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1. Introduction

In 1990 Hendrik W. Lenstra, Jr. asked the following question: if G is a transitive
permutation group of degree n and A is the set of elements of G that move every
letter, then can one find a lower bound (in terms of n) for f(G) = |A|/|G|? Shortly
thereafter, Arjeh Cohen showed that 1

n is such a bound.
Lenstra’s problem arose from his work on the number field sieve [2]. A simple

example of how f(G) arises in number theory is the following: if h is an irreducible
polynomial over the integers, consider the proportion:

|{primes ≤ x | h has no zeroes mod p}|
|{primes ≤ x}|

As x −→ ∞, this ratio approaches f(G), where G is the Galois group of h
considered as a permutation group on its roots.

Our results in this paper include explicit calculations of f(G) for groups G in
several families. We also obtain results useful for computing f(G) when G is a
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2 FIXED-POINT-FREE ELEMENTS OF A TRANSITIVE GROUP

wreath product or a direct product of permutation groups. Using this we show
that {f(G) | G is transitive} is dense in [0, 1]. The corresponding conclusion is true
if we restrict G to primitive groups.

2. Examples and basic facts

Let G be a permutation group of degree n. Let X denote the set of n letters
acted on by G. Let StabG(x) denote the stabilizer of x ∈ X and for any subset
Y = {y1, y2, . . . , ym} of X, let StabG(y1, y2, . . . , ym) be the pointwise stabilizer of Y .
Given any g ∈ G, define the permutation character, ChG(g), of g to be the number
of letters fixed by g. We will omit the subscript when the group is clear from
context. Let A be the set of elements of G fixing no letters, and f(G) = |A|/|G|.
Recall [4, 10.1.5] that

∑
g∈G Ch(g) = k|G|, where k is the number of orbits in X .

In particular, if G acts transitively, this sum is just |G|.

Example 2.1. Consider D4, the dihedral group on four letters, of order 8. The
three nontrivial rotations and the two reflections about the midpoints of parallel
sides are the only elements which have no fixed points. Thus f(D4) = 5

8 .

More generally, let Dn be the dihedral group on n letters. Here the value of
f(Dn) depends upon the parity of n. If n is even, there are n

2 reflections about axes
through a pair of antipodal vertices. These reflections fix the pair of vertices. The
n
2 reflections about the midpoints of parallel sides and the n−1 nontrivial rotations

have no fixed points. It follows that |A| = n−1+ n
2 and that f(Dn) = 3n−2

4n . If n is
odd, each of the n reflections fixes a vertex and only the n − 1 nontrivial rotations
are without fixed points. From this, f(Dn) = n−1

2n .

Example 2.2. Let G be the group of rotations of the n-gon or let G be any group
of order n acting regularly on its elements. In a regular action, every nontrivial
element acts without fixed points, so f(G) = n−1

n . There is no group G with
f(G) = 1 since the identity always fixes every letter, but this example shows that
for each ε ≥ 0, there are infinitely many groups G with f(G) ≥ 1 − ε.

For many groups, the following instance of the inclusion-exclusion principle is
useful when calculating |A|. We observe first that A = G − ∪x∈XStab(x). For
subsets Y1 and Y2 of X, note that Stab(Y1) ∩ Stab(Y2) = Stab(Y1 ∪ Y2) Then
accounting for the overlap between stabilizers, we express the inclusion-exclusion
principle as

|A| = |G| +
n∑

i=1

(−1)i
∑

|Y |=i
Y ⊆X

|Stab(Y )|

.

Theorem 2.3. Let G act sharply k-transitively on a set X with n elements. Then

f(G, X) =

k−1∑

j=0

(−1)j

j!
+

n∑

j=k

(−1)j
(
n
j

)

|G|
.
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Proof. It is known that a sharply k-transitive group of degree n has order n!
(n−k)! .

When G acts sharply k-transitively on a set X with n elements, we obtain,

|StabG(Y )| =





(n − |Y |)!
(n − k)!

if |Y | < k

1 if |Y | ≥ k,

Using the inclusion-exclusion principle, we have

|A(G, X)| = |G|+
n∑

j=1

(−1)j
∑

|Y |=j,Y ⊆X

|Stab(Y )|

= |G|+
k−1∑

j=1

(−1)j

(
n

j

)
(n − j)!

(n − k)!
+

n∑

j=k

(−1)j

(
n

j

)

= |G|+
k−1∑

j=1

(−1)j n!

j!(n − k)!
+

n∑

j=k

(−1)j

(
n

j

)
.

The result follows when we divide by |G|.  

We will make further use of the special cases of Theorem 2.3 where k is 2, 3, n−2,
or n. The case where k = 1 and G acts regularly on X, seen in Example 2.2, could
also be obtained as a corollary of Theorem 2.3.

Corollary 2.4. If G acts sharply 2-transitively on a set X with n elements, then
f(G) = 1

n .

Proof. With k = 2, the first sum in the conclusion of Theorem 2.3 vanishes. We
apply the binomial theorem to (1 − 1)n to rewrite the second sum as 1

|G|(−1 + n).

Since |G| = n(n − 1) for a sharply 2-transitive group, the result follows.  

The proof of Corollary 2.5 is similar and we omit it.

Corollary 2.5. If G acts sharply 3-transitively on a set X with n elements, then
f(G) = 1

2 − 1
2n .  

Corollary 2.6. Assume n ≥ 3. Then

f(Sn) =
n∑

j=0

(−1)j

j!
for the symmetric group Sn, and

f(An) =

n−2∑

j=0

(−1)j

j!
+

(−1)n−12(n − 1)

n!
for the alternating group An.  

