier on a separable Hilbert space H . That is,

(2.1)
∞
∑

j=1

εjmj〈x, fj〉xj converges for all x ∈ H and |εj| = 1.

For each m,n ∈ N and (εj)
n
j=m with |εj| = 1 for all m ≤ j ≤ n we let T(ε)nj=m

be the fi-

nite rank operator on H defined by T(ε)nj=m
(x) =

∑n
j=m εjmj〈x, fj〉xj for all x ∈ H . Let

x ∈ H and for the sake of contradiction we assume that sup(εj)nj=m
‖T(ε)nj=m

(x)‖ = ∞.

By piecing finite sequences together, we can create an infinite sequence (εj)
∞
j=1 such that

supm≤n ‖T(ε)nj=m
(x)‖ = ∞. This contradicts that

∑∞
j=1 εjmj〈x, fj〉xj converges. Hence, for

all x ∈ H there exists Cx > 0 so that ‖T(ε)nj=m
(x)‖ ≤ Cx‖x‖ for all (ε)nj=m. By the Uniform

Boundedness Principle there exists a uniform constant C > 0 so that ‖T(ε)nj=m
(x)‖ ≤ C‖x‖

for all (ε)nj=m and all x ∈ H . Thus, we have for all N ∈ N that

(2.2)
∥

∥

∥

N
∑

j=1

εjmj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖, for all x ∈ span1≤j≤Nxj and |εj| = 1.

By (2), there exists (cN,j)
n
j=1 and (dN,j)

n
j=1 such that cN,jdN,j = mj for all j ∈ N and

both (cN,jxj)
N
j=1 and (dN,jfj)

N
j=1 are κC-Bessel. Without loss of generality, we assume that

mj 6= 0, xj 6= 0, and fj 6= 0 for all j ∈ N. Thus, we have that |cN,j| ≤ κC‖xj‖
−1 and

|dN,j| ≤ κC‖fj‖
−1 for all j ∈ N. As cN,jdN,j = mj , we have for all j ∈ N that

(2.3) |mj|κ
−1C−1‖fj‖ ≤ |cN,j| ≤ κC‖xj‖

−1, and |mj|κ
−1C−1‖xj‖ ≤ |dN,j| ≤ κC‖fj‖

−1.

Thus, for each j ∈ N we have positive uniform upper and lower bounds on (cN,j)
∞
N=1 and

(dN,j)
∞
N=1. After passing to a subsequence, we may assume that there exists (cj)

∞
j=1 and

(dj)
∞
j=1 so that limN→∞ cN,j = cj and limN→∞ dN,j = dj for all j ∈ N. By (2.3) we have
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that cj and dj are non-zero and that cjdj = mj for all j ∈ N. For all n ≤ N we have that

(cN,jxj)
n
j=1 and (dN,jfj)

n
j=1 are κC-Bessel. Thus by taking the limit, we have for all n ∈ N

that (cjxj)
n
j=1 and (djfj)

n
j=1 are κC-Bessel. Hence, (cjxj)

∞
j=1 and (djfj)

∞
j=1 are κC-Bessel.

This proves (1).

We now assume that (2) is false. Thus, for all k ∈ N there exists Ck > 0 and a multiplier

M(mk,j)
nk
j=1

,(xk,j)
nk
j=1

,(fjk )
nk
j=1

on a finite dimensional Hilbert space Hk such that

∥

∥

∥

nk
∑

j=1

εjmk,j〈x, fk,j〉xk,j

∥

∥

∥
≤ Ck‖x‖, for all x ∈ Hk and |εj| = 1,

but that for all sequences of scalars (cj)
nk
j=1 and (dj)

nk
j=1 such that cjdj = mj for all 1 ≤ j ≤ nk

we have that either (cjxk,j)
nk
j=1 or (djfk,j)

nk
j=1 is not kCk-Bessel. By scaling both (xk,j)

nk
j=1 and

(fjk)
nk
j=1 by C

−1/2
k we have that M

(mk,j)
nk
j=1

,(C
−1/2
k xk,j)

nk
j=1

,(C
−1/2
k fjk )

nk
j=1

is a multiplier on Hk such

that
∥

∥

∥

nk
∑

j=1

εjmk,j〈x, C
−1/2
k fk,j〉C

−1/2
k xk,j

∥

∥

∥
≤ ‖x‖, for all x ∈ Hk and |εj| = 1,

but that for all sequences of scalars (cj)
nk
j=1 and (dj)

nk
j=1 such that cjdj = mj for all 1 ≤ j ≤ k

we have that either
(

cjC
−1/2
k xk,j

)nk

j=1
or
(

djC
−1/2
k fk,j

)nk

j=1
is not k-Bessel.

