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Abstract

We give a graph-theoretic definition for the number of ends of Cayley digraphs for finitely
generated semigroups and monoids. For semigroups and monoids, left Cayley digraphs
can be very different from right Cayley digraphs. In either case, the number of ends
for the Cayley digraph does not depend upon which finite set of generators is used for
the semigroup or monoid. For natural numbers m and n, we exhibit finitely generated
monoids for which the left Cayley digraphs have m ends while the right Cayley digraphs
have n ends. For direct products and for many other semidirect products of a pair of
finitely generated infinite monoids, the right Cayley digraph of the semidirect product has
only one end. A finitely generated subsemigroup of a free semigroup has either one end
or else has infinitely many ends.

1. Ends for graphs and digraphs

A digraph is a quadruple I' = (Vp, Er, ¢, 7.) where V = Vr is a set of
vertices, £ = Er is a set of edges and ¢, 7. : E — V are functions desig-
nating initial and terminal vertices for each edge. A graph is a quintuple
' = (Vr, Er, iy, 7, invy) where inv,. is a function F — E and we require
axiomatically, for each e € F, that e # inv.(e), that inv_(inv.(e)) = e, that
tp(inv.(e)) = 7.(e) and that 7. (inv.(e)) = ¢, (e). We omit the subscripts on
the functions ¢ and 7, whenever context makes these unnecessary and we
routinely write e~! for inv,(e).

When we imagine some geometric realization of a graph, we regard e
and e~! as occupying the same arc of points, but traversing these arcs in
opposite directions. In a geometric realization for a digraph, each edge has
an associated direction for traversal. We allow loops and multiple edges in
graphs and digraphs.

A graph (Vy, Ex,iy,7,,inv.,) is a subgraph of (Vr, Er, ¢, 7., inv,.) if
Vy and Ex are subsets of Vr and Er, respectively, and the functions ¢, 7.
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and inv.. are the respective restrictions of the functions ¢, 7. and inv, to
E~. Subdigraphs of digraphs are defined analogously, but we will routinely
use the word subgraph for both subgraphs and subdigraphs.

If T is a digraph (V, E,¢,7) or a graph (V, E,¢,7, 1) and Vj is a subset
of V, then the full subgraph of T" on V} is the digraph I'g = (Vp, Ep, ¢, 7) or
the graph I'g = (Vo, Eo, ¢, 7, ') where Ey consists of all of the edges in F
having both vertices in V4. If § is a subset of V', we write ' — § for the full
subgraph of ' on V — §.

Suppose I' = (V, E,1,7) is a digraph and that E~! is a set in one-to-
one correspondence with E, but disjoint from FE. Then there is a graph
I' = (V,EUE'1,7,7!) where we extend +,7 and ~! to E U E~! by
e ) =7(e),7(e7!) = 1(e) and (e7!)"t = e. If £ : T} — I’y is a morphism of

> < >
digraphs, we obtain a graph morphism & : I'; — I g by setting £ (e7!) =
(€(e))~L. Tt is then easily seen that “ is a functor from the category of
digraphs to the category of graphs.

Conversely, we obtain a digraph (V, E,t,7) from a graph (V, E,.,7,7!)
by simply discarding the function ' : E — E. This extends to a functor U
from the category of graphs to the category of digraphs. The functor < is
a left adjoint to this functor U.

Suppose that I' = (V, E, ¢, 7) is a digraph. A positive walk w of length
n in I' is a sequence w = (eq,...,e,) of edges of I' with 7(e;) = t(e;41)
for 1 <i < n. Similarly, if I' = (V, E, 1,7, ') is a graph, then a walk w of
length n in I' is a sequence w = (ey, ..., ey,) of edges of I" with 7(e;) = t(e;41)
for 1 <i<n. If§: T — Ty is a digraph morphism and w = (eq,...,e,)
is a positive walk in I';, then £(w) = (w(e1),...,w(ey)) is a positive walk
in I's. Likewise, if £ : I’y — 'y is a graph morphism and w is a walk in
I'y, then the sequence &(w) is a walk in I'y. It is more convenient to write
just ejes ... ey, rather than (e, eq,...,e,) for a walk or positive walk w. We
define a walk in the digraph I' = (V, E,¢,7) to be a walk in T that is,
we allow edges to be traversed in either direction. The vertices of w are the
vertices t(e;) and 7(e;) such that e; is an edge of w. The initial vertex of w
is t(e1), the initial vertex of ej, and the terminal vertex of w is 7(ey), the
terminal vertex of e,,. We allow at each vertex v of a digraph I or a graph I
an empty walk of length 0 having v as both its initial and terminal vertex. A
walk w = ejes...e, in a graph or in a digraph is a trail if whenever e; = e
for some ¢, then e; is neither e nor e~! for j # 4. That is, identifying e with
e~ 1, all of the edges on w are distinct. A walk in a graph or in a digraph
is a path if all of its vertices are distinct. An interior vertex on a path
w is any vertex on w other than its initial and terminal vertices. We are
largely concerned with paths rather than walks or trails. The reader should
be alert that these words are not consistently defined in the literature and
that the distinction between walks and paths is sometimes important in this
work. In a digraph, a positive walk is a positive trail if all of its edges are



distinct and is a positive path if all of its vertices are distinct.

A graph I' is connected if there is a path in I' from any vertex v to any
vertex vo. We define a digraph I' to be connected if T is connected. A
component of a graph or of a digraph I' is a maximal connected subgraph
of T'.

We write |X| for the cardinality of a set X. If v is a vertex in a graph
or in a digraph, then indegree(v),outdegree(v) and degree(v) are defined
respectively by indegree(v) = [{e : 7(e) = v}|, outdegree(v) = |[{e : t(e) =
v}| and degree(v) = indegree(v) + outdegree(v). A graph is locally finite if
each vertex has finite degree. It is usual practice to define the number of ends
of a graph only for locally finite graphs. For finitely generated semigroups
and monoids we define the number of ends for Cayley graphs which may
have vertices with infinite indegree.

We state several possible definitions for the number of ends of a graph
and additional possible definitions for the number of ends of a digraph. For
all of these definitions, I" is a graph or a digraph, § a finite set of vertices of
I' and, for various subscripts x, €, = €,(I" — §) is some set whose elements
are infinite components, C, of I' — §. For each subscript z, we define a
number, e, (T"), of ends of T' by

eol) = _max (€0 =)
When €, and e, are defined for graphs rather than for digraphs, we extend
the definition for e, to digraphs by e;(I') = ex(?) for any digraph T'.