¿From Corollary 2.6, f(Sn) − f(An) = (−1)n n−1
n! so that f(Sn) < f(An) if n is

odd, and f(An) < f(Sn) if n is even. It is also clear that both f(Sn) and f(An)
closely approximate e−1 except for very small values of n.



4 FIXED-POINT-FREE ELEMENTS OF A TRANSITIVE GROUP

Example 2.7. Suppose that q is a prime power and write GF (q) for the field
having q elements. We will use Fq to denote the 1-dimensional affine general linear
group over GF (q). That is, Fq acts on GF (q) as the group of functions x 7→ ax + b
where a, b ∈ GF (q), a 6= 0. The groups Fq are sharply 2-transitive Frobenius groups.
It follows from Corollary 2.4 that f(Fq) = 1

q .

Lemma 2.8. If q is an odd prime power, then f(PSL(2, q)) = q−1
2(q+1) . If q is a

power of 2, then f(PSL(2, q)) = q
2(q+1) .

Proof. We prove the result when q is odd. The proof when q is even is similar.
With q odd, the order of PSL(2, q) is 1

2q(q − 1)(q + 1). Since PSL(2, q) is 2-

transitive of degree q + 1, the order of Stab(x1) is 1
2q(q − 1) and the order of

Stab(x1, x2) is 1
2(q− 1). By the Fundamental Theorem of Projective Geometry, no

nontrivial element of PSL(2, q) can fix three or more points, so |Stab(Y )| = 1 if Y
is a subset of X with 3 or more elements. We use the inclusion-exclusion principle
to write |A|

= |PSL(2, q)| −
(

q + 1

1

)
|Stab(x1)| +

(
q + 1

2

)
|Stab(x1, x2)| +

q+1∑

j=3

(−1)j

(
q + 1

j

)

=
1

2
q(q + 1)(q − 1) − (q + 1)

q(q − 1)

2
+

(q + 1)q

2

q − 1

2
+

q+1∑

j=3

(−1)j

(
q + 1

j

)

We use the binomial theorem on (1−1)q+1 to rewrite the final summand as − q(q−1)
2

and divide by |PSL(2, q)| to obtain the result.  

In the following table we list the lowest f -values for primitive groups having de-
gree at most 50. The table was constructed using the CAYLEY library of primitive
groups. We omit from the table degrees which are a power of a prime, since the
lowest f -values in degrees which are a prime power are described in Theorem 3.1
and the remarks following it. We also omit those degrees n for which the group
with minimal f -value is Sn (n odd) or An (n even).

We use Pn(q) to denote the projective n dimensional space over the field of q
elements. If q is a power of the prime p, then PZL(n, q) denotes the semidirect
product of PSL(n, q) with Gal(GF (q)/GF (p)).

Degree Minimal f-value Primitive group

6 1
3 (.3333) PSL(2, 5) on P 1(5)

10 13
40 (.325) S6 on the cosets of an F9

15 13
45 (.2889) PSL(4, 2) on P 3(2)

21 2
7 (.2857) PSL(3, 4) on P 2(4)

28 1
7 (.1429) PZL(2, 8) on cosets of NG(Sylow(G, 3))

33 4
11 (.3636) PZL(2, 32) on P 1(32)

36 3355
10368 (.3236) PSp(6, 2) on the cosets of an S8
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40 201
640 (.3141) PGL(4,3) on P 3(3)

45 14
45 (.3111) Mathieu group M10 on cosets of a Sylow-2-subgroup

3. Some Lower Bounds

We begin this section with a simple proof of Cohen’s result mentioned in the
introduction.

Theorem 3.1. Suppose G acts transitively and n > 1. Then f(G) ≥ 1
n . Equality

holds if and only if G acts sharply 2-transitively on X.

Proof. Recall equation (1) |G| =
∑

g∈G ChG(g).
For any x ∈ X, we have equation

(2)
k|G|
n

= k|Stab(x)| =
∑

g∈Stab(x)

ChStab(x)(g)

where k is the number of orbits of Stab(x) on X − {x}.
Subtracting equation (2) from equation (1) and separating G into the three

subsets A, Stab(x), and the remainder:

|G|−k|G|
n

=
∑

g∈A

ChG(g)+
∑

g∈G−A−Stab(x)

ChG(g)+
∑

g∈Stab(x)

1 ≥
∑

g∈G−A

1 = |G|−|A|.

So |A|
|G| ≥

k
n ≥ 1

n .

If there is equality, then first k = 1 and so G is 2-transitive. Second, if g ∈ G
has ChG(g) ≥ 2, then g ∈ Stab(x). However, x is arbitrary and so g = 1, implying
that G is sharply 2-transitive.

The converse was already proven in Corollary 2.4.  

The lower bound 1
n for f(G) is achieved only in degrees which are a prime power.

By [10, Chapter 9], the sharply 2-transitive groups have degree the power of a prime.
The groups Fq of Example 2.7 show that this lower bound is always achieved in
degrees which are a power of a prime.

Theorem 3.2. If p is a prime number 6= 3, 5 such that 2p is not of the form rm +1
with r prime and m > 1, then the group G of degree 2p with smallest f(G) is A2p.

Proof. Note first of all that since 2p is even, f(A2p) < f(S2p) and f(A2p) is just a
little less than e−1. Consider now the imprimitive groups G of degree 2p. Then G
either has 2 blocks each of length p or p blocks each of length 2.

In the first case, G has a cyclic quotient of order 2 and half the elements of G
swap the blocks. These elements are in A and so f(G) ≥ 1

2 .
In the second case, if i and j belong to the same block, then Stab(i) = Stab(j).