We now let H = ⊕∞
k=1Hk and let M(mj )∞j=1

,(xj)∞j=1
,(fk,j)

∞

j=1
be the multiplier on H which is the

direct sum of the multipliers
(

M
(mk,j )

nk
j=1

,(C
−1/2
k xk,j)

nk
j=1

,(C
−1/2
k fk,j)

nk
j=1

)∞

k=1
. That is, we enumerate

by t ∈ N, where, if k ∈ N, and 1 ≤ j ≤ nk are such that t =
∑k−1

i=1 ni + j then mt = mk,j,

xt = C
−1/2
k xk,j and ft = C

−1/2
k fjk . Let x ∈ H and let (εt)

∞
t=1 be a sequence of scalars with

εt = ±1 for all t ∈ N. For each k ∈ N and 1 ≤ j ≤ nk we let εk,j = εt where t =
∑k−1

i=1 ni+ j.

Thus, we have that

∥

∥

∥

∞
∑

t=1

εtmt〈x, ft〉xt

∥

∥

∥

2

=
∞
∑

k=1

∥

∥

∥

nk
∑

j=1

εk,jmk,j〈PHk
x, C

−1/2
k fk,j〉C

−1/2
k xk,j

∥

∥

∥

2

≤

∞
∑

k=1

‖PHk
x‖2 = ‖x‖2.

Thus, the multiplier M(mt)∞t=1
,(xt)∞t=1

,(ft)∞t=1
is unconditionally convergent. However, there does

not exist scalars (ct)
∞
t=1 and (dt)

∞
t=1 such that ctdt = mt for all t ∈ N and both (ctxt)

∞
t=1 and

(dtft)
∞
t=1 are Bessel. Thus we have that (1) is false.

�



QUANTITATIVE BOUNDS FOR UNCONDITIONAL PAIRS OF FRAMES 7

3. Lower bounds and the parallelogram law

The parallelogram law states that if (xj)
N
j=1 is a sequence of vectors in a Hilbert space

then

(3.1) 2−N
∑

εj=±1

∥

∥

∥

N
∑

j=1

εjxj

∥

∥

∥

2

=

N
∑

j=1

‖xj‖
2.

That is, if (εj)
N
j=1 is a sequence of independent mean-0 random variables with |εj| = 1 then

we have the following formula for the expectation.

(3.2) E

∥

∥

∥

N
∑

j=1

εjxj

∥

∥

∥

2

=

N
∑

j=1

‖xj‖
2.

Note that Conjecture 1.2 concerns pairs of vectors (xj)
N
j=1 and (fj)

N
j=1 such that the inequality

‖
∑N

j=1 εj〈x, fj〉xj‖ ≤ C‖x‖ is satisfied for all vectors x and all |εj| = 1. This inequality

naturally lends itself to the parallelogram law. We now restate and prove Proposition 1.5

from the introduction.

Proposition 3.1. Let b, C > 0 and N ∈ N ∪ {∞}. Let (xj)
N
j=1, (fj)

N
j=1 be sequences in a

Hilbert space H such that ‖xj‖‖fj‖ ≥ b for all 1 ≤ j ≤ N and that

(3.3)
∥

∥

∥

N
∑

j=1

εj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖, for all x ∈ H and |εj| = 1.

Then (djxj)
N
j=1 and (d−1

j fj)
N
j=1 have Bessel bound b−1C2 where dj = ‖xj‖

−1/2‖fj‖
1/2 for all

1 ≤ j ≤ N .

Proof. We first assume that N ∈ N is finite. Let (εj)
N
j=1 be a sequence of independent mean-0

random variables with |εj| = 1. Let x ∈ H . We have that,

C2‖x‖2 ≥ E

∥

∥

∥

N
∑

j=1

εj〈x, fj〉xj

∥

∥

∥

2

= E

∥

∥

∥

N
∑

j=1

εj〈x, d
−1
j fj〉djxj

∥

∥

∥

2

=

N
∑

j=1

|〈x, d−1
j fj〉|

2d2j‖xj‖
2 by the parallelogram law,

=
N
∑

j=1

|〈x, d−1
j fj〉|

2‖xj‖‖fj‖
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≥ b

N
∑

j=1

|〈x, d−1
j fj〉|

2.

This gives that (d−1
j fj)

N
j=1 has Bessel bound b−1C2. For all |εj| = 1, the adjoint of the

operator S(x) =
∑N

j=1 εj〈x, fj〉xj is the operator S∗(f) =
∑N

j=1 εj〈f, xj〉fj. Thus, the roles

of (fj)
N
j=1 and (xj)

N
j=1 may be interchanged. The same argument we used for (dj

−1
fj)

N
j=1 now

proves that (djxj)
N
j=1 has Bessel bound b−1C2.