If v1,v9 are vertices in the graph T, then the distance, dr(vi,vs2), be-
tween v1 and v in I, is the length of the shortest path in I' from v; to vs.
This distance is not defined if v; and vy are in different components of I'. A
path 7 having initial vertex v; and terminal vertex vy is a geodesic in I' if
the length of 7 is dr(v1, v2). In a digraph I', a positive path 7 having initial
vertex vy and terminal vertex vs is a digeodesic in I' if 7 is a positive path
of minimal length in I' from v; to ve. There is a digeodesic in I' from v; to
ve if and only if there is a positive path in I' from vy to vs.

Suppose that & is a subgraph of a graph I' or a digraph I". Then it is
easy to see that a path in ® which is a geodesic or a digeodesic in I' is also
a geodesic or a digeodesic in ®. However, a geodesic or a digeodesic in ®
need not be a geodesic or a digeodesic in I'.

A graph T' has unbounded paths (geodesics) if for every natural
number n there is a path (geodesic) of length n in I'. A digraph I" has
unbounded positive paths (digeodesics) if for every natural number n
there is a positive path (digeodesic) of length n in I'. A vertex v in a graph
I' initiates unbounded paths (geodesics) if for every natural number n
there is a path (geodesic) of length n in I with initial vertex v. A vertex v
in a digraph I' initiates unbounded positive paths (digeodesics) if for
every natural number n there is a positive path (digeodesic) of length n in



I" with initial vertex v. A vertex v in a digraph I" terminates unbounded
positive paths (digeodesics) if for every natural number n there is a
positive path (digeodesic) of length n in I' with terminal vertex v.

To implement the definitions displayed above for e, (I"), we need to define
various sets €,(I" — §) where I' is a graph or digraph and § is a finite set
of vertices of I'. For brevity and generality, we state these definitions for
¢,(T), in terms of I', rather than I' — §. For a graph I', we define

={C : Cis a component of I' having infinitely many vertices}

={C : C is a component of I having unbounded paths}

()
()

Cy(I') ={C : C is a component of I having unbounded geodesics}

¢ (') ={C : C contains a vertex which initiates unbounded paths}
()

={C : C contains a vertex which initiates unbounded geodesics}

Cp(I) ={C : C is a component of I having unbounded positive paths}
I') ={C : C is a component of I" having unbounded digeodesics}

()

()
¢ () ={C : C contains a vertex which initiates unbounded positive paths}
¢ (I')={C : C contains a vertex which terminates unbounded positive paths}
€=([') ={C : C contains a vertex which initiates unbounded digeodesics}
€< (') ={C : C contains a vertex which terminates unbounded digeodesics}

Lemma 1. Let I' be a connected graph.

(1) If T has unbounded paths, then every vertex in I initiates unbounded
paths.

(2) If T has unbounded geodesics, then every vertex in I initiates un-
bounded geodesics.

Proof. Let © be an arbitrary vertex in I". Write || for the length of a walk
.

(1) For each natural number n, we want to show the existence of a path
7 in I with «(m,) = 0 and |m,| = n. Let x,, be a path in I' with |x,| = 2n.
Since T' is connected, the distance dr(u,v) is defined and finite for any two
vertices u,v € I'. Choose v, to be a vertex v on Y, for which dr(v,v) is
minimized as v ranges over the vertices on x,. Let v, be a path with length
dr (9, vy,) from o to v,. Write X, as (a,) '8, where t(ay) = ¢(8,) = vn.
Since |xn| = 2n, either |ayp| > n or |By] > n. Assume, without loss of
generality, that |ay,| > n, so |y,a,| > n. Observe that ,q, must be a path
by the minimality of dr(0,v,). Let m, be the initial subpath of v,a,, having
length n.

(2) For each natural number n, we want to show the existence of a
geodesic m, in I' with «(m,) = 0 and |m,| = n. Let x, be a geodesic in I'
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FIGURE 1. Some subset inclusions for €.

with |x,| = 2n. Since I is connected, we can find geodesics ay,, B, in I' with
t(an) = t(Bn) = 0, T(an) = t(xn) and 7(Bn) = 7(xn). Then (ay,)~'f, is
a walk in T' from ¢(x,) to 7(Xxn), hence |(ay,) 16,| > 2n. But then either
lam| > n or |8, > n. Without loss of generality, assume |a,| > n and let
my, be the initial subpath of «,, having length n. O

Corollary 2. (1) For any graph I', €,(I') = €,(I") and €4(I") = C+(T).
(2) For any graph T', e,(I') = e,(T") and e4(I") = e4(T").

Proof. (1) It is clear that €,(I') & €,(I") and &(I') & &€4(I"). The reverse
inclusions follow by applying Lemma 1 to connected components of I'.

(2) By the first part, we have €,(I' = §) = €,(I' = §) and €,(I' = §) =
& (I' = ) for any finite subset § of vertices of T’ O

In the next six examples, the subscmpts 00, P, G * and t are graph sub-
scripts while the subscgpts +p, 8,7, (5 and (5 are dlgraph subscripts.
The subscripts * and ¢ are initial subscrlpts while % and (5 are terminal
subscripts. For Cayley digraphs of semigroups and monoids, we generally
ignore the two terminal subscripts. The following examples show that, ex-
cept for the equalities in the corollary above, the definitions in our list are
all distinct. We do not claim to have included all possible definitions.

Let I be a digraph and § a finite set of vertices in I'. Write just €, for
¢, (I' = F). Every €, is a subset of €, and we have illustrated some fairly
obvious subset inclusions in Figure 1.

Since, for example,

¢ =F) Cex (I —F) CC(I—3F) CCu(l - 3),

we have e (I') < ew(I') < e.(I') < exo(I'), with similar inequalities following
from other inclusions. An important consequence is that, for non-terminal
subscripts z, all the numbers e;(I') have the same value if we have € (I" —
) = Coo(I' = F) for every finite set § of vertices in I'. Similarly, for non-
initial subscripts z, all the numbers e, (I') have the same value if we have
Cs(I' = F) = €o(I' — J) for every finite set F of vertices in I'.

ot



FT: 0 —— 0 ——0——0—>—0——0——O0——0—— O —— O - -
-5 -4 -3 -2 -1 0 1 2 3 4 5

Fa: e —d— 0 —P— 04— 0 —— 0 ——O0—P— 0 ———O0—— O ——O—— O -

-5 —4 -3 -2 -1 0 1 2 3 4 5

Fs: PO —— O —— 0 —— 0 —P—O0—P— 0 —4—O—— O —— O —— O —4— -
-5 —4 -3 —2 -1 0 1 2 3 4 5

Ficure 2. Iy, I'y and ['s

When a digraph I' has no multiple edges, it can be notationally very
convenient to write e = (v;,v;) for the edge e which has t(e) = v; and
7(e) = v;. We follow this convention in the following six examples. If I' is
a digraph without multiple edges, then the dual digraph I'°? has the same
vertices as I and (vj;,v;) is an edge in I'°P if and only if (v;,v;) is an edge
in I'. We write N for the natural numbers, Z for the integers and Z,, for the
integers modulo n.