Thus ∪Stab(i) is a union of p subgroups each of order |G|/2p, so A = G−∪Stab(i)
has order at least |G|/2, whence f(G) ≥ 1

2 .
Next consider the primitive groups G of degree 2p. From the classification of

finite simple groups, it is known [8] that if G is not 2-transitive, then p = 5 and
G = A5 or S5. Thus G is 2-transitive.
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The 2-transitive groups have been classified. Excluding the alternating and
symmetric groups, they occur in families of degree

rm,
rm − 1

r − 1
(m > 1), 22m−1 ± 2m−1(m > 2), r3 + 1, 22(2m+1) + 1,

together with isolated examples of degree 11, 12, 15, 22,23, 24,176, 276, where r is
a prime power and m a positive integer. The only degrees in this list that can
have the form 2p are 4,22, and r + 1. We already know that F4 = A4 has minimal
f -value for degree 4 groups. The only groups of degree 22 to be considered are M22

and Aut M22, that have f -values 0.3902 and 0.3904 respectively and so do not beat
out A22.

As for degree r + 1, if r is prime, then the only groups to be considered are

PSL(2, r) and PGL(2, r). These have f-values
(r−1)
2(r+1) and r

2(r+1) by Lemma 2.8

and Corollary 2.5 respectively. Excluding the cases p = 2,3, (r = 3,5), these are
always greater than e−1.  

There is a group G = PZL(2, 81) of degree 82 containing PSL(2,81) with index
4 such that f(G) ≈ 0.3470. This shows that the theorem does not extend to cases
where 2p = r4 + 1 (r prime). It seems likely that it will extend to cases where
2p = r2 + 1 (r prime).

If we consider only primitive permutation groups, then we have the following
suggestive result.

Theorem 3.3. For a set of positive integers n of density 1, the minimum f(G)
for G a primitive permutation group of degree n is greater than e−1 − 1

(n−1)! .

Proof. By [5], for a set of n of density 1, the only primitive groups of degree n are
Sn and An.

By Corollary 2.6, f(Sn) = e−1 +
(−1)n

(n+1)!(1−
1

n+2 + 1
(n+2)(n+3) − ...) and f(An) =

e−1 + (−1)n−1

(n−1)! (1− 1
n − 1

n(n+1) + 1
n(n+1)(n+2) − ...), both of which exceed e−1− 1

(n−1)! .

 
We can obtain nice bounds for at least one other kind of transitive group imme-

diately.

Theorem 3.4. If G is a nilpotent transitive permutation group, then f(G) ≥ 1
2 .

Proof. Since G is transitive, its stabilizers are all conjugate. Call one of them
H. Then A = G − ∪x∈GHx. Pick a maximal subgroup M with H ≤ M . Since
G is nilpotent, M is normal and so ∪Hx ⊆ M , whence G − M ⊆ A. Since
[G : M ] ≥ 2, |A|/|G| ≥ 1

2 .  

Note that if G is a transitive p-group, then similarly f(G) ≥ p−1
p . See Section 7

for more comments on how f(G) is restricted if G is nilpotent.

4. Density of transitive groups

The wreath product of two groups turns out to be an important tool in further
examination of f(G) for transitive G. We note that the wreath product of transitive
groups is transitive and we calculate its f -value in Theorem 4.3. (See [9, p.32] fr a
definition of the usual action of the wreath product.)
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Definition. If G is any permutation group, let mi(G) = |{g ∈ G | Ch(g) = i}|,
denoted mi if G is understood. Define the polynomial

pG(t) =
1

|G|

deg(G)∑

i=0

mit
i

Example 4.1. If G is any group of order n with its regular representation (so
acting on a set of n letters), then the identity fixes all letters, while the remaining
n − 1 elements fix nothing. Hence pG(t) = 1

n (tn + (n− 1)).

Example 4.2. If G = D4, the dihedral group of order 8, with its usual action
on 4 letters, then the identity fixes all letters, two elements fix two letters and the
remainder fix nothing. Thus pG(t) = 1

8(t4 + 2t2 + 5).

Theorem 4.3. f(H o K) = pK(f(H)).

Proof. Write a typical element of G = H oK as g = (h1, h2, ...hn, k), so that K has
degree n. We note that g ∈ A(G) ⇐⇒ hi ∈ A(H) for every i fixed by k. Thus
|A(G)| = m0(K)|H|n + m1(K)|A(H)||H |n−1 + ... + mn(K)|A(H)|n, where mi(K)
is the number of elements of K fixing exactly i letters. Dividing by |G| = |H|n|K|
yields the result.  

Example 4.4. For the Frobenius groups Fq of Example 2.7, there are q−1 elements
of the form x 7→ x + b with b 6= 0, which have no fixed points. For an element
a 6= 1, a 6= 0 of GF (q), the mapping x 7→ ax + b fixes only the element b

1−a of

GF (q). There are q(q − 2) of these. The only remaining element is the identity. It
follows that the polynomial p for Fq is given by p(t) = 1

q(q−1)(q− 1+ q(q−2)t+ tq).

Example 4.5. The group of degree n giving minimal f -value need not be primitive.
The wreath product allows us to conveniently constuct examples to illustrate this.
In degree 35, we have found from the CAYLEY library files of primitive groups,
that the lowest f-value for a primitive group of degree 35 is approximately e−1

for the symmetric group S35. By the preceding theorem we can calculate that
f(F7 o F5) ≈ 0.3071, where, for q a prime power, Fq is the sharply 2-transitive
group of degree q defined in Example 2.7. F7 o F5 is imprimitive.

The basic properties of the polynomial are as follows.

Theorem 4.6. (1) pG(t) has degree n = deg(G), and its coefficients are rational,
with denominators dividing |G|.

(2) pG(t) and its first n − 1 derivatives are strictly increasing functions of t for
t ≥ 0.

(3) pG(0) = f(G), pG(1) = 1, and for any x ∈ X, p′G(1) is the number of orbits
of Stab(x) on X − {x}.

