1.2. Let \(S = \{ -2, -1, 0, 1, 2, 3 \} \). Describe each of the following sets as \(\{ x \in S : \ p(x) \} \), where \(p(x) \) is some condition on \(x \).

(a) \(A = \{ 1, 2, 3 \} \)
(b) \(B = \{ 0, 1, 2, 3 \} \)
(c) \(C = \{ -2, -1 \} \)
(d) \(D = \{ -2, 2, 3 \} \)

1.3. Determine the cardinality of each of the following sets:

(a) \(A = \{ 1, 2, 3, 4, 5 \} \)
(b) \(B = \{ 0, 2, 4, \ldots , 20 \} \)
(c) \(C = \{ 25, 26, 27, \ldots , 75 \} \)
(d) \(D = \{ 1, 2 \}, \{ 1, 2, 3, 4 \} \)
(e) \(E = \{ \emptyset \} \)
(f) \(F = \{ 2, \{ 2, 3, 4 \} \} \)

1.4. Write each of the following sets by listing its elements within braces.

(a) \(A = \{ n \in \mathbb{Z} : -4 < n \leq 4 \} \)
(b) \(B = \{ n \in \mathbb{Z} : n^2 < 5 \} \)
(c) \(C = \{ n \in \mathbb{N} : n^3 < 100 \} \)
(d) \(D = \{ x \in \mathbb{R} : x^2 - x = 0 \} \)
(e) \(E = \{ x \in \mathbb{R} : x^2 + 1 = 0 \} \)

1.5. Write each of the following sets in the form \(\{ x \in \mathbb{Z} : \ p(x) \} \), where \(p(x) \) is a property concerning \(x \).

(a) \(A = \{ -1, -2, -3, \ldots \} \)
(b) \(B = \{ -3, -2, \ldots , 3 \} \)
(c) \(C = \{ -2, -1, 1, 2 \} \)

1.6. The set \(E = \{ 2x : x \in \mathbb{Z} \} \) can be described by listing its elements, namely \(E = \{ \ldots , -4, -2, 0, 2, 4, \ldots \} \). List the elements of the following sets in a similar manner.

(a) \(A = \{ 2x + 1 : x \in \mathbb{Z} \} \)
(b) \(B = \{ 4n : n \in \mathbb{Z} \} \)
(c) \(C = \{ 3q + 1 : q \in \mathbb{Z} \} \)

1.7. The set \(E = \{ \ldots , -4, -2, 0, 2, 4, \ldots \} \) of even integers can be described by means of a defining condition by \(E = \{ y = 2x : x \in \mathbb{Z} \} = \{ 2x : x \in \mathbb{Z} \} \). Describe the following sets in a similar manner.

(a) \(A = \{ \ldots , -4, -1, 2, 5, 8, \ldots \} \)
(b) \(B = \{ \ldots , -10, -5, 0, 5, 10, \ldots \} \)
(c) \(C = \{ 1, 8, 27, 64, 125, \ldots \} \)

1.8. Let \(A = \{ n \in \mathbb{Z} : 2 \leq |n| < 4 \} \), \(B = \{ x \in \mathbb{Q} : 2 < x \leq 4 \} \), \(C = \{ x \in \mathbb{R} : x^2 - (2 + \sqrt{2})x + 2\sqrt{2} = 0 \} \) and \(D = \{ x \in \mathbb{Q} : x^2 - (2 + \sqrt{2})x + 2\sqrt{2} = 0 \} \).

(a) Describe the set \(A \) by listing its elements.
(b) Give an example of three elements that belong to \(B \) but do not belong to \(A \).
(c) Describe the set \(C \) by listing its elements.
(d) Describe the set \(D \) in another manner.
(e) Determine the cardinality of each of the sets \(A, C \) and \(D \).
1.9. For \(A = \{2, 3, 5, 7, 8, 10, 13\} \), let

\[B = \{x \in A : x = y + z, \text{ where } y, z \in A\} \text{ and } C = \{r \in B : r + s \in B \text{ for some } s \in B\}. \]

Determine \(C \).

