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(11) On restricting subsets of bases in relatively free groups, with Dmytro Savchuk. Accepted, Inter-
national Journal of Algebra and Computation.

Let G be a free, free abelian, free nilpotent, or free solvable group, and let A = {a1, . . . , an} be a basis
for G. We prove that in many cases, if S is a subset of a basis for G which may be expressed as a word
in A without using elements from {al, al+1, . . . , an}, then S is a subset of a basis for the relatively free
group on {a1, . . . , al−1}.

(10) On the geometry of a proposed curve complex analogue for Out(Fn), with Dmytro Savchuk.
Submitted.

The group Out(Fn) of outer automorphisms of the free group has been an object of active study for
many years, yet its geometry is not well understood. Recently, effort has been focused on finding
a hyperbolic complex on which Out(Fn) acts, in analogy with the curve complex for the mapping
class group. Here, we focus on one of these proposed analogues: the edge splitting complex ESC ,
equivalently known as the separating sphere complex. We characterize geodesic paths in its 1-skeleton
ES algebraically, and use our characterization to find lower bounds on distances between points in this
graph.

Our distance calculations allow us to find quasiflats of arbitrary dimension in ESC . This shows that
ESC : is not hyperbolic, has infinite asymptotic dimension, and is such that every asymptotic cone is
infinite dimensional. These quasiflats contain an unbounded orbit of a reducible element of Out(Fn).
As a consequence, there is no coarsely Out(Fn)-equivariant quasiisometry between ESC and other pro-
posed curve complex analogues, including the regular free splitting complex, the (nontrivial intersection)
free factorization complex, and the free factor complex, leaving hope that some of these complexes are
hyperbolic.

(9) Face vectors of subdivided simplicial complexes, with Emanuele Delucchi and Aaron Pixton. Pub-
lished online, Discrete Mathematics (2011). To appear in print.

In a recent paper of Brenti Welker, it was shown that for any simplicial n-dimensional complex X,
the f -vectors of successive barycentric subdivisions of X have roots which converge to fixed values
depending only on the dimension of X. We improve and generalize this result here. We begin with
an alternative proof based on geometric intuition. We then observe and prove an interesting symmetry
of these roots about the real number −2. This symmetry can be seen via a nice algebraic realization
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of barycentric subdivision as a simple map on formal power series in two variables. Finally, we use
this algebraic machinery with some geometric motivation to generalize the combinatorial statements to
arbitrary subdivision methods: any subdivision method will exhibit similar limit behavior and symmetry.
Our techniques allow us to compute explicit formulas for the values of the limit roots in the case of
barycentric subdivision.

(8) Projection-forcing multisets of weight changes, with Joshua Brown Kramer. Journal of Combina-
torial Theory, Series A, 117(8):1136-1142, 2010.

Let F be a finite field. A multiset S of integers is projection-forcing if for every linear function
φ : Fn → Fm whose multiset of weight changes is S, φ is a coordinate projection up to permutation and
scaling of entries. The MacWilliams Extension Theorem from coding theory says that S = {0, 0, . . . , 0}
is projection-forcing. We give a (super-polynomial) algorithm to determine whether or not a given S is
projection-forcing. We also give a condition that can be checked in polynomial time that implies that
S is projection-forcing. This result is a generalization of the MacWilliams Extension Theorem and work
by the first author.

(7) Multidimensional online motion planning for a spherical robot, with Joshua Brown Kramer.
International Journal of Computational Geometry and Applications, 20(6):653-684, 2010.

We consider three related problems of robot movement in arbitrary dimensions: coverage, search, and
navigation. For each problem, a spherical robot is asked to accomplish a motion-related task in an un-
known environment whose geometry is learned by the robot during navigation. The robot is assumed to
have tactile and global positioning sensors. We view these problems from the perspective of (non-linear)
competitiveness as defined by Gabriely and Rimon. We first show that in 3 dimensions and higher, there
is no upper bound on competitiveness: every online algorithm can do arbitrarily badly compared to the
optimal. We then modify the problems by assuming a fixed clearance parameter. We are able to
give optimally competitive algorithms under this assumption. We show these modified problems have
polynomial competitiveness in the optimal path length, of degree proportional to the dimension minus 1.

(6) Presentations of graph braid groups, with Daniel Farley. Published online, Forum Mathematicum
(2010). To appear in print.