(4) If G is transitive and H = Stab(x), acting on X − {x}, then pH(t) = p′G(t).

(5) The action of G on X is k-transitive if and only if p
(k)
G (1) = 1.

(6) If H acts on X and K acts on Y then taking the usual action of H × K on
X

∐
Y yields pH×K(t) = pH(t)pK(t).

(7) If we instead let H × K act on X × Y, pH×K(t) = pH(t) ∗ pK(t), where the
operation ∗ is defined by (

∑
ait

i) ∗ (
∑

bjt
j) =

∑
aibjt

ij.
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(8) pHoK(t) = pK(pH (t)).

Proof. (1) is immediate from the definition. Note that only the identity fixes n or
n − 1 letters.

(2) pG(t) has nonnegative coefficients, and so its first n− 1 derivatives are sums
of strictly increasing functions for t positive.

(3) follows from (respectively) the definition of f and the formulae
∑

g∈G 1 = |G|
and

∑
g∈G Ch(g) = k|G| where k is the number of orbits of G.

(4) g ∈ H fixes exactly i−1 letters in X−{x} if and only if g fixes exactly i letters
in X , one of which is x. Hence p′G(t) = 1

|G|(ntn−1 + ... + rmr(G)tr + ... + m1(G))

= n
|G|(t

n−1 + ... + mr−1(H)tr−1 + ... + m0(H))

= pH(t) since, if G is transitive, |G| = n|H|.
(5) For 1 ≤ j ≤ n, let X [j] be the set of j-tuples from X with all coordinates

distinct. Then G acts naturally on X [j] coordinate-wise and it is easy to see that the
action of G on X is k-tranisitive if and only if the action of G on X [k] is transitive.
Note that the degree of (G, X [k]) as a permutation group is N = n!

(n−k)! . For the

action of G on X, let p(t) =
∑n

i=0 mit
i be the corresponding polynomial, and for

the action of G on X [k], write p̃(t) =
∑N

j=0 m̃jt
j .

Suppose g ∈ G fixes exactly i symbols of X. Then g fixes i(i− 1) . . . (i− (k− 1))
symbols of X [k]. It will be useful to write this number as





0 if i < k

i!

(i − k)!
otherwise

So m̃j =
∑

mi, where the sum is over all those i such that i(i−1) . . . (i−(k−1)) = j.
Then m̃0 = m0 + . . . mk−1 and for all other j, m̃j = mi for a unique i or m̃j = 0.

Then p̃′(1) =
∑N

j=1 jm̃j =
∑n

i=k
i!

(i−k)!mi = p(k)(1). Hence, p(k)(1) = 1 ⇔
p̃′(1) = 1 ⇔ G is transitive on X [k] ⇔ G is k-transitive on X.

(6) (h, k) ∈ H × K fixes exactly i letters in X
∐

Y if and only if h fixes exactly
j letters in X and k fixes exactly i − j letters in Y for some j. Summing over
0 ≤ j ≤ i, mi(H × K) =

∑
j mj(H)mi−j(K). But this is exactly what happens to

polynomial coefficients when they are multiplied.
(7) With this action, ChH×K(h, k) = ChH(h)ChK(k) for h ∈ H,k ∈ K. The

result follows since we can also write pG(t) = 1
|G|(

∑
g∈G tCh(g)).

(8) Note that (G o H) o K ∼= G o (H o K). Thus pHoK(f(G)) = f((G o H) o K) =
pK(f(GoH)) = pK(pH(f(G))). The result follows by noting that there are infinitely
many values of f(G)–so the two polynomials being compared, pHoK and pH(pK),
must be the same.  

Theorem 4.6 allows new proofs of the following two known results.

Notation. Let k(G) denote the number of orbits of G.

Corollary 4.7. If H acts on X, K on Y , then, taking the usual action of H × K
on X

∐
Y , we have k(H × K) = k(H) + k(K).

Proof. k(H × K) = p′H×K(1) = (pHpK)′(1) = p′H (1)pK(1) + p′K(1)pH(1) (by the
product rule) = k(H) + k(K).  
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Corollary 4.8. k(H o K) = k(H)k(K).

Proof. k(H o K) = p′HoK(1) = (pK ◦ pH)′(1) = p′K(pH(1))p′H (1) = p′K(1) · p′H (1) =

k(H)k(K) 

Example 4.9. The polynomial defined above can easily be computed for groups
which act sharply k-transitively. If (G, X) is a permutation group of degree n which
acts sharply k-transitively and x ∈ X , then H = StabG(x) acts sharply (k − 1)-
transitively on the set X−{x}. For j < k, the pointwise stabilizer of j letters of X ,
denoted StabG(x1, . . . , xj), acts sharply (k − j)-transitively on the remaining n− j
letters of X .

Let (G, X) be a sharply k-transitive permutation group with corresponding poly-
nomial

pG(t) =
1

|G|

n∑

i=0

mit
i.

Then

m0 = |{g ∈ G : Ch(g) = 0}| = |A(G)|
m1 = |{g ∈ G : Ch(g) = 1}| = n|{h ∈ StabG(x) : Ch(h) = 0}| = n|A(StabG(x))|

and in general for j < k,

mj =

(
n

j

)
|{h ∈ StabG(x1, . . . , xj) : Ch(h) = 0}| =

(
n

j

)
|A(StabG(x1, . . . , xj))|

Further, since no nonidentity element of a sharply k-transitive group can fix k or
more letters, mi = 0 for k ≤ i ≤ n − 1 and mn = 1.

Remarks. A natural question to ask is how “forgetful” pG is: If H and K have
the same polynomial, what other properties do they have in common? They need
not be isomorphic as groups, since if H and K are any two groups of order n
embedded in Sn by their regular representations, then they both have polynomial
1
n(tn + n − 1). However, by Theorem 4.6(1), they must have the same degree and
order and by Theorem 4.6(3), the same f -value. Also by Theorem 4.6(3), if one is
transitive, then the other must be. A question that we have not answered is: If one
is primitive, must the other be also?