For the case N = ∞, we have that (djxj)
∞
j=1 and (d−1

j fj)
∞
j=1 have Bessel bound b−1C2

if and only if (djxj)
n
j=1 and (d−1

j fj)
n
j=1 have Bessel bound b−1C2 for all n ∈ N. Thus, the

infinite case follows from the finite case.

�

For the infinite case, it was previously known that if (xj)
∞
j=1 and (fj)

∞
j=1 satisfy the hypoth-

esis of Proposition 3.1 then (djxj)
n
j=1 and (d−1

j fj)
n
j=1 are both Bessel [SB2]. The contribution

of Proposition 3.1 is that it provides an explicit Bessel bound.

Note that the Bessel bound given in Proposition 3.1 scales as C2 instead of C as in

Conjecture 1.2. The following example shows that this is necessary.

Example 3.2. Let (ej)
N
j=1 be the unit vector basis of ℓN2 . We let xj = ej and fj = e1 for all

1 ≤ j ≤ N . Then we have that,

(3.4)
∥

∥

∥

N
∑

j=1

εj〈x, e1〉ej

∥

∥

∥
≤ N1/2‖x‖, for all x ∈ ℓN2 and |εj| = 1.

Note that equality in (3.4) is achieved for x = e1. We have the values b = 1 and C = N1/2

for Proposition 3.1, which gives that (xj)
N
j=1 and (fj)

N
j=1 must have Bessel bound b−1C2 = N .

Furthermore, N is exactly the Bessel bound of (fj)
N
j=1 = (e1)

N
j=1.

We have that the sequence of pairs (ej , e1)
N
j=1 in Example 3.2 satisfies the unconditionality

inequality with constant N1/2 and yet (e1)
N
j=1 has Bessel bound N . However, we can shift

weights so that (N1/4ej)
N
j=1 and (N−1/4e1)

N
j=1 each have Bessel bound N1/2. This shows

that it may be necessary to shift weights to minimize the maximum of the Bessel bounds of

(djxj)
N
j=1 and (d−1

j fj)
N
j=1 even when ‖xj‖ = ‖fj‖ for all 1 ≤ j ≤ N .

4. Pairs of equi-norm frames

The flexibility of choosing a sequence of scalars (dj)
N
j=1 is the most challenging aspect of

Conjecture 1.2. One reason for the difficulty is that the Bessel bounds for (djxj)
N
j=1 and

(d−1
j fj)

N
j=1 are global properties that apply to all x ∈ H , where as modifying the value for

dk for some fixed 1 ≤ k ≤ N makes a local change in one dimension for the frame operators
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for (djxj)
N
j=1 and (d−1

j fj)
N
j=1. Intuitively, a common problem in many different areas of

mathematics is that it is difficult to optimize a global property through local modifications.

Another difficulty is that the optimal Bessel bound of the sequence (djxj)
N
j=1 is a continuous

function of the variables (dj)
N
j=1, but it is not a smooth function of (dj)

N
j=1. Indeed, for

the simplest case where (xj)
N
j=1 is an orthonormal basis, we have that the optimal Bessel

bound for (djxj)
N
j=1 is B = max1≤j≤N |dj|. In Proposition 3.1 we explicitly choose dj =

‖xj‖
−1/2‖fj‖

1/2 by using the local hypothesis ‖xj‖‖fj‖ ≥ b for all 1 ≤ j ≤ N . This works

well for large b > 0, but (as shown in Example 3.2) this choice of (dj)
N
j=1 may yield very

large Bessel bound when b is small relative to the unconditionality constant C. Because it is

very difficult to choose the sequence (dj)
N
j=1 in general, we will identify a situation where the

optimal choice is dj = dj
−1

= 1. That is, choosing dj = dj
−1

= 1 will minimize the maximum

of the Bessel bounds of (djxj)
N
j=1 and (dj

−1
fj)

N
j=1. We will make use of the following simple

lemma.

Lemma 4.1. Let (xj)
N
j=1 be a finite frame for ℓM2 with frame operator SX , upper frame bound

B, and lower frame bound A. Then the following hold:

(i) trace(SX) =
∑N

j=1 ‖xj‖
2,

(ii) AM ≤ trace(SX) ≤ BM ,

(iii) If (xj)
N
j=1 is B-tight, then trace(SX) = BM .

(iv) Let UX be the analysis operator of (xj)
N
j=1 which has the following matrix form,

UX =













− x1 −

− x2 −
...

− xN −













N×M

=







| | |

c1 c2 . . . cM

| | |







N×M

Then, the sequence of columns (cj)
M
j=1 of UX is a basis for the column space and has upper

frame bound B and lower frame bound A.

Proof. The operator SX : ℓM2 → ℓM2 is defined by SX(x) =
∑N

j=1〈x, xj〉xj for all x ∈ ℓM2 . Let

(ek)
M
k=1 be an orthonormal basis for ℓM2 . Then,

trace(SX) =

M
∑

k=1

N
∑

j=1

|〈ek, xj〉|
2 =

N
∑

j=1

M
∑

k=1

|〈ek, xj〉|
2 =

N
∑

j=1

‖xj‖
2.