Let Γ be a graph. The (unlabeled) configuration space UCnΓ of n points on Γ is the space of n-element
subsets of Γ. The n-strand braid group of Γ, denoted BnΓ, is the fundamental group of UCnΓ. This
paper extends the methods and results of (2). Here we describe how to compute presentations for
BnΓ, where n is an arbitrary natural number and Γ is an arbitrary finite connected graph. Particular
attention is paid to the case n = 2, and many examples are given.
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(5) On rigidity and the isomorphism problem for tree braid groups. Groups, Geometry, and Dynamics,
3(3):469-523, 2009.

We solve the isomorphism problem for braid groups on trees with n = 4 or 5 strands. We do so in three
main steps, each of which is interesting in its own right. First, we establish some tools and terminology
for dealing with computations using the cohomology of tree braid groups, couching our discussion in
the language of differential forms. Second, we show that, given a tree braid group BnT on n = 4 or
5 strands, H∗(BnT ) is an exterior face algebra. Finally, we prove that one may reconstruct the tree
T from a tree braid group BnT for n = 4 or 5. Among other corollaries, this third step shows that,
when n = 4 or 5, tree braid groups BnT and trees T (up to homeomorphism) are in bijective corre-
spondence. That such a bijection exists is not true for higher dimensional spaces, and is an artifact of
the 1-dimensionality of trees. We end by stating the results for right-angled Artin groups corresponding
to the main theorems, some of which do not yet appear in the literature.

(4) On the cohomology rings of tree braid groups, with Daniel Farley. Journal of Pure and Applied
Algebra, 212(1):53-71, 2007.

Let Γ be a finite connected graph. The (unlabelled) configuration space UCnΓ of n points on Γ is the
space of n-element subsets of Γ. The n-strand braid group of Γ, denoted BnΓ, is the fundamental
group of UCnΓ. We use the methods and results of (2) to get a partial description of the cohomology
rings H∗(BnT ), where T is a tree. Our results are then used to prove that BnT is a right-angled Artin
group if and only if T is linear or n < 4. This gives a large number of counterexamples to Ghrist’s
conjecture that braid groups of planar graphs are right-angled Artin groups.

(3) Embeddings of right-angled Artin groups into graph braid groups Geometriae Dedicata, 124:191-
198, 2007.

We construct an embedding of any right-angled Artin group G(∆) defined by a graph ∆ into a graph
braid group. The number of strands required for the braid group is equal to the chromatic number of
∆. This construction yields an example of a hyperbolic surface subgroup embedded in a two strand
planar graph braid group.

(2) Discrete Morse theory and graph braid groups, with Daniel Farley. Algebraic and Geometric
Topolology, 5:1075-1109, 2005.

If Γ is any finite graph, then the unlabelled configuration space of n points on Γ, denoted UCnΓ, is
the space of n-element subsets of Γ. The braid group of Γ on n strands is the fundamental group of
UCnΓ. We apply a discrete version of Morse theory to these UCnΓ, for any n and any Γ, and provide
a clear description of the critical cells in every case. As a result, we can calculate a presentation for
the braid group of any tree, for any number of strands. We also give a simple proofof a theorem due

3

http://dx.doi.org/10.4171/GGD/67
http://dx.doi.org/10.1016/j.jpaa.2007.04.011
http://dx.doi.org/10.1007/s10711-006-9101-0
http://dx.doi.org/10.2140/agt.2005.5.1075


Publication List for Lucas Sabalka

to Ghrist: the space UCnΓ strong deformation retracts onto a CW complex of dimension at most k,
where k is the number of vertices in Γ of degree at least 3 (and k is thus independent of n).

(1) Geodesics in the braid group on three strands. In Group theory, statistics, and cryptography,
volume 360 of Contemporary Mathematics, pages 133-150, 2004.

This is derived from my undergraduate thesis, advised by Susan Hermiller and John Meakin.

We study the geodesic growth series of the braid group on three strands, B3 := 〈a, b|aba = bab〉. We
show that the set of geodesics of B3 with respect to the generating set S := {a, b}±1 is a regular
language, and we provide an explicit computation of the geodesic growth series with respect to this set
of generators. In the process, we give a necessary and sufficient condition for a freely reduced word
w ∈ S∗ to be geodesic in B3 with respect to S. Also, we show that the translation length with respect
to S of any element in B3 is an integer.
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