Example 1. For z = r,a,s, let I', be the digraph (V, E,, ¢, 7) where

V=A{v : i€Z}

E, ={(vi,vi+1) : 1 €Z}

Eq = {(v25,v2541), (v2j,v2j-1) ¢ j € Z}

Es = {(vi, vit1), (v2),v2541), (Va, vor—1) = i <=1, 7 >0, k> 1}

The subscripts 7, a, s are for right, alternating and split. See Figure 2.
We observe first that ?T = ?a = ?5, so that e;(T';) = e,(Ty) = ex(T'y)
for any graph subscript = and then that all of these have value 2. For I',,
we observe that e ,(I') = e;(I'y) = 2, while ex(I';) = e=(I';) = e (I'y) =

é
e« (I';) = 1. Since no positive path in I', has length greater than 1, e;(I'y) =

1
0 for every digraph subscript x. Similarly, e4,(I's) = es(I's) = e (I's) =
eg(f‘s) = 1, while e»(T's) = e?(FS) =0.
Example 2. Let I' be the digraph having vertex set Vp = {v;; : i,j € N}

and edge set

Er = {(v2i,1,v2i-1,1)s (V2,1, V2i41,1), (Vi,25, Vi.2j—1), (Vi25, Vi2j+1) : 4,5 € N}

Then e,(I') = oo for graph subscripts « while e;(I') = 0 for digraph sub-
scripts .

Example 3. Let n > 1 be any natural number. For distinct symbols

h and s;; let V.= {h} U{s;; : 1 < i < n,j > 1} be the set of



vertices for a digraph W,. Define the set E of edges for W,, by E =
{ (h, SZ',l),(Si’j,S@j_;,_l),(Si,j,h) 1 <9< n, 32> 1}. It is not difficult
to see that e, (W,,) = n except when z is a terminal subscript, % or 5. For
those two cases, e (W,) = 1 while e (W,) = 0. Similarly, e,(W3") = n
for non-initial subscripts z while e—(W,") = 1 and e?(Wﬁp) =0.

Example 4. Let n > 1 be a natural number. Let V = {c} U{v;, : i€
Zyn, k € N} be the set of vertices for a digraph I',,. Define the set E of
edges for I'y, by E = { (vi g, Vit1,k), (Vok,€) : @ € Zp,k € N }. Since we can
choose finite subsets § of V' which exclude ¢, we see that e (I';,) = 1. For
any other subscript x, e;(I';) = 0, since any trail in ?n with length greater
than 2n 4 2 must pass through c at least twice and thus cannot be a path.

Example 5. Let V = {c} U{v;, : k € Nk > 3, j € Z; } be the
set of vertices for a digraph ©. Define the set E of edges for @ by F =
{ Wk, vj1k), (Wjgc) + k€ NE >3, j€Z}. Here exs(O) = €,(0) =
ex(0) = ep(0) = e5(0) = e (0) = 1. For the other five subscripts x,
ez(©) =0.

Example 6. Let X be any infinite set. Let the set of all finite subsets of
X be the set, V = Vp, of vertices for a digraph I". Define the set E of edges
for ' by E = {(A,B) : A,B €V, BC A}. Then any positive path of
length n with initial vertex Ag € V corresponds to a chain of finite subsets
An G A1 G- G A2 G A1 G Ag. Observe that there is a positive path in
I" from A to B if and only if B is a subset of A, that the longest positive
path having A as an initial vertex has length |A| and that digeodesics in I'
have length one.

Let § = {Ay}yecw be any finite subset of V' and define Az by Az =
UypewAy. Then Az is also finite. Choose some element z = x5 € X — Ag.
Given any two vertices By, By € I' — §, let B = By U By U {z}. Then
B eT'—F and (B, By), (B, By) are both edges in I'—§, so I' — § is connected
and geodesics in 1<TS> have length at most two.

It is then clear that ex(I') = €,(I") = e4(I') = e4p(I') = e-(I') = 1 while
e;(I") = 0 for the other six subscripts z.

A set X C M is a set of monoid generators for the monoid M if every
nonidentity element of M can be written as a product of elements of X.
A set Y C M is a set of semigroup generators for the monoid M if every
element of M can be written as a product of elements of Y.

For any semigroup S, we define S! to be the monoid S U {1} where 1
is a new idempotent, not in S, and 1-s = s = s-1 for every s € S. For
a semigroup homomorphism f : S — T, we have a monoid homomorphism
S8t — T extending f, if we define f'(1) = 1. Then ( )! is a functor
from the category of semigroups to the category of monoids and is the left
adjoint to the forgetful functor from the category of monoids to the category



of semigroups. If (X : R) is a semigroup presentation for S, then we can
regard (X : R) as a monoid presentation for S, by allowing the empty
word on X.

For a digraph I'' and a semigroup S, let ¢ be a function from S to £ = Er.
Then the pair (T, ¢) is a diagram over the semigroup S, ¢ is the label,
or labelling function for the diagram and for any edge e € E, ¢(e) € S is
the label of e. We extend the label by concatenation to a label on positive
paths in T'.

If S is any semigroup with a finite set X of generators and s € S, we
write Lx(s) for the smallest positive integer n such that s = z;, 4, ... 75,
with z;; € X for 1 < j < n. Below, we will see that Lx(s) is the length
of a digeodesic from 1 to s in either the right Cayley digraph I',.(S*, X) or
the left Cayley digraph ,I'(X,S'). When M is a monoid and X is a set of
monoid generators for M, the identity 1 is the product of 0 elements from
X and we define Lx (1) = 0. For any nontrivial m € M, we write Lx(m)
for the smallest positive integer n such that m = z;, x4, . . . z;, with zi; € X
for 1 < j < n. When X is a set of monoid generators for the monoid M
and m € M, we will see that Lx(m) is the length of a digeodesic from 1 to
m in either the right Cayley digraph T',.(M, X) or the left Cayley digraph
JL(X, M).