Example 4.10. Of basic importance in the theory of transitive groups is the ques-
tion of transitive extensions, i.e., given a permutation group (H, X) of degree n, does
there exist a permutation group (G, X∪{x}) of degree n+1 such that StabG(x) = H
with its given action on X? In terms of polynomials, this translates into a question
involving integration.

For example, let us show that there is no transitive extension of the dihedral
group H of order 8 acting on 4 letters. Suppose, for the sake of contradiction,
that G is one such. Then p′G(t) = pH(t) and pG(1) = 1 together imply that

pG(t) = t5

40 + t3

12 + 5t
8 + 4

15 . The order of G must be 40 and so 40pG(t) ∈ Z[t], which
patently does not hold.

For the rest of this section, G = (G, X) will denote a transitive permutation
group of degree n.
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Lemma 4.11. If t ∈ [0,1), then pG(t) > t.

Proof. The derivative of pG(t) − t is pStab(x)(t) − 1 < 0. Thus pG(t) − t is strictly
decreasing in [0, 1). Evaluated at t = 1, it is 0.  

Lemma 4.12. Define G1 = G and Gk = Gk−1 o G. Then as k → ∞, f(Gk) → 1.

Proof. Let f(Gk) = ck. Then ck = pG(ck−1). By Lemma 4.11, the sequence (ck)
is increasing and bounded above. It therefore must approach a limit, which is a
solution of pG(t) = t. Again, by Lemma 4.11 and Theorem 4.6(2), the only solution
is t = 1.  

Theorem 4.13. The set {f(G) | G is transitive} is dense in [0,1].

Proof. Given ε > 0, by Corollary 2.4 there exists a transitive G such that f(G) < ε.
With the notation of Lemma 4.12, for k ≥ 2 (setting c0 = 0) ck−ck−1 = pG(ck−1)−
pG(ck−2) = p′G(ζ)(ck−1 − ck−2) for some ζ ∈ [0, 1), by the Mean Value Theorem.
Since p′G(ζ) = pStab(x)(ζ) < 1, we have, by induction, on k ck − ck−1 < ε. Thus the
set of f(G) is ε-dense.  

Remark. The proof of this theorem actually gives that the set of f -values of tran-
sitive imprimitive groups is dense in [0,1]. Compare with Theorem 5.11.

5. Density of primitive groups

In Section 4, we used the action of the wreath product H oK on X × Y to show
that {f(G) | G is transitive} is dense in [0, 1]. With only trivial exceptions, H o K
acts imprimitively on X × Y . In this section, we use methods analogous to those
in Section 4 to show that {f(G) | G is primitive} is also dense in [0, 1].

The wreath product H oK has a natural action on XY given by (xy) ·(hy ;k−1) =
(xy·k · hy). This action provides us with a rich collection of examples of primitive
permutation groups: we will make use of the following known result [7].

Lemma 5.1. Suppose that (H, X) is a primitive permutation group which is not
just a cyclic group of prime order acting regularly on its elements, and that (K, Y )
is any transitive permutation group. Then H o K acts primitively on XY .  

A second useful tool will be a polynomial qK , analogous to the polynomial pK

of Section 4, for which f(H o K, XY ) = qK(f(H)).
For notational convenience, we will write n for the degree of K, (h; k) for an

element ((hy); k) of H o K and x for an element (xy) of XY . For 1 ≤ j ≤ n, define
λj = λ(K,Y, j) = card{k ∈ K | k is a product of j disjoint cycles on Y , including
cycles of length 1}. Define the polynomial r = rK by r(t) = 1

|K|
∑n

j=1 λjt
j and

define the polynomial q = qK by q(t) = 1 − r(1 − t).

Example 5.2. For the symmetric group S3 acting on {1, 2,3}, we have λ1 =
2, λ2 = 3, λ3 = 1, r(t) = 1

6(2t + 3t2 + t3) and q(t) = 1
6(11t − 6t2 + t3).

Example 5.3. For the regular action of the cyclic group C6, it is easy to see that
λ1 = λ2 = 2, λ3 = λ6 = 1, λ4 = λ5 = 0, r(t) = 1

6(2t + 2t2 + t3 + t6) and

q(t) = 1
6(15t − 20t2 + 21t3 − 15t4 + 6t5 − t6).
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Theorem 5.4.

(1) |A(H o K, XY )| = |H o K| −
∑n

j=1 λj(|H | − |A(H, X)|)j |H|n−j .

(2) f(H o K, XY ) = 1 − rK(1 − f(H)) = qK(f(H)).

Proof. Since |H o K| = |H|n|K|, statement (2) follows immediately from (1).
For k ∈ K, let Bk = {(h;k) ∈ H o K | (h; k) fixes at least one element of XY }.

Then the sets Bk are clearly disjoint from each other and from A(H o K,XY ) and

H o K is the disjoint union A(H o K, XY )
⋃

(
⋃

k∈K

Bk). It will suffice to show that

|Bk| = (|H| − |A(H, X)|)j |H |n−j if k is a product of j disjoint cycles on Y .
Suppose that (h;k) ∈ Bk and that θ−1 (here θ−1 rather than θ for purely

notational reasons) of length l = lθ ≥ 1 is one of the j disjoint cycles of k on
Y . Then there is an element x of XY which is fixed by (h;k): thus, xy·k−1 ·hy = xy

for every y ∈ Y and, in particular, xy·θ · hy = xy for the l distinct values of y
which occur in the cycle θ. Arbitrarily choose one value u = uθ of y which does
occur in θ. Then the set of values of Y which occur in θ (or in θ−1) is precisely
{u · θt | 0 ≤ t < l}. We have, for 0 ≤ t < l − 1, that xu·θt = xu·θt+1 · hu·θt , and,
with t = l − 1, that xu·θl−1 = xu·θl · hu·θl−1 = xu · hu·θl−1 . It follows that

xu = xu·θ · hu = xu·θ2 · hu·θhu = · · · = xu · hu·θl−1 . . . hu·θhu.