This gives (i). Conditions (ii) and (iii) follow easily (see [B2, Cor. 5.2]).

Note that the upper frame bound B is the largest eigenvalue of the frame operator SX =

U∗
XUX and is hence the square of the largest singular value of UX . As UX and U∗

X have the
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same non-zero singular values, B is the upper frame bound of (cj)
M
j=1. Likewise, A is the

lower frame bound of (cj)
M
j=1. �

The following proposition gives a case where the optimal choice for (dj)
N
j=1 is constant 1.

That is, we provide a situation where the local optimization of having ‖djxj‖ = ‖d−1
j fj‖ gives

the global optimization of minimizing max{BdX , Bd−1F} where BdX is the Bessel bound of

(djxj)
N
j=1 and Bd−1F is the Bessel bound of (d−1

j fj)
N
j=1. Furthermore, this minimizes the

condition numbers for both (djxj)
N
j=1 and (d−1

j fj)
N
j=1 to be 1 as in the sense of weighted

frames [BAG].

Proposition 4.2. Let (xj)
N
j=1 and (fj)

N
j=1 be finite frames for ℓM2 with ‖xj‖ = ‖fj‖, for all

1 ≤ j ≤ N . Let A > 0 be a lower frame bound for either (xj)
N
j=1 or (fj)

N
j=1. Then for all

non-zero scalars (dj)
N
j=1, if B is a Bessel bound for both (djxj)

N
j=1 and ( 1

dj
fj)

N
j=1 then B must

be at least A.

In particular, we have that if (xj)
N
j=1 and (fj)

N
j=1 are both tight frames then they are both

A-tight for some A > 0 and

A = min
d=(dj)Nj=1

max{BdX , Bd−1F},

where BdX is the optimal Bessel bound of (djxj)
N
j=1 and Bd−1F is the optimal Bessel bound

of (d−1
j fj)

N
j=1.

Proof. Without loss of generality, we assume that A is a lower frame bound for (xj)
N
j=1. Let

(dj)
N
j=1 be a sequence of non-zero scalars. Let SdX be the frame operator of (djxj)

N
j=1 and

Sd−1F be the frame operator of ( 1
dj
fj)

N
j=1. We will prove that the trace of SdX + Sd−1F is at

least 2AM . Lemma 4.1 (ii) then gives that the minimal Bessel bound of either (djxj)
N
j=1 or

( 1
dj
fj)

N
j=1 must be greater than or equal to A.

By Lemma 4.1 (i) we have that

trace(SdX) =
n
∑

j=1

|dj|
2‖xj‖

2, and trace(Sd−1F ) =
n
∑

j=1

|dj|
−2‖fj‖

2.

By adding these equations together, we get that

trace(SdX + Sd−1F ) =

N
∑

j=1

|dj|
2‖xj‖

2 + |dj|
−2‖fj‖

2

=
N
∑

j=1

(|dj|
2 + |dj|

−2)‖xj‖
2 as ‖xj‖ = ‖fj‖ for all 1 ≤ j ≤ N,
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≥
n
∑

j=1

2‖xj‖
2 as t2 + t−2 is minimized at t = 1,

= 2 trace(SX) by Lemma 4.1 (i),

≥ 2AM by Lemma 4.1 (ii).

Thus trace(SdX + Sd−1F ) ≥ 2AM and our proof is complete. �

Proposition 4.2 gives a general situation where we know the optimal values for the sequence

(dj)
N
j=1. That is, if (xj)

N
j=1 and (fj)

N
j=1 are both tight frames with ‖xj‖ = ‖fj‖, for all

1 ≤ j ≤ N then choosing dj = 1 for all 1 ≤ j ≤ N will minimize the maximum of the Bessel

bounds of (djxj)
N
j=1 and (d−1

j fj)
N
j=1. Other than specific examples, this is the only general

situation where the optimal values for (dj)
N
j=1 are known, and we will solve Conjecture 1.2

completely for this case. In particular, Theorem 4.6 gives that if such frames (xj)
N
j=1 and

(fj)
N
j=1 satisfy (1.4) for some constant C > 0 then (xj)

N
j=1 and (fj)

N
j=1 both have Bessel

bound 27
4
K−4

1 C. Note that this case includes many important examples of frames, including

the finite unit norm tight frames. A sequence (xj)
N
j=1 in ℓM2 is called a finite unit norm

tight frame or FUNTF if (xj)
N
j=1 is a tight frame and ‖xj‖ = 1 for all 1 ≤ j ≤ N . Finite

unit norm tight frames (FUNTFs) were introduced in [BF], and are of particular interest in

both theory and applications [BH][CFK][CMS]. If (xj)
N
j=1 is a FUNTF for ℓM2 then its frame

bound is exactly NM−1. An equi-norm tight frame is a tight frame where all the vectors

have the same norm, and in finite dimensions is just a rescaling of a FUNTF. This gives the

following corollary for Proposition 3.1 for the case that (xj)
N
j=1 and (fj)

N
j=1 are frames which

are both equi-norm and tight.