2. Cayley digraphs for semigroups and monoids

Suppose that X C T is a set of semigroup generators for the semigroup
T or that X C T is a set of monoid generators for the monoid 7. The
right Cayley digraph for T with respect to X is the digraph I',.(T, X) =
(V,E,i,7) where V =T,

E=TxX={(tz):teT,xe X}, ((t,z))=t and 7((t,z)) = tz.

Dually, the left Cayley digraph for 1" with respect to X is the digraph
(X, T)=(V,E,i,7) where V=T,

E=XxT={(z,t):xeX,teT}, (z,t)=1t and 7((z,t)) = «t.

The monoid Cayley digraphs are connected, but the semigroup Cayley
digraphs need not be. For example, if n is any natural number and F), is
the free semigroup on the set X,, = {z1,...,2,} of generators, then both
I (F,, X,) and (I'(X,, F},,) have n components. For a given semigroup or
monoid, these left and right Cayley digraphs can be quite dissimilar and will
not in general have the same number of ends. Given a Cayley digraph I'; the
graph T is the Cayley graph. A reference in this work to a positive path
in a Cayley graph will always mean a positive path in the Cayley digraph.
To define the corresponding right and left Cayley diagrams, we define a



label ¢ by ¢(t,z) = = or ¢(x,t) = x, respectively. We can regard this label
as having values in the semigroup or monoid 7" or as having values in the
free semigroup or free monoid on the set X of generators for 7.

Lemma 3. Suppose that X is a finite set of monoid generators for the
monoid T. Let T' be the right (left) Cayley digraph, T'(T, X) ([I'(X,T)). If
T is any finite set of vertices of I' and C' is an infinite component of I' — 3§,
then there is a vertex © in C' which initiates unbounded digeodesics.

Proof. The proof is the same for the right and left Cayley digraphs. We
want to find a vertex ¢ in C and for each natural number n, a digeodesic,
7, € C, with «(m,) = 0 and |7,| = n.

Since C' is infinite and there are only finitely many products of elements
of X having any fixed length, for each natural number N, we can find an
element vy of C such that Ly (vy) > N. Select a digeodesic vy in I from 1
to vyn.

Suppose first that, for infinitely many values of IV, the digeodesic vy is
contained in C. Then 1 € C. We let v = 1 and for each natural number n,
we select a digeodesic vy € C with N > n. Since |yn| = Lx(vny) > N, the
digeodesic vy has length at least n and we let m, be the initial subpath of
~vn of length n.

Suppose then that vy is in C for only finitely many values of V. Then,
for some sufficiently large Ny, the digeodesic vy contains some vertex ay € §
whenever N > Nj. Let 6§ = {v € T'—F : there is an edge e of I" with «(e) €
§ and 7(e) = v}. Since § and X are finite, dF is finite. For N > Ny, we
have ay € § and vy € C S T — F, so vy contains at least one vertex which
is in 5. For N > Ny, define uy to be the unique vertex u on ~yy such that
u € 45, but no vertex following w on vy is in §F. Since §F is finite, there
is at least one vertex ¢ in 0§ such that © = uy for infinitely many different
values of N. This is the vertex © required for the conclusion of the lemma.
For any natural number n, choose N so that uy = v and N > Lx(9) + n.
Then the terminal subpath of vy from © to vy has length at least n. Let
7, be the subpath of yx having length n and initial vertex v. Since 7, is a
subpath of a digeodesic, 7, is a digeodesic. O

Corollary 4. Suppose that X is a finite set of monoid generators for the
monoid T'. Let T be the right Cayley digraph, T',.(T, X). Then e,(T') = exo(T)
if xis p, g, %, T, +p, * or 7. Similarly, e,(T') = e (L") if T is the left Cayley
digraph ¢L'(X,T) and x is any of these subscripts. ]

Remark: The previous two results and arguments also hold for finitely
generated semigroups.

Example 7. If X is a finite alphabet with |X| > 1, F' is the free monoid
generated by X and I' is the corresponding right Cayley digraph, then

ecc(I') = 00, but e (I') = e<(I') = 0.



Lemma 5.

(a) Suppose that M is a monoid with a finite set X of monoid generators,
that T' is the right (left) Cayley digraph for M with respect to X and that §
is any finite subset of M. Then I' — § has at most 1+ |X||§| components.

(b) Suppose that S is a semigroup with a finite set X of generators, that
T is the right (left) Cayley digraph for S with respect to X and that § is any
finite subset of S. Then T' — § has at most (1 + |F|)|X| components.

Proof. The proof is the same for the right and left Cayley digraphs.

(a) One of the components of I' — § might contain the identity element
of M. We regard this potential component as accounting for the “1” in
1+ |X]|§|. Suppose that C is a component of I' — § which does not contain
the identity element. Choose an element m € C for which Ly (m) is minimal
and, for the sake of notation, assume that Lx(m) = k. Choose a positive
path of length k from the identity element to m in I' and let v be the vertex
occurring just before m on this path. Observe that we must have v € §:
otherwise, v € I' — § and the edge from v to m is in I' — §, hence in C but
this contradicts our choice of m € C' with Lx(m) minimal. Then the edge
from v to m is one of the | X| edges having v as its initial vertex and we can
have at most | X||F| such edges from vertices of § to components of I' — §
which do not contain the identity of M.

(b) Suppose that S is a semigroup, that I' = I'(S, X) and that § is
a finite subset of S. By part (a), I'(S*, X) — § has at most 1 + |X||3|
components. One of these components contains the identity element of S?.
With this identity element removed in I', the remaining elements of this
component partition into at most |X| components of I' — §. Hence I' — § has
at most | X| + | X||F| components. O

It is not difficult to see that the bounds given in Lemma 5 are attained
when we let § be the set of all words of some fixed length on the free
generators of a free monoid or a free semigroup.

The following three corollaries of Lemma 5 are useful, expected and easy.
We state and prove these for finitely generated monoids, but we remark that
essentially the same proofs hold for finitely generated semigroups.

Corollary 6. Suppose that X is a finite set of monoid generators for the
monoid T. Let T' be the right (left) Cayley digraph, I'v(T,X) ([I'(X,T)). If
T is infinite, then ex(I') > 1.