Section 1.2: Subsets

1.10. Give examples of three sets \(A, B \) and \(C \) such that

(a) \(A \subseteq B \subset C \)
(b) \(A \in B, B \in C \) and \(A \notin C \)
(c) \(A \in B \) and \(A \subset C \).

1.11. Let \((a, b)\) be an open interval of real numbers and let \(c \in (a, b) \). Describe an open interval \(I \) centered at \(c \) such that \(I \subseteq (a, b) \).

1.12. Which of the following sets are equal?

\[A = \{n \in \mathbb{Z} : |n| < 2\} \quad D = \{n \in \mathbb{Z} : n^2 \leq 1\} \]

\[B = \{n \in \mathbb{Z} : n^3 = n\} \quad E = \{-1, 0, 1\} \]

\[C = \{n \in \mathbb{Z} : n^2 \leq n\} \]

1.13. For a universal set \(U = \{1, 2, \ldots, 8\} \) and two sets \(A = \{1, 3, 4, 7\} \) and \(B = \{4, 5, 8\} \), draw a Venn diagram that represents these sets.

1.14. Find \(\mathcal{P}(A) \) and \(|\mathcal{P}(A)| \) for

(a) \(A = \{1, 2\} \).
(b) \(A = \{\emptyset, 1, \{a\}\} \).

1.15. Find \(\mathcal{P}(A) \) for \(A = \{0, \{0\}\} \).

1.16. Find \(\mathcal{P}(\mathcal{P}(\{1\})) \) and its cardinality.

1.17. Find \(\mathcal{P}(A) \) and \(|\mathcal{P}(A)| \) for \(A = \{0, \emptyset, \{\emptyset\}\} \).

1.18. For \(A = \{x : x = 0 \text{ or } x \in \mathcal{P}(\{0\})\} \), determine \(\mathcal{P}(A) \).

1.19. Give an example of a set \(S \) such that

(a) \(S \subseteq \mathcal{P}(\mathbb{N}) \)
(b) \(S \in \mathcal{P}(\mathbb{N}) \)
(c) \(S \subseteq \mathcal{P}(\mathbb{N}) \) and \(|S| = 5 \)
(d) \(S \in \mathcal{P}(\mathbb{N}) \) and \(|S| = 5 \)

1.20. Determine whether the following statements are true or false.

(a) If \(\{1\} \in \mathcal{P}(A) \), then \(1 \in A \) but \(\{1\} \notin A \).
(b) If \(A, B \) and \(C \) are sets such that \(A \subset \mathcal{P}(B) \subset C \) and \(|A| = 2 \), then \(|C| \) can be 5 but \(|C| \) cannot be 4.
(c) If a set \(B \) has one more element than a set \(A \), then \(\mathcal{P}(B) \) has at least two more elements than \(\mathcal{P}(A) \).
(d) If four sets \(A, B, C \) and \(D \) are subsets of \(\{1, 2, 3\} \) such that \(|A| = |B| = |C| = |D| = 2 \), then at least two of these sets are equal.

1.21. Three subsets \(A, B \) and \(C \) of \(\{1, 2, 3, 4, 5\} \) have the same cardinality. Furthermore,

(a) 1 belongs to \(A \) and \(B \) but not to \(C \).
(b) 2 belongs to \(A \) and \(C \) but not to \(B \).
(c) 3 belongs to \(A \) and exactly one of \(B \) and \(C \).
(d) 4 belongs to an even number of \(A, B \) and \(C \).
(e) 5 belongs to an odd number of \(A, B \) and \(C \).
(f) The sums of the elements in two of the sets \(A, B \) and \(C \) differ by 1.

What is \(B \)?

Section 1.3: Set Operations

1.22. Let \(U = \{1, 3, \ldots, 15\} \) be the universal set, \(A = \{1, 5, 9, 13\} \), and \(B = \{3, 9, 15\} \). Determine the following:

(a) \(A \cup B \) (b) \(A \cap B \) (c) \(A - B \) (d) \(B - A \) (e) \(\overline{A} \) (f) \(A \cap \overline{B} \).

1.23. Give examples of two sets \(A \) and \(B \) such that \(|A - B| = |A \cap B| = |B - A| = 3 \). Draw the accompanying Venn diagram.