Corollary 4.3. Let C ≥ 1 and M,N ∈ N. Suppose that (xj)
N
j=1 and (fj)

N
j=1 are both

equi-norm tight frames with

∥

∥

∥

N
∑

j=1

εj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖, for all x ∈ ℓM2 and |εj| = 1.

Then (dxj)
N
j=1 and (d−1fj)

N
j=1 have Bessel bound N1/2M−1/2C where d = ‖x1‖

−1/2‖f1‖
1/2.

Proof. As (xj)
N
j=1 and (fj)

N
j=1 are both equi-norm tight frames there exists a constant b > 0

so that ‖xj‖‖fj‖ = b for all 1 ≤ j ≤ N . We apply Proposition 3.1 to obtain that the

sequences (dxj)
N
j=1 and (d−1fj)

N
j=1 have Bessel bound b−1C2. As (b−1/2dxj)

N
j=1 is a FUNTF,

it has frame bound NM−1. By scaling, (dxj)
N
j=1 is a tight frame with frame bound bNM−1.

This gives that bNM−1 ≤ b−1C2. Hence, b ≤ N−1/2M1/2C. As (dxj)
N
j=1 is a tight frame

with frame bound bNM−1 we get that (dxj)
N
j=1 has Bessel bound N1/2M−1/2C. Likewise,

(d−1fj)
N
j=1 has Bessel bound N1/2M−1/2C. �



12 PETER BALAZS, DANIEL FREEMAN, ROXANA POPESCU, AND MICHAEL SPECKBACHER

One interesting aspect of Corollary 4.3 is that it gives a Bessel bound for the case of equi-

norm tight frames which does not explicitly state the value of ‖xj‖ and ‖fj‖. The Bessel

bound given in Corollary 4.3 depends on both N and M . There exist length N FUNTFs for

ℓM2 for all N ≥ M , and hence the Bessel bound N1/2M−1/2C can be arbitrarily large. One

of our goals for the remainder of this section is to improve this by giving a uniform Bessel

bound which is independent of N and M . Our proof will be probabilistic and will rely on

the following case of Khintchine’s Inequality (see for example Lemma 6.29 in [FHHSPZ] for

the general statement).

Theorem 4.4 (Khintchine’s Inequality). There exists a constant K1 > 0 such that for all

M ∈ N and all scalars (aj)
N
j=1,

2−N
∑

δj=±1

∣

∣

∣

N
∑

j=1

δjaj

∣

∣

∣
≥ K1

(

N
∑

j=1

|aj|
2

)1/2

.

That is, if (δj)
N
j=1 is a sequence of independent symmetric random variables with δj = ±1,

then we have the following lower bound for the expectation,

E

∣

∣

∣

N
∑

j=1

δjaj

∣

∣

∣
≥ K1

∥

∥(aj)
N
j=1

∥

∥

ℓN
2

.

We use the notation K1 for the constant in Khintchine’s inequality because it gives a

bound on the ℓ1-norm. Khintchine’s inequality may be used to compare any pair of ℓp and

ℓq-norms for 1 ≤ p, q < ∞ (with a constant which depends on p, q), but we will only need

it for comparing the ℓ1 and ℓ2 norms. We are now ready to prove the following solution to

Conjecture 1.2 for the case of families of equi-norm vectors. We will extend this to more

general sets of vectors in Theorem 4.6.

Lemma 4.5. Let C,D, β > 0 and N ∈ N. Suppose that (xj)
N
j=1 and (fj)

N
j=1 are both

sequences in a finite dimensional Hilbert space which satisfy ‖xj‖ = ‖fj‖ = D for all 1 ≤

j ≤ N and
∥

∥

∥

N
∑

j=1

εj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖, for all x ∈ ℓM2 and |εj| = 1.

If the frame operator for (fj)
N
j=1 has eigenvalues λ1 ≥ ... ≥ λM satisfying λ1 ≤ β

M

∑M
j=1 λj

then (fj)
N
j=1 has Bessel bound

27
4
K−4

1 β2C, where K1 is the constant in Khintchine’s inequality.

Likewise, if the frame operator for (xj)
N
j=1 has eigenvalues λ1 ≥ ... ≥ λM which satisfy

λ1 ≤
β
M

∑M
j=1 λj then (xj)

N
j=1 has Bessel bound 27

4
K−4

1 β2C.