Proof. For any finite §, T is the disjoint union of § and the components of
I' — §. By Lemma 5, there are only finitely many components, so at least
one of these must be infinite. O

Corollary 7. Suppose that X is a finite set of monoid generators for the
monoid T'. Let T be the right (left) Cayley digraph, I(T,X) (,['(X, T)); If
§ and § are finite subsets of T with § & §, then |Co(I' = F)| < [Coo(T' = F)].
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Proof. Observe that each component of I' — § must be contained in some
component of I' — . Since I' — § has only finitely many components, an
infinite component, C, of I' — § can contain only finitely many components
of I — § and finitely many elements of 3, so at least one of the components
of I' — § contained in C' must also be infinite. L]

Example 8. The conclusion of the corollary above need not hold for arbi-
trary digraphs I'. Let I',, be the digraph of Example 4, § any finite set of
vertices of I',, which does not inglude the vertex ¢ and § = § U {c}. Then
|€oo(Ty, — )| =1 but |€x (T, — F)| = 0.

Corollary 8. Suppose that X is a finite set of monoid generators for the
monoid T'. Let T' be the right (left) Cayley digraph, I'v(T, X) ((I'(X,T)).
For every natural number n, define §,, to be {t € T : Lx(t) <n}. Then §,
is finite and e (") = limy o0 |[€oo (I — Fn)|-

Proof. 1t is clear that [§,[ <377, | X}V and that

r%?zx €oo(I' = )| < e (I') = SQV?%Xﬁnite [€oo(I" = 3|

If exo(I") is finite, then for some finite § C T, we have [€(I' — F)| =
exo(I'). Let m = maxyez{Lx(t)}. Then § C §, for n > m, hence ex(I') =
|€oo(I' = F)| < |Co0(I'=Frn)| by Corollary 7. It follows that lim,, o |€oo (I —
§n)| = eso(I).

If e0o (I') = 00, then for every natural number k we can find a finite § C T
with |€oo(I' — §)| > k. Given such an §, let n = max;ez{Lx(¢t)}. Then § C
Sn 50 k < €T’ = F)| < |€(I' — Fn)| and limy, o0 [Coo(I' = Fp)| = 00. O

Lemma 9. If X and Y are finite sets of semigroup generators for the semi-
group S, then exo(I'r (S, X)) = exo(I'1(5,Y)) and exs ((I'(X, 5)) = e ((L'(Y, 5)).

If X andY are finite sets of monoid generators for the monoid M, then
ool (M, X)) = eco(I'(M,Y)) and e (¢I'(X, M)) = eco(([L'(Y, M)).

Proof. We state the argument in terms of the right Cayley digraphs for semi-
groups: the argument for the left Cayley digraphs is dual and the monoid
argument is essentially the same as the semigroup argument. Observe first
that, by symmetry, it suffices to prove that e (I'; (S, X)) = e (I (S, XUY))
and second, that we can reduce to the case of proving that e (I'v(S, X)) =
eoo(I'r(S, X U{y})) where y € Y by using induction on | X UY| —|X].

Suppose then that S is a semigroup, that X is a finite set of generators
for S and that y € S — X. For brevity, write I" for the right Cayley digraph,
I, (S, X) and write I for the right Cayley digraph, I'; (S, X U{y}). Then we
have S = Vr = Vv and Er C Eyv, so we may regard I' as a proper subgraph
of TV,

We want first to show that e (I") < ex(T'). Let § be any finite subset
of S. It suffices to show that each of the finitely many infinite components
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of I — § must contain one or more of the finitely many infinite components
of I' — §. Since all of the edges in I' — § are also edges in I" — §, every
component of I' — § is entirely contained in some one component of IV — F.
Since § is finite and I' — § has only finitely many finite components, the
union of the infinite components of I' — § contains all but finitely many of
the vertices of I' and hence the union of the components of IV — § which
contain infinite components of I' — § contains all but finitely many of the
vertices in Vv = V. Hence every infinite component of IV must be one of
those which contains some infinite component of I' — §.

Suppose next that e (") is finite. Then there is a finite subset §; of S
such that I' — §F; has exactly e (I") infinite components. Let §; be the set of
vertices in I which can be reached from some vertex of §1 by a positive path
in I having length at most Lx(y). Observe that §4 is a finite set and let
§2 = F1UF+. Then I' — Fy also has e (') infinite components. Each infinite
component, C, of I' — § is contained in some infinite component, D, of
I"—F2. To show that I"—F5 has e (I") infinite components it suffices to show
that no two distinct infinite components of I' — §5 are contained in the same
infinite component of IV — 5. To this purpose, observe also that each infinite
component, C, of I' — §9 is contained in an infinite component, C ,of ' —§1.
Since §1 C §o, it follows from Lemma 7 that |€oo(T' — F1)| = [Coo (T — F2)|
and hence that if Cq,Cs are distinct infinite components of I' — §o, then
C’l, C, are distinct infinite components of I' — §1. For the sake of obtaining
a contradiction, suppose that two distinct infinite components, C7 and Cs,
of I' — ¥ are contained in the same infinite component, D, of IV — 5. By
choosing C7 and C5 to minimize the length of a path in I — §2 connecting
them, we may assume that there is an edge f in IV — >, labelled by y, having
its initial vertex in C; and its terminal vertex in Cy. Write vy for the initial
vertex of f and vy for the terminal vertex of f. Then v; is also in C’l and v
is also in Cs. Since the edge f of IV has v; and vy for its endpoints, there is
a path 7y in I" having length Lx (y) from v; to vo. If 74 connects ¢y and Oy
in I' — §1, then C’l = C’g and C7 = Cy, so there must be some vertex on
which occurs in §;. But then v € F4 C Fo, contradicting our assumption
that v is in a component of IV — F.

In the case where e(T") is infinite, we need to show that for every natural
number N, there is a finite subset § of S such that IV — § has at least NV
infinite components. Let §1 be a finite subset of S such that I' — §; has
at least N distinct infinite components. Use §1 and Lx(y) to construct Fo
just as in the preceding paragraph. Then I' — §2 also has at least N infinite
components and moreover we can select IV of these which are contained in NV
different components of I' — §1. It suffices to show that no two of these can
be contained within the same component of IV —F5. For that, we may repeat
the argument above using some edge f and corresponding path ;. O

For a finitely generated semigroup S, we define £,(S) and &,(S) by
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Er(S) = exo(I7(5, X)) and &4(S) = exc(¢I'(S, X)) for any finite set X of
semigroup generators for S. It is clear that we can state analogous definitions
for £,(M) and Ey(M) when M is a finitely generated monoid.

We observe that when M is a finitely generated monoid, the values for
Er(M) and Ey(M) do not change if we consider M as a semigroup rather
than as a monoid. By Lemma 9, we may assume that our set X of monoid
generators for M includes the identity element of M. Then X is also a set of
semigroup generators for M. When we regard M as a semigroup, we obtain
the same right (left) Cayley digraph for M with respect to X that we obtain
when we regard M as a monoid.