Hence h must satisfy the constraint that for each cycle θ−1 of length l in k, there
is a product hu·θl−1 . . . hu·θhu of elements which is in H − AH .

Conversely, suppose that we have k and j as above and that for each cycle θ−1

of k of length l = lθ, we have chosen some fixed element u = uθ of Y which occurs
in θ. For each θ, we choose elements g1, g2, . . . , gl−1 arbitrarily from H , and one
element gl restricted to H−AH , but arbitrarily from that set. Let xu be an element
of X which is fixed by gl and define elements xu·θt ∈ X by xu·θt = xu · g−1

t for
1 ≤ t < l. Having done this for every θ−1 in k, we have defined an element x
of XY . Similarly, define elements hu·θt ∈ H by hu = g1 and hu·θt = gt+1g

−1
t

for 1 ≤ t < l. Having done this for every θ, we have defined an element (h; k)
of H o K. We wish to verify that x · (h; k) = x and hence (h; k) ∈ Bk. It will
suffice to show that, for each cycle θ−1 of k and for each t with 0 ≤ t < lθ , that
xu·θt+1 · hu·θt = xu·θt . For t = 0, xu·θ · hu = (xu · g−1

1 )g1 = xu. For 0 < t <

l− 1, xu·θt+1 · hu·θt = (xu · g−1
t+1)(gt+1g

−1
t ) = xu · g−1

t = xu·θt . Finally, for t = l− 1,

xu·θl ·hu·θl−1 = xu·θl · (glg
−1
l−1). Then observe that u · θl = u and that xu was chosen

to be fixed by gl, so that xu·θl · hu·θl−1 = xu · g−1
l−1 = xu·θl−1 .

It is easy to see that different choices for g will lead to different values for h
and that given (h;k) ∈ Bk, we can, for each θ, set gt = hu·θt−1 . . . hu·θhu and thus
obtain h by the process above.  

Corollary 5.5. If (H1, X1), (H2, X2) and (K, Y ) are transitive permutation groups
with f(H1, X1) ≤ f(H2, X2) then f(H1 oK, XY

1 ) ≤ f(H2 o K,XY
2 ).

Proof. We need to show that qK is an increasing function on [0,1]. The function
rK is increasing on [0,1], hence is a decreasing function in 1 − t on [0, 1].  

We remark that f(H o K,XY ) is monotonic only in f(H), not in f(K). See
Example 5.8 below.
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In the next two lemmas, we need Euler’s totient function φ, where φ(m) is the
number of positive integers less than or equal to m that are relatively prime to m.

Lemma 5.6. If (Cn, X) is the cyclic group of order n acting as a regular permuta-
tion group on its own elements, then r(t) = 1

n

∑
d|n φ(n

d )td. As a special case, when

n is a prime p, r(t) = 1
p(tp + (p − 1)t) and q(t) = 1

p(1 + (p − 1)t − (1 − t)p).

Proof. Write X = {1,2, . . . , n} and Cn = 〈a | an = 1〉 where for 1 ≤ m ≤ n the
action of am on X is given by

i · am =

{
i + m if i ≤ n − m

i + m − n if i > n − m

Let d = (m, n) and observe that am is a product of d disjoint cycles of length n
d ,

which correspond to the congruence classes modulo d. Thus λd is nonzero only
when d is a divisor of n. When d divides n, λd = |{ m | 1 ≤ m ≤ n, (m,n) = d}| =
|{ m = jd | 1 ≤ j ≤ n

d , (j, n
d ) = 1}| = φ(n

d ).  

Lemma 5.7. If Q = pm, p a prime and FQ is the Frobenius group of Example 2.7,
then

r(t) =
1

Q(Q − 1)


 tQ + (Q − 1)t

Q
p + Q

∑

1≤j≤Q−2
j|Q−1

φ(
Q − 1

j
)tj+1


 .

Proof. For a, b ∈ GF (Q), a 6= 0, define the transformation θa,b on GF (Q) by
xθa,b = ax + b. Choose an element c of GF (Q) which is a generator of the cyclic,
multiplicative group GF (Q). We note that FQ has Frobenius kernel M = { θ1,b}
and that the cyclic group H generated by θc,0 is a Frobenius complement of M .
Since every nontrivial element of FQ lies either in M or else in exactly one of the Q
distinct conjugates of H in FQ, we can complete the proof by adequately describing
the permutation action of elements of M and of H .

We show that every nontrivial element of M is a product of Q
p = pm−1 cycles of

length p. Let θ1,b be such a nontrivial element. Regard GF (Q) as an m-dimensional
vector space V over GF (p) and choose a basis {v1, v2, . . . , vm} for V with v1 = b.
If m = 1, it is clear that θ1,b acts as the single cycle (0, b, 2b, . . . , (p− 1)b) of length

p. If m > 1, then each of the Q
p elements of the form x =

∑m
j=2 kjvj , kj ∈ GF (Q)

occurs in a different cycle (x, x + b, . . . , x + (p − 1)b) of length p.

We consider elements of the cyclic group H = 〈θc,0〉. All powers of θc,0 fix 0.

Arguing as in Lemma 5.6, H contains, for any divisor j < Q − 1 of Q − 1, φ(Q−1
j )

elements which are a product of j nontrivial cycles of length Q−1
j and one cycle of

length 1.  