Proof. Let M ∈ N and assume that (xj)
N
j=1 and (fj)

N
j=1 are sequences of vectors in ℓM2 . Let

β > 0 be such that λ1 ≤ βM−1
∑M

j=1 λj where λ1 ≥ ... ≥ λM are the eigenvalues of the
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frame operator of (fj)
N
j=1. Let [ai,j ]N×M be the analysis matrix for the frame (fj)

N
j=1 and let

[bj,i]M×N be the synthesis matrix for the frame (xj)
N
j=1. That is,













− f1 −

− f2 −
...

− fN −













=













a1,1 . . . a1,M

a2,1 . . . a2,M
...

. . .
...

aN,1 . . . aN,M













, and







| | |

x1 x2 . . . xN

| | |






=













b1,1 . . . b1,N

b2,1 . . . b2,N
...

. . .
...

bM,1 . . . bM,N













We now claim that the following two conditions are satisfied.

(i) (
∑M

j=1 a
2
i,j)

1/2 = (
∑M

j=1 b
2
j,i)

1/2 = D for all 1 ≤ i ≤ N ,

(ii) The sequence of columns of [ai,j]N×M has Bessel bound βNM−1D2.

Note that (i) is simply that ‖xj‖ = ‖fj‖ = D, for all 1 ≤ j ≤ N . To prove (ii) we note

that λ1 is the optimal Bessel bound of (fj)
N
j=1 and hence λ1 is the optimal Bessel bound

of the columns of [ai,j ]N×M by Lemma 4.1. By taking the trace of the frame operator of

(fj)
N
j=1 we have that

∑M
i=1 λi =

∑N
j=1 ‖fj‖

2 = ND2. As, λ1 ≤ βM−1
∑M

j=1 λj we have that

λ1 ≤ βNM−1D2. Thus, we have proven that (ii) is true. The rest of the proof is concerned

with bounding βNM−1D2 in terms of C and β.

Let (δj)
M
j=1 be a sequence of independent symmetric random variables with δj = ±1. By

taking expectation we calculate,

E

N
∑

i=1

∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣
=

N
∑

i=1

E

∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣

≥ K1

N
∑

i=1

(

M
∑

j=1

|ai,j|
2

)1/2

by Khintchine’s Inequality,

= K1

N
∑

i=1

D = K1DN by (i).

Thus, we may fix a particular realization for (δj)
M
j=1 such that

(4.1)
N
∑

i=1

∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣
≥ K1DN.

For each α > 0, we define a subset Iα ⊆ {1, 2, ..., N} by,

Iα :=
{

i ∈ {1, ..., N} :
∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣
≥ Dα

}

.

By (ii), the vector (
∑M

j=1 δjai,j)
N
i=1 is in the column space of [ai,j ]N×M and has norm at most

β1/2DN1/2. We will now calculate a lower bound for the cardinality of Iα.
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β1/2DN1/2 ≥

(

N
∑

i=1

∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣

2
)1/2

≥

(

∑

i∈Iα

∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣

2
)1/2

≥ |Iα|
−1/2

∑

i∈Iα

∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣
by Cauchy-Schwarz,

= |Iα|
−1/2

(

N
∑

i=1

∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣
−
∑

i 6∈Iα

∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣

)

≥ |Iα|
−1/2

(

N
∑

i=1

∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣
− (N − |Iα|)Dα

)

≥ |Iα|
−1/2

(

K1DN − (N − |Iα|)Dα
)

by (4.1),

≥ |Iα|
−1/2(K1 − α)DN.

Thus, we have that |Iα| ≥ β−1(K1 − α)2N . We now apply similar estimates to the matrix

[bj,i]M×N restricted to the columns in Iα.

Let (γj)
M
j=1 be a sequence of independent symmetric random variables with γj = ±1. By

taking the expectation we calculate,

E

∑

i∈Iα

∣

∣

∣

M
∑

j=1

γjbj,i

∣

∣

∣
=
∑

i∈Iα

E

∣

∣

∣

M
∑

j=1

γjbj,i

∣

∣

∣

≥ K1

∑

i∈Iα

(

M
∑

j=1

|bj,i|
2

)1/2

by Khintchine’s Inequality,

= K1

∑

i∈Iα

D by (1),

= DK1|Iα| ≥ Dβ−1K1(K1 − α)2N.

Thus, we may fix a particular realization for (γj)
M
j=1 such that

(4.2)
∑

i∈Iα

∣

∣

∣

M
∑

j=1

γjbi,j

∣

∣

∣
≥ β−1DK1(K1 − α)2N.
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We have that x := (M−1/2δj)
M
j=1 and f := (M−1/2γj)

M
j=1 are unit norm vectors in ℓM2 . For

1 ≤ i ≤ N , we define

εi :=

{

phase(〈x, fi〉〈xi, f〉)
−1, if 〈x, fi〉〈xi, f〉 6= 0,

1, otherwise.