If G is a finitely generated group with a finite set X of group generators,
then XUX ! is a finite set of monoid generators for G. It is usual to consider
a Cayley graph rather than a Cayley digraph for a group. Typically, this
is the right Cayley graph, but it is isomorphic to the left Cayley graph.
All vertices in the Cayley graph I'(G, X) have degree 2|X|, so I'(G, X) is
locally finite. There are numerous equivalent definitions for the number of
ends of a finitely generated group. See [2, 3, 10, 11, 12]. One of these, see
[10], is to define the number of ends of G to be lim, . [€oo(['(G, X) — Fn)]
where §, = {g € G : Lx_ x-1(9) < n}. By Corollary 8, when a group G is
considered as a monoid, then its number of ends (considered as a group) is
equal to both of the monoid values &,(G) and &,(G).

A function 9 from a semigroup S; to a semigroup So is an anti-homo
morphism, see [1, Volume 1, page 9], if ¥(ab) = ¥(b)¢(a) for all a,b € S;.
Easily, the composition of two anti-homomorphisms is a homomorphism.
An anti-homomorphism is an anti-automorphism if S; = Sy and 9 is a
bijection.

For any semigroup (5, -) with associative multiplication - the dual semi-
group S°P = (5, %) has the same set of elements as S and has associative
multiplication * defined by s1*ss = so-s1. Then the identity function on the
set S is an anti-automorphism between the semigroup S and the semigroup
S°P. Using this and composition, we may regard any anti-homomorphism
from S; to Sy as either a homomorphism from Sfp to Sy or else as a ho-
momorphism from S7 to S3¥. In particular, anti-automorphisms of S corre-
spond to isomorphisms between S and S°P. Any set of generators for S is
also a set of generators for S°P and whenever X is a finite set of generators
for S, then I',. (S, X) = (I'(X, S°P), s0 £,(S) = £¢(SP) and £y(S) = &,(S°P).
It is worth observing that °P is a functor from the category of semigroups
to itself. If S; and S are semigroups and f :.S; — S5 is a homomorphism,
then we may define f°P : ST? — S5P by foP(s) = f(s) for s € Sy. It is easy to
verify that f°P is a homomorphism. Generally, it is notationally convenient
to suppress the distinction between f and f°P.

Proposition 10. If the semigroup S is isomorphic to S°P, then £,.(S) =
Eu(S).
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A semigroup S is an inverse semigroup if for every element s € §
there is a unique element, denoted s~!, in S such that ss~'s = s and
s71ss7! = s71. A monoid is an inverse monoid if it is an inverse semigroup
when regarded as a semigroup. It is easy to see that ss™!' and s~ 's are
idempotent elements in any inverse semigroup and it is very well-known
(see [1] or [8]) that idempotents in an inverse semigroup commute with each
other. From these, it follows easily that for s,t € S, (st)~! = ¢t~1s7! and
hence that ()~! is an anti-automorphism.

Corollary 11. If T is a finitely generated inverse semigroup or a finitely
generated inverse monoid, then E.(T) = E,(T).

Proof. As noted, the inversion operation is an anti-automorphism. ]

3. Some constructions and examples

We are going to give three equivalent descriptions for the construction
of a useful monoid M followed by some comments about the corresponding
semigroup construction.

Suppose that M and T are monoids and that M = S' for some semigroup
S, or equivalently that the identity element of M is the only element of M
that is a left unit or a right unit. Define a multiplication * on the set T' x M
by
(tltg, mg) if mi = 1

(t1,m1) * (t2,mo) = {

(t1,mimg)  otherwise

We need the assumption that M = S! to prove that * is associative. It is
easy to see that (1,1) is an identity element, so (T x M, %) is a monoid. We
use M for a brief notation for this monoid. If T is also a monoid in which
the identity element is the only left or right unit, then this assumption also
holds for M.

For the sake of notation, let (A : R;) be a monoid presentation for 7" and
(X : Ry) a monoid presentation for M. Then the monoid M has monoid
presentation

(AUX @ RiURyU{(za,z):ac A, z € X}).

We want to identify the ordered pair (¢,m) with the word tm where t is a
word on A and m is a word on X. It is easy to show that every element
of the presentation can be written in the form tm. It is more tedious to
show that tm = ¢m’ in M implies that ¢ = ¢’ in T and that m = m’ in
M: the assumption that M = S! for some semigroup S is necessary for this
uniqueness result.
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Later in the paper we will provide a more elaborate discussion of semidi-
rect products of monoids. Define 07 € End(T) to be the monoid endomor-
phism of T" which takes every element of T to the identity element 17 and
write ¢p for the identity automorphism of 7. Define a monoid homomor-
phism @y : M — End(7T) to be the monoid homomorphism which takes
1ar to tp and takes every other element of M to fp. Here, we need the
assumption that M = S! to ensure that ®( is a homomorphism. Then the
multiplication * above and the monoid presentation above are the multi-
plication and a presentation for the monoid semidirect product 1" x¢, M.
This approach to describing M has the notational advantage that we can
conveniently describe different M’s for different choices of M and T. We
utilize this notation in some examples.

If S and T are semigroups with semigroup presentations (X : Ry) and
(A : Ry), respectively, then we can define a semigroup S having semigroup
presentation

(AUX @ RiURyU{(za,x):a€ A, € X})

which is clearly analogous to the monoid presentation for M given above. We
could also describe this semigroup S by defining the obvious multiplication
on the set (T'x S)UT US or by recognizing S as the subsemigroup of
nonidentity elements of the monoid semidirect product 7" x¢,S*. We won'’t
need the semigroup version of the following lemma.

Layer Lemma. LetT be a finite monoid and M a finitely generated monoid.
Assume that M = S* for some semigroup S. Then (T xp,M) = |T|E,. (M)
and E¢(T xep, M) = E¢(M).

