Math 5120, Spring 2018, Homework and Announcements

Due Wednesday January 24:
Section 9.1: 2, 5
Section 9.2: 3, 5, 6

Due Wednesday January 31:
Section 9.3: 4
Section 9.4: 1, 2, 6bc, 14

Due Friday February 9:
Section 9.5: 2bc
Section 13.1: 1, 3
Section 13.2: 3, 4, 7, 8, 14

Due Friday February 16:
Section 13.4: 2, 3
Section 13.5: 3, 4, 5

Due Wednesday February 28:
Section 13.6: 3, 6
Section 14.1: 1, 3, 4

Due Wednesday March 7:
Section 14.2: 1, 3, 4, 10, 16
Section 14.3: 2
Section 14.4: 1, 2

Due Wednesday March 21:
Section 14.5: 4, 5
Section 10.1: 3, 4, 9, 10, 11
Due Wednesday March 28:
Section 10.2: 1, 7, 9
Section 10.3: 1, 6, 7, 9, 13

Exam 2: Monday April 9, covers Sections 13.6, 14.1 - 14.5 and Sections 10.1 - 10.3.

Due Wednesday April 18:
Section 10.4: 2, 3, 4, 7, and the following two problems:

1) Prove that $\mathbb{Q} \otimes \mathbb{Z} \mathbb{Q}$ is isomorphic (as \mathbb{Z}-modules) to \mathbb{Q}. [Do this exercise by first constructing a middle linear map from $\mathbb{Q} \times \mathbb{Q}$ to \mathbb{Q}.]

2) Let A be an abelian group. Use addition to denote the binary operation in A. Let m be a fixed positive integer and let $B = \{ma \mid a \in A\}$. (B is a subgroup of A.) Show $A \otimes \mathbb{Z} \mathbb{Z}/m \mathbb{Z}$ is isomorphic (as \mathbb{Z}-modules) to A/B. [Do this exercise by first constructing a middle linear map from $A \times \mathbb{Z}/m \mathbb{Z}$ to A/B.]

Due Wednesday April 25:
Section 18.1: 2, 6bcd, 7, 8 and the following problem:

Let G be the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ and let $R = CG$ denote the group ring of G over \mathbb{C}. Note R, being a ring, is an R-module. Find a 1-dimensional R-submodule U of R and then use the proof of Maschke’s Theorem to find an R-submodule W of R such that $R = U \oplus W$ as R-modules.

Due Wednesday May 9:
Take home portion of final exam. (See handout.)