Thus, we have that

C‖x‖ ≥
∥

∥

∥

N
∑

i=1

εi〈x, fi〉xi

∥

∥

∥

≥
N
∑

i=1

εi〈xi, f〉〈x, fi〉 as ‖f‖ = 1,

=

N
∑

i=1

|〈xi, f〉〈x, fi〉|

= M−1
N
∑

i=1

∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣

∣

∣

∣

M
∑

j=1

γjbj,i

∣

∣

∣

≥ M−1
∑

i∈Iα

∣

∣

∣

M
∑

j=1

δjai,j

∣

∣

∣

∣

∣

∣

M
∑

j=1

γjbj,i

∣

∣

∣

≥ M−1
∑

i∈Iα

αD
∣

∣

∣

M
∑

j=1

γjbj,i

∣

∣

∣

≥ αD2β−1K1(K1 − α)2NM−1 by (4.2),

=
4

27
D2β−1K4

1NM−1 for α = K1/3.

Thus, βD2NM−1 ≤ 27
4
β2CK−4

1 as ‖x‖ = 1. From (ii) we deduce that (fj)
N
j=1 has Bessel

bound 27
4
β2CK−4

1 . �

In Lemma 4.5 we considered frames (xj)
N
j=1 and (fj)

N
j=1 such that ‖xj‖ = ‖fj‖ = D for all

1 ≤ j ≤ N . We will now extend this to the case where ‖xj‖ = ‖fj‖ for all 1 ≤ j ≤ N but

we no longer require that ‖xj‖ = ‖xi‖ when i 6= j. The following theorem is a restatement

of Theorem 1.3 from the introduction along with some immediate corollaries.

Theorem 4.6. Let C,D, β > 0 and N ∈ N. Suppose that (xj)
N
j=1 and (fj)

N
j=1 are both

sequences in a Hilbert space H which satisfy ‖xj‖ = ‖fj‖ for all 1 ≤ j ≤ N and

∥

∥

∥

N
∑

j=1

εj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖, for all x ∈ H and |εj| = 1.
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If the frame operator for (fj)
N
j=1 has eigenvalues λ1 ≥ ... ≥ λM satisfying λ1 ≤ β

M

∑M
j=1 λj

then (fj)
N
j=1 has Bessel bound

27
4
K−4

1 β2C, where K1 is the constant in Khintchine’s inequality.

In particular, if (fj)
N
j=1 has condition number β then (fj)

N
j=1 has Bessel bound 27

4
K−4

1 β2C

and if (fj)
N
j=1 is a tight frame then (fj)

N
j=1 has Bessel bound 27

4
K−4

1 C.

Likewise, if the frame operator for (xj)
N
j=1 has eigenvalues λ1 ≥ ... ≥ λM which satisfy

λ1 ≤
β
M

∑M
j=1 λj then (xj)

N
j=1 has Bessel bound 27

4
K−4

1 β2C.

Proof. Let β > 0 be such that λ1 ≤ βM−1
∑M

j=1 λj where λ1 ≥ ... ≥ λM are the eigenvalues

of the frame operator of (fj)
N
j=1.

We first will assume that the values ‖xj‖
2 = ‖fj‖

2 are non-zero and rational for all

1 ≤ j ≤ N . Thus, there exists K, k1, ..., kN ∈ N such that ‖xj‖
2 = ‖fj‖

2 =
kj
K

for all

1 ≤ j ≤ N . We have that

N
∑

j=1

kj
∑

i=1

〈x, k
−1/2
j fj〉k

−1/2
j xj =

N
∑

j=1

〈x, fj〉xj, for all x ∈ H.

Thus, the systems
((
√

1
kj
xj

)kj

i=1

)N

j=1
and

((
√

1
kj
fj

)kj

i=1

)N

j=1
are each equi-norm sequences

with the same frame operator as (xj)
N
j=1 and (fj)

N
j=1 respectively.

We now claim for all x ∈ H that

(4.3)
∥

∥

∥

N
∑

j=1

kj
∑

i=1

εi,j〈x, k
−1/2
j fj〉k

−1/2
j xj

∥

∥

∥
≤ C‖x‖, for all |εi,j| = 1.

Assuming the claim, we have by Lemma 4.5 that
((
√

1
kj
fj

)kj

i=1

)N

j=1
and consequently also

(fj)
N
j=1 have Bessel bound 27

4
K−4

1 β2C.