The expression for r(t) in Lemma 5.7 is slightly misleading when m = 2, since
the term tp occurs in two places.
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Example 5.8. For the Frobenius group F5, we have that qF5(t) = 1
20 (44t− 35t2 +

15t3 − 5t4 + t5), while for the cyclic group C5, we have qC5(t) = 1
5 (1+4t− (1− t)5).

It follows that f(C2 o F5, 2
5) = qF5(

1
2) = 95

128 while f(C2 o C5, 2
5) = qC5(

1
2 ) = 76

128 .
Note that this shows that it is possible to have f(H o K1) < f(H o K2), even when
f(K1) > f(K2).

Lemma 5.9. If (K,Y ) is a nontrivial transitive permutation group and t ∈ (0, 1),
then rK(t) < t < qK(t).

Proof. For t ∈ (0, 1), λjt
j ≤ λjt with equality only for j = 1. Since

∑
λj = |K|,

it follows that t = 1
|K|

∑
λjt > 1

|K|
∑

λjt
j = rK(t). Replace t by 1 − t to obtain

1 − t > rK(1 − t) and t < 1 − rK(1 − t) = qK(t).  

Lemma 5.10. Let (G0, X0) and (K, Y ) be transitive permutation groups. Induc-
tively define (Gk+1, Xk+1) to be (Gk o K, (Xk)Y ). Then limk→∞ f(Gk, Xk) = 1.

Proof. We use the same proof as in Lemma 4.11.  
Theorem 5.11. The set {f(G, X) | (G, X) is primitive} is dense in [0, 1].

Proof. Let ε > 0 be given. We construct a sequence {(Gk, Xk)}k≥0 of primitive
permutation groups with f(G0, X0) < ε, f(Gk+1,Xk+1) − f(Gk, Xk) < ε and
limk→∞ f(Gk, Xk) = 1. Let Q be a prime power with 1

Q < ε and let (G0,X0) be

the Frobenius group (FQ, GF (Q)). Then (G0,X0) is primitive and f(G0,X0) < ε.

Use l’Hôpital’s Rule to verify that limt→∞(1
t )

1
t−1 = 1. Choose a prime p sufficiently

large that

1 −
(

1

p

) 1
p−1

<
1

Q
and

1

p
< ε

It can be shown that the second requirement is redundant. We define (Gk, Xk) in-
ductively by (Gk+1, Xk+1) = (Gk oCp, (Xk)p). Write q for qCp and ck for f(Gk,Xk).
By Theorem 5.4, ck+1 = q(ck). By Lemma 5.1, (Gk, Xk) is primitive for k ≥ 1. By
Lemma 5.10, limk→∞ f(Gk, Xk) = 1. We may assume that p is odd. By Lemma
5.6, q(t) = 1

p(1 + (p − 1)t + (t − 1)p), hence q′(t) = 1
p(p − 1 + p(t − 1)p−1). It is

easy to see that q′(t) is a strictly decreasing function on [0, 1] and that q′(t) = 1

when t = 1 − (1
p)

1
p−1 . Our requirement on the choice of p above is to insure that

q′(t) < 1 on [ 1
Q , 1]. We need to verify that ck+1 − ck < ε for k ≥ 0. As in Theorem

4.13, we use induction on k and the Mean Value Theorem. For k = 0, a routine
calculation shows that c1−c0 = q( 1

Q )− 1
Q = 1

p(1− 1
Q)(1−(1− 1

Q )p−1) < 1
p < ε. For

k > 0, we assume inductively that ck − ck−1 < ε and apply the Mean Value Theo-
rem to q on [ck−1, ck] to obtain ξk in [ck−1, ck] with ck+1 − ck = q(ck) − q(ck−1) =
q′(ξk)(ck − ck−1) < ck − ck−1 < ε.  

Remark We have even shown that given any prime p the solvable primitive
groups of degree a power of p have f -values dense in [0, 1].

The remaining results in this section are peripheral; we won’t make further use
of them. We use s(n, k) to denote the Stirling number of the first kind. We make
use of well-known properties of s(n, k) which can be found in standard texts on
combinatorics [1].
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Proposition 5.12. For the symmetric group Sn acting on a set of n elements we
have,

(1)

r(t) =
1

n!

n∑

j=1

|s(n, j)|tj

(2)

r(t) =
1

n!

n−1∏

j=0

(t + j)

(3)

q(t) = 1 − 1

n!

n∏

j=1

(j − t) = 1 −
n∏

j=1

(1 − t

j
)

(4)

q(t) =
(−1)n+1

n!

n∑

j=1

s(n + 1, j + 1)tj

Proof. (1) This is essentially an exercise [1,Chapter 2,Section 3,Exercise 18]. We
need to show that λ(Sn, j) satisfies the known recursion |s(n, j)| = |s(n − 1, j −
1)|+(n− 1)|s(n− 1, j)|. Observe that for an element α of Sn−1, which is a product
of j − 1 cycles in Sn−1, we may regard α as a product of j cycles in Sn. For any
element β of Sn−1 which is a product of j cycles, we may obtain n − 1 elements of
Sn by inserting n into β in n − 1 different positions.

(2) This follows from (1) and known properties of |s(n, j)|.
(3) This follows from (2) and the definition of q.
(4) We show that (4) follows from (3). Observe that

n∏

j=1

(j − t) = (−1)n
n∏

j=1

(t − j) = (−1)n 1

t

n∏

j=0

(t − j) =

(−1)n 1

t

n+1∑

k=1

s(n + 1, k)tk = (−1)n

[
s(n + 1, 1) +

n+1∑

k=2

s(n + 1, k)tk−1

]
=

(−1)n


(−1)nn! +

n∑

j=1

s(n + 1, j + 1)tj


 = n! − (−1)n+1

n∑

j=1

s(n + 1, j + 1)tj  

.