Proof. Let X be a finite set of monoid generators for M and let A be a finite
set of monoid generators for 7. We write x or z; for elements of X and a or
a, for elements of A. Write T' = {17 = t1,t9,...,t,} for some fixed ordering
of the |T| = n elements of T. We use m,mj, ma as notation for arbitrary
elements of M and use t,t;,t;,,t;, as notation for arbitrary elements of 7.
We use M as an abbreviation for T Xp, M. We write just tm,t and m for
elements (t,m), (t,137) and (17, m) of M and we similarly identify X with
{1T} x X and A with A x {1M}

Write I for the right Cayley digraph I',. (M, X') and I for the right Cayley
digraph I‘T(M ,AUX). Here, it will be useful to regard I" and I as diagrams
with labelled edges. For 1 < i < n, we define the ith layer in ' to be
the subdiagram I'; of T' having vertices V; = {tsam : m € M} and edges
E;={f : f€E o(f)=tim, 7(f) = timzx, x € X}. Then, for each i with
1 <1 < n, we have a diagram isomorphism ¢; : I' — I';, defined on vertices
and edges by ¢;(m) = t;m and ¢;(f) is the edge from t;m to t;mz with
label x if f is the edge from m to ma having label z. Since t;mar = t;m
in M if m # 1y, the edges of ' having labels in A are loops at the given
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vertex except for the edges from ¢; to t;a;. We build I' from the n layers by
constructing the finite right Cayley digraph I',.(T, A), identifying the vertex
t; in this digraph with the vertex ¢;1 in I'; and adding loops labelled by each
element of A at each vertex t;m,m # 1 of ;.

Suppose first that £, (M) is finite and choose a finite subset § C M such
that I' — § has &£,(M) infinite components. We may assume by Corollary 7
that 1 € §. For 1 <i <n,let § = {t;m : mES}CVandlet@-U? 15i-
Observe that § is finite. Since I'; — §; has &, (M) infinite components for
each ¢ and the edges of -3 having labels in A are all loops, [ — § has
n&,(M) infinite components. This shows that I has at least n&,(M) ends.
Suppose that § is an arbitrary finite subset of M. Let

F=381={m:t;m € g for some i with 1 <i<n}, Fi={tim:mec3F}

for1 <i<mnand S Ui Si- Observe again that S is finite. Because § C S,
we know that I' — § has at least as many infinite components as -3 It
suffices to prove that I' — § has at most n€,(M) infinite components. If
this were not the case, then by the pigeonhole principle, we would have
more than &£,.(M) infinite components in some I'; — §;. Since all of these are
isomorphic to I'y — §1, we would then have the contradiction that I' — § has
more than &,(M) infinite components.

The argument when &,(M) is infinite is similar. For every natural num-
ber h we can find a finite subset § of M such that 1 € § and I' — § has at
least A infinite components. Then, with @, as above, I' — § has at least hn
infinite components.

Now write I' for the left Cayley digraph ,['(X, M) and I' for the left
Cayley digraph (T (AU X, M). Write T for the left Cayley digraph ,I'(A,T).
For any m € M, define the tower at m to be the the subdiagram T,, of r
having vertex set V;, = {tm : ¢t € T'} and edge set E,,, = {f : f € Ep,1(f) =
tm,7(f) = atm,a € A}. Then for every m € M, we have a diagram
isomorphism ¢,, : T — T,, defined on vertices and edges by ¢,,(t) = tm
and ¢, (f) is the edge from tm to atm if f is the edge from ¢ to at in T
having label a. We can think of constructing I' from the set of towers by
identifying each vertex 1pm in the tower T, with the vertex m in I' and
for each x € X and m # 1 in M adjoining an edge from ¢tm in Y,, to zm in
I" having label x.

Corresponding to any finite subset § of M, let § be the finite subset
3’ {tem:1<i<n,meF}of M. Corresponding to any finite subset § of
M,let =53 = {m : tym € § for some 1 < k < n}. Since § C 3, we have
eoo(F) = exo(I") if we show that I' — §F and I' — ¥ have the same number of
infinite components for any finite §. After discussing some technical details,
we will construct a bijection ~ between infinite components C of I' — §
and infinite components C of I' — 3.

If for some x € X, the edge f € E} has label z, L(f) = tm and T(f) =

xm, define the projection of f to be the edge f = W(f) in Fr having label
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z, o f) = m and 7(f) = zm. If the edge f € E} has label a for a € A,
o(f) = tm and 7(f) = atm, define the projection, 7(f), of f to be the empty
path in I' at the vertex m. We regard the inverse of an empty path at any
vertex to be the same empty path. If w = ffl AQEQ .. AZ’“, where ¢; = £1
and f; € Ep for 1 < j <k, is a walk in I — § from t(w) to 7(w), then
by induction on k, (7(f1)) (x(f2))%* ... (x(fr))%* is a walk in T — F from
(7 (1)) to 7((m(fx))e*). Denote this walk by 7(w). In this paragraph
and the next, walks and paths (allowing negative edges) in a digraph are to
be interpreted as walks in the corresponding graph

If C is an infinite component of I' — §, define C by C= {tm:t €T, me
C}. Then C is an infinite set, since {Im : m € C} C C. To see that C is
connected in I' — @, suppose t;, my,ti,ma € C. Then mi, mo € C, so there is
a path from my to mg in I' — § and hence a corresponding path from 1m; to
Img in I — . We also have paths, with all edges labeled by elements of A
in T — S from 1m; to t;; m; and from 1mg to t;,m2. We compose paths and
their inverses to find a path from ¢;, m; to t;,me. If C* is the component of
I' — § which contains C’, let t*m* be any vertex in C*, {7 any vertex in C
and w a path in I' — § from t*m* to ir. Then 7(w) is a walk in ' — § from
m* to 1, hence m* € C, t*m* € C and C* = C. That is, C is always a
component of I — 3 If 01 and Cy are any two infinite components of I' — §
and w is a path in [ — S from some vertex in C’l to some vertex in CQ, then
m(w) is a walk in I' — § from «(7(w)) € C} to 7(m(w)) € Ca, hence C1 = Cs.

To see that  is onto, suppose that C' is some infinite component of r-3.
Define C by C = {m : tm € C for some t € T'}. It is then routine to verify
that C is an infinite set, that C' is connected, that C' is a component of I' — §
and that C = C. [

It is well-known that for any finitely generated group, G, and finite
set, X, of generators for G the left and right Cayley graphs for G, with
generating set X are isomorphic, and that such a Cayley graph has 0,1, 2
or else infinitely many ends. See [2, 3, 10, 11, 12]. The next six examples
illustrate that these conclusions do not hold for left and right Cayley graphs
for semigroups and monoids.

Example 9. For n > 2, define A, to be the monoid semidirect product
T Xgp, M where M is the infinite cyclic monoid having generator z and T'
is the monogenic monoid having monoid presentation (t : t" = t"~1). It
is apparent that M = S where S is the infinite cyclic semigroup having
generator x. It is easy to see that the left and right Cayley digraphs for
M have one end. By the Layer Lemma, we have that £,.(4,) = n and
Eu(Ay) = 1.