1.24. Give examples of three sets \(A, B \) and \(C \) such that \(B \neq C \) but \(B - A = C - A \).

1.25. Give examples of three sets \(A, B \) and \(C \) such that

(a) \(A \in B \), \(A \subseteq C \) and \(B \nsubseteq C \)
(b) \(B \in A \), \(B \subset C \) and \(A \cap C \neq \emptyset \)
(c) \(A \in B \), \(B \subseteq C \) and \(A \nsubseteq C \).

1.26. Let \(U \) be a universal set and let \(A \) and \(B \) be two subsets of \(U \). Draw a Venn diagram for each of the following sets:

(a) \(\overline{A} \cup B \) (b) \(\overline{A} \cap \overline{B} \) (c) \(\overline{A} \cap B \) (d) \(A \cup \overline{B} \).

What can you say about parts (a) and (b)? parts (c) and (d)?

1.27. Give an example of a universal set \(U \), two sets \(A \) and \(B \) and accompanying Venn diagram such that \(|A \cap B| = |A - B| = |B - A| = |A \cup \overline{B}| = 2 \).

1.28. Let \(A, B \) and \(C \) be nonempty subsets of a universal set \(U \). Draw a Venn diagram for each of the following set operations.

(a) \((C - B) \cup A \)
(b) \(C \cap (A - B) \).

1.29. Let \(A = \{\emptyset, \{\emptyset\}, \{\emptyset\}\} \).

(a) Determine which of the following are elements of \(A \): \(\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \).
(b) Determine \(|A| \).
(c) Determine which of the following are subsets of \(A \): \(\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \).

For (d)–(i), determine the indicated sets.

(d) \(\emptyset \cap A \)
(e) \(\{\emptyset\} \cap A \)
(f) \(\{\emptyset, \{\emptyset\}\} \cap A \)
(g) \(\emptyset \cup A \)
(h) \(\{\emptyset\} \cup A \)
(i) \(\{\emptyset, \{\emptyset\}\} \cup A \).

1.30. Let \(A = \{x \in \mathbb{R} : |x - 1| \leq 2\} \), \(B = \{x \in \mathbb{R} : |x| \geq 1\} \) and \(C = \{x \in \mathbb{R} : |x + 2| \leq 3\} \).

(a) Express \(A, B \) and \(C \) using interval notation.
(b) Determine each of the following sets using interval notation:
 \(A \cup B, A \cap B, B \cap C, B - C \).

1.31. Give an example of four different sets \(A, B, C \) and \(D \) such that (1) \(A \cup B = \{1, 2\} \) and \(C \cap D = \{2, 3\} \) and
 (2) if \(B \) and \(C \) are interchanged and \(\cup \) and \(\cap \) are interchanged, then we get the same result.
1.32. Give an example of four different subsets A, B, C and D of $\{1, 2, 3, 4\}$ such that all intersections of two subsets are different.

1.33. Give an example of two nonempty sets A and B such that $\{A \cup B, A \cap B, A - B, B - A\}$ is the power set of some set.

1.34. Give an example of two subsets A and B of $\{1, 2, 3\}$ such that all of the following sets are different: $A \cup B$, $A \cup \overline{B}$, $A \cup B$, $A \cup B$, $A \cap B$, $A \cap \overline{B}$, $\overline{A} \cap B$, $\overline{A} \cap \overline{B}$.

1.35. Give examples of a universal set U and sets A, B and C such that each of the following sets contains exactly one element: $A \cap B \cap C$, $(A \cap B) - C$, $(A \cap C) - B$, $(B \cap C) - A$, $A - (B \cup C)$, $B - (A \cup C)$, $C - (A \cup B)$, $A \cup B \cup C$. Draw the accompanying Venn diagram.

Section 1.4: Indexed Collections of Sets

1.36. For a real number r, define A_r to be the interval $[r - 1, r + 2]$. Let $A = \{1, 3, 4\}$. Determine $\bigcup_{a \in A} A_a$ and $\bigcap_{a \in A} A_a$.