Proposition 5.13. For the alternating group An acting transitively on a set of n
elements,

r(t) =





m∑

j=1

s(n, 2j)t2j if n = 2m is even

m∑

j=0

s(n, 2j + 1)t2j+1 if n = 2m + 1 is odd
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Moreover, if (K,Y ) is a permutation group of degree n, then K ⊆ An if and only
if rK is an even polynomial or an odd polynomial, according as n is even or odd.

Proof. We have a natural inclusion of An or of K in Sn as a permutation group.
We assume that n is even: the case when n is odd is similar. It will suffice to show
that an element θ of Sn is contained in An if and only if θ is a product of an even
number of disjoint cycles. Suppose that θ is a product of j disjoint cycles of which
a have even length and b have odd length. Write θ = θ1θ2 where θ1 is a product of
a disjoint cycles of even length and θ2 is a product of b cycles of odd length. Since
every one of the n letters of Y is contained in some cycle and n is even, we must
have that b is even. It follows that θ2 is contained in An and that θ1 and hence θ
is contained in An if and only if a is even.  

6. An Alternative Proof

In this section we give an alternative proof of Theorem 4.13 that the set {f(G) | G
is transitive} is dense in [0,1].

Proof. Let ε > 0 be given. Choose a prime or a prime power q such that 1
q < ε.

Write Gi for the ith direct power of the Frobenius group Fq acting on the ith power
of GF (q); that is Gi = ((Fq)

i, (GF (q))i). It follows fro Lemma 6.2 below that
f(Gi) = 1 − (1 − 1

q )i. It is clear that f(G1) = 1
q < ε and that limi→∞ f(Gi) = 1.

We need only show that f(Gi+1) − f(Gi) < ε for every i. This is easy since
f(Gi+1) − f(Gi) = (1 − (1 − 1

q )i+1) − (1 − (1 − 1
q )i) = 1

q (1 − 1
q )i < 1

q < ε.  

Remark The groups Gi are solvable and have degree a prime power qi.

Lemma 6.1. If H acts on X and K acts on Y , then for the action (x, y)(h, k) =
(xh, yk) of H × K on X × Y ,

1 − f(H ×K, X × Y ) = (1 − f(H,X))(1 − f(K, Y ))

Proof. An element (x, y) of X × Y is fixed by (h, k) in H ×K if and only if h fixes
x and k fixes y.  

Lemma 6.2. If H acts on X, then f(Hm, Xm) = 1 − (1 − f(H,X))m for the
coordinate-wise action of Hm on Xm.

Proof. This follows from Lemma 6.1 by induction on m.  

Lemma 6.3. If H is transitive on X and K is transitive on Y , then H × K is
transitive on X × Y and Hm is transitive on Xm.

Proof. Given (x1, y1) and (x2, y2) in X ×Y , there is an h ∈ H with x1h = x2 and a
k ∈ K with y1k = y2. Then (x1, y1)(h, k) = (x2, y2). The second statement follows
by induction.  

7. Conclusion

There are still many interesting questions that remain to be answered. Some of
them are:
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1. Do pK(t) and qK(t) determine primitivity of the group K?

2. What is the lower bound for {f(G) | G simple}?
There is empirical evidence to suggest that the bound is 2

7 . If so, the bound is
sharp, for it is achieved by both PSL(3, 2) of degree 7 and PSL(3, 4) of degree 21.

3. Is there a limiting value for f(PSL(n, 2)) as n → ∞?
Examples suggest that the limit would be

∏∞
n=1(1 − 1

2n ), or approximately
.288788. Computations in CAYLEY show that for 2 ≤ n ≤ 6,

f(PSL(n, 2)) =

n∑

j=0

(−1)j 1
∏j

i=1(2
i − 1)

We suspect that the obvious replacement of 2 by a prime power q calculates
f(GL(n, q)) rather than f(PSL(n, q)).

4. Define
cn = min{f(G) | G of degree n}
pn = min{f(G) | G primitive of degree n}.

Are there better bounds for cn and pn? What forms do the minimal groups have?

5. What are the accumulation points of {f(G) | G is nilpotent}?
Extending the method of Theorem 3.4, one shows that if G is a nilpotent tran-

sitive group and f(G) > 1
2 , then f(G) ≥ 5

8 . Thus 1
2 is isolated. The results of [4]

produce sequences of p- groups with accumulation points p
p+1 .

6. For a given n, is there a limit of f(PSL(n, q)) as q → ∞?
We have seen in Lemma 2.8 that f(PSL(2, q)) → 1

2 as q → ∞ and we have

numerical evidence that f(PSL(3, q)) → 1
3 as q → ∞, but the obvious conjecture

seems to be false for n ≥ 4.

7. What constraints must be satisfied by the coefficients mi of pG for a transitive
group G?

We have the following constraint (note that f(G) = m0

|G| and f(H) = m1n
|G| ).

Proposition 7.1. Let G be transitive with one-point stabilizer H. Then 2f(G) +
f(H) ≥ 1.

Proof. f(G) =
∫ 1

0 (1 − pH(t))dt. The function 1 − pH (t) is strictly decreasing and
convex in [0, 1], so the integral is at least the area of the right-angled triangle with
sides of length 1 − f(H) and 1.  

8. Is every rational number in (0, 1) equal to f(G) for some transitive (primitive)
group G ?

In the transitive case, by Lemma 6.1, it is enough to show that the semigroup
generated by {q−d

q | q is a prime power , d | q− 1 } consists of all rational numbers

in (0, 1). Alternatively, also by Lemma 6.1, it is enough to show that , for all n, 1
n

is the f -value of a transitive group or to show that, whenever b is a prime power,
a
b is the f - value of a transitive group.
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