We now prove the claim that (4.3) is satisfied. Let x ∈ H . We will first prove that the set
{

∑N
j=1 aj〈x, fj〉xj : |aj | ≤ 1

}

is contained in conv
{

∑N
j=1 εj〈x, fj〉xj : |εj| = 1

}

, the convex

hull of the vectors
∑N

j=1 εj〈x, fj〉xj . To see this, let (aj)
N
j=1 be a sequence of scalars and

assume without loss of generality that 0 ≤ |a1| ≤ |a2| ≤ ... ≤ |aN | ≤ 1. We construct a

sequence (bi)
2N+1
i=1 in [0, 1] by b1 = |a1|, b2 = b3 = (|a2| − |a1|)/2, b4 = b5 = (|a3| − |a2|)/2,...,

b2N = b2N+1 = (1 − |aN |)/2. For each 1 ≤ j ≤ N and 1 ≤ i ≤ 2N + 1 we now give εj,i

with |εj,i| = 1. For 1 ≤ i ≤ 2j − 1 we let εj,i = phase(aj), and for 2j ≤ i ≤ 2N + 1

we let εj,i = (−1)i. The telescoping aspect of the construction gives that
∑2N+1

i=1 bi = 1.

Furthermore,
∑2N+1

i=1 biǫj,i = aj, for all 1 ≤ j ≤ N . We have that

2N+1
∑

i=1

bi

N
∑

j=1

εj,i〈x, fj〉xj =
N
∑

j=1

2N+1
∑

i=1

biεj,i〈x, fj〉xj =
N
∑

j=1

aj〈x, fj〉xj .
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This proves that
{

∑N
j=1 aj〈x, fj〉xj : |aj| ≤ 1

}

⊆ conv
{

∑N
j=1 εj〈x, fj〉xj : |εj| = 1

}

.

Moreover, every vector
∑L

i=1 bi
∑N

j=1 εj,i〈x, fj〉xj in conv
{

∑N
j=1 εj〈x, fj〉xj : |εj| = 1

}

has

the following bound on its norm.
∥

∥

∥

∥

∥

L
∑

i=1

bi

N
∑

j=1

εj,i〈x, fj〉xj

∥

∥

∥

∥

∥

≤

L
∑

i=1

bi

∥

∥

∥

∥

∥

N
∑

j=1

εj,i〈x, fj〉xj

∥

∥

∥

∥

∥

≤
L
∑

i=1

biC‖x‖ = C‖x‖.

Thus, we have for all sequences (aj)
N
j=1 with |aj | ≤ 1 that ‖

∑N
j=1 aj〈x, fj〉xj‖ ≤ C‖x‖. To

prove our claim that (4.3) is satisfied we let aj =
∑kj

i=1 εj,ik
−1
j , for all 1 ≤ j ≤ N . Note that

|aj| ≤ 1 for all 1 ≤ j ≤ N . Thus we have that

∥

∥

∥

N
∑

j=1

kj
∑

i=1

εj,i〈x, k
−1/2
j fj〉k

−1/2
j xj

∥

∥

∥
=
∥

∥

∥

N
∑

j=1

(

kj
∑

i=1

εj,ik
−1
j

)

〈x, fj〉xj

∥

∥

∥

=
∥

∥

∥

N
∑

j=1

aj〈x, fj〉xj

∥

∥

∥
≤ C‖x‖.

Thus, we have proven our claim that (4.3) is satisfied and the proof is complete for the case

that ‖xj‖
2 = ‖fj‖

2 are non-zero and rational for all 1 ≤ j ≤ N .

We now consider the general case where ‖xj‖
2 = ‖fj‖

2 for all 1 ≤ j ≤ N , but they

may not all be rational. We may throw out any terms which are zero, and thus we assume

without loss of generality that ‖xj‖
2 = ‖fj‖

2 are non-zero for all 1 ≤ j ≤ N . Let ε > 0

and let λ1 ≥ ... ≥ λM be the eigenvalues for the frame operator of (fj)
N
j=1. We may choose

scalars (αj)
N
j=1 which are arbitrarily close to 1 so that ‖αjxj‖

2 = ‖αjfj‖
2 is rational for all

1 ≤ j ≤ N and

∥

∥

∥

N
∑

j=1

εj〈αjfj , x〉αjxj

∥

∥

∥
≤ (C + ε)‖x‖, for all x ∈ H and |εj| = 1.

Furthermore, we may assume that if γ1 ≥ ... ≥ γM are the eigenvalues of the frame operator

for (αjfj)
n
j=1 then (1 + ε)−1γi ≤ λi ≤ (1 + ε)γi for all 1 ≤ i ≤ M . Hence, by our previous

argument, (αjfj)
n
j=1 has Bessel bound

27
4
K−4

1 β2(1+ε)4(C+ε). As the scalars (αj)
N
j=1 may be

chosen arbitrarily close to 1 we have that (fj)
N
j=1 has Bessel bound

27
4
K−4

1 β2(1 + ε)4(C + ε).

As ε > 0 was arbitrary, (fj)
N
j=1 has Bessel bound 27

4
K−4

1 β2C. �
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