1.37. Let $A = \{1, 2, 5\}$, $B = \{0, 2, 4\}$, $C = \{2, 3, 4\}$ and $S = \{A, B, C\}$. Determine $\bigcup_{X \in S} X$ and $\bigcap_{X \in S} X$.

1.38. For a real number r, define $A_r = \{r^2\}$, B_r as the closed interval $[r - 1, r + 1]$ and C_r as the interval (r, ∞). For $S = \{1, 2, 4\}$, determine
 (a) $\bigcup_{a \in S} A_a$ and $\bigcap_{a \in S} A_a$
 (b) $\bigcup_{a \in S} B_a$ and $\bigcap_{a \in S} B_a$
 (c) $\bigcup_{a \in S} C_a$ and $\bigcap_{a \in S} C_a$.

1.39. Let $A = \{a, b, \ldots, z\}$ be the set consisting of the letters of the alphabet. For $\alpha \in A$, let A_α consist of α and the two letters that follow it, where $A_r = \{z, a, \alpha\}$ and $A_\alpha = \{z, a, b\}$. Find a set $S \subseteq A$ of smallest cardinality such that $\bigcup_{\alpha \in S} A_\alpha = A$. Explain why your set S has the required properties.

1.40. For $i \in \mathbb{Z}$, let $A_i = \{i - 1, i + 1\}$. Determine the following:
 (a) $\bigcup_{i=1}^{5} A_{2i}$
 (b) $\bigcup_{i=1}^{5} (A_{i} \cap A_{i+1})$
 (c) $\bigcup_{i=1}^{5} (A_{2i-1} \cap A_{2i+1})$.

1.41. For each of the following, find an indexed collection $(A_n)_{n \in \mathbb{N}}$ of distinct sets (that is, no two sets are equal) satisfying the given conditions.
 (a) $\bigcap_{n=1}^{\infty} A_n = \{0\}$ and $\bigcup_{n=1}^{\infty} A_n = [0, 1]$
 (b) $\bigcap_{n=1}^{\infty} A_n = (-1, 0, 1)$ and $\bigcup_{n=1}^{\infty} A_n = \mathbb{Z}$.

1.42. For each of the following collections of sets, define a set A_n for each $n \in \mathbb{N}$ such that the indexed collection $(A_n)_{n \in \mathbb{N}}$ is precisely the given collection of sets. Then find both the union and intersection of the indexed collection of sets.
 (a) $\{[1, 2 + 1], [1, 2 + 1/2], [1, 2 + 1/3], \ldots\}$
 (b) $\{(-1, 2), (-3/2, 4), (-5/3, 6), (-7/4, 8), \ldots\}$.

1.43. For $r \in \mathbb{R}^+$, let $A_r = \{x \in \mathbb{R} : \{x\} < r\}$. Determine $\bigcup_{r \in \mathbb{R}^+} A_r$ and $\bigcap_{r \in \mathbb{R}^+} A_r$.

1.44. Each of the following sets is a subset of $A = \{1, 2, \ldots, 10\}$:
 $A_1 = \{1, 5, 7, 9, 10\}$, $A_2 = \{1, 2, 3, 8, 9\}$, $A_3 = \{2, 4, 6, 8, 9\}$,
 $A_4 = \{2, 4, 8\}$, $A_5 = \{3, 6, 7\}$, $A_6 = \{3, 8, 10\}$, $A_7 = \{4, 5, 7, 9\}$,
 $A_8 = \{4, 5, 10\}$, $A_9 = \{4, 6, 8\}$, $A_{10} = \{5, 6, 10\}$,
 $A_{11} = \{5, 8, 9\}$, $A_{12} = \{6, 7, 10\}$, $A_{13} = \{6, 8, 9\}$.
 Find a set $I \subseteq \{1, 2, \ldots, 13\}$ such that for every two distinct elements $j, k \in I$, $A_j \cap A_k = \emptyset$ and $|\bigcup_{i \in I} A_i|$ is maximum.

1.45. For $n \in \mathbb{N}$, let $A_n = (-\frac{1}{n}, 2 - \frac{1}{n})$. Determine $\bigcup_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} A_n$.