To greatly generalize, let S; be any semigroup with £,(51) = £¢(S1) =1
and let Sy be any semigroup with n — 1 elements. With M = S} and
T = S}, we have £.(T xg, M) = n and (T xg, M) = 1. The monoid
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A, is arguably the most elementary example of this construction. Another
elementary possibility is to replace T' = (t : t" = t"~1) by a cyclic group
of order n having generator . This has the disadvantage that the element
(t,1) € T xp, M is then a left and right unit, preventing us from using this
T g, M as the monoid M°P in the next example.

Example 10. For arbitrary natural numbers m,n > 2, let M = A;P and
let T'=T,, now be the the monogenic monoid having monoid presentation
(t : t™ = t™~1). Then by the Layer Lemma, &.(T xg, M) = m and
E¢(T xp, M) = n. For later reference, denote this monoid 7" xg, M by Jp m.

Example 11. Let B be the monoid having monoid presentation (a,b : ba =
a?). We want to show that the right Cayley digraph I'.(B,{a,b}) has one
end while the left Cayley digraph ,I'({a,b}, B) has infinitely many ends.
Every element of B can be uniquely written in the form a/b* where 5,k > 0.
For either the right or the left Cayley digraph for B, we place the vertex a/b*
at the lattice point (7, k) in the first quadrant of the real plane. It is easy to
show that a/b* - a = a?t**+1 and it is clear that a/b* - b = a/b**1. Similarly,
a-albF = a7 t1F, while b- b* = b**! when j = 0, but b- a?b* = o/ T1bF when
j>0.

Suppose first that I" is the right Cayley digraph I',.(B, {a,b}) and let §
be a finite set of vertices in B. Let t = max{j + k : a/b* € F} and define F;
by §: = {a/b* : j+k < t}. The graph T has one end by Lemma 7 if I' — §; is
connected. Let ajlbkl,an bk2 be vertices in T' — F; and assume without loss
of generality that j; + k1 < jo 4+ k2. Then we have a positive or empty path
in I' —§; from a/1F1+1 to gd2tF2+1l | with edges labelled by a and edges with
label a from a/'b¥' to a/*tF1 1 and from a2b*2 to af2tketl,

Now suppose that T' is the left Cayley digraph ,I'({a,b}, B). For every
natural number h, define the subset Fj, of B by g, = {b’: 0 < i < h}. We
then observe that I' — §, has h + 1 infinite components C; where C; has
vertices {a/b’ : j > 0} if 0 <4 < h and C}, has vertices {a/b* : j > 0,k > h}.

Example 12. We have remarked earlier that a Cayley digraph for a semi-
group need not be connected. Let B be the monoid from Example 11 above
and S the subsemigroup of nontrivial elements in B. We observe that the
right Cayley digraph I',.(S, {a, b}) is connected, but the left Cayley digraph
"I ({a,b},S) has two components.

Example 13. Let B be the monoid of Example 11 and observe that the
identity element is the only left or right unit in B. Let T' = T,,, again be the
the monogenic monoid having monoid presentation (¢ : ™ = t™~1). Then
by the Layer Lemma, £,(T xg, B) = m and (T xg, B) = oc.

An element t in a semigroup or a monoid 7" is a regular element if there is
an element x € T such that tot = t. The semigroup or monoid 7' is regular
if every element of T is regular. An element ¢ in a semigroup or a monoid 7' is
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completely regular if there is an element = € T such that tzt =t and xt =
tx. A semigroup or monoid T is completely regular if every element of T'
is completely regular. There are several other equivalent characterizations
of completely regular semigroups. For example, a semigroup is completely
regular if and only if it is a union of groups. In [9], this is part of Theorem
11.1.4, which the authors there describe as the fundamental theorem for the
global structure of completely regular semigroups.

Example 14. We know by Corollary 11 that £,(I) = £y(I) for any finitely
generated inverse monoid I. In this example and the next, we show that
this equality need not hold for completely regular monoids.

Let GG be any finitely generated group having one end. There are many
of these and G1 = 7Z x 7Z is a standard example. Regard G as a semigroup
with a finite set X of semigroup generators and form the monoid M = (G1)?.
Then X is a finite set of monoid generators for M and M is both a completely
regular monoid and an inverse monoid. For a natural number n > 1, let Go
be any completely regular semigroup with n — 1 elements. For example, we
might take G2 to be any group or any semilattice with n — 1 elements. Let
T = (G3)'. Then T is a completely regular monoid with n elements. A
routine argument by cases shows that T xg, M is a (completely) regular
monoid whenever M and T' are (completely) regular. By the Layer Lemma,
we have that £,(T x¢, M) =n and E;(T xe, M) = 1. To have one explicit
example of this for later reference, let D,, be T' xg, M when G1 = Z x Z
and G is the cyclic group with n — 1 elements.

Example 15. Let M = D;P where D,, is the completely regular monoid
from Example 14. Then &,(M) =1 and £y(M) = n. For a natural number
m > 1, let G3 be any competely regular semigroup with m — 1 elements and
T = (G3)'. Then T xg, M is a completely regular monoid and we have
Er(T o, M) =m and E((T xo, M) =n by the Layer Lemma.

We now embark upon a second, more common, construction that will
allow us to present some interesting examples of commutative and inverse
monoids.

Let A be an index set and (S),*)) be a semigroup for each A € A.
Assume that Sy, NSy, = 0 if Ay # Xy and that 0 is a new element not in
US». Define VS) to be {0} U (Uyep Sa) and define a multiplication * on
VSy by

; {s*,\t if there exists A € A such that s € Sy and t € S,
skt = i

0 otherwise

It is easy to see that x is associative. Observe that VS) is commutative if
and only if every Sy is commutative. When |A| = 2 and {S\} = {4, B},
write AV B for V.S and observe that AV B = BV A.
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For a first variant description of VS), for any A, define Sg to be the
semigroup having elements {0} U S with the multiplication %) extended by
setting s xy 0 = 0%, s = 0%, 0 =0 for all s € §). Then VS is the 0-direct
union of the semigroups Sg. See Clifford and Preston [1, Volume II, page
13], Howie, [5, page 71] or Higgins, [4, page 26].

For a second variant description of V.S, write Sy for the one element
semigroup {0} and define a multiplication on A° = AU{0} by 0-0 = \-0 =
0-X= XXy =0 for all \,\j, 2 € A. Then A° is a rather trivial lower
semilattice and V.S is a A” semilattice of the semigroups Sy. See [1, pages
25,26, [5, page 89| or [4, pages 37-39].

Lemma 12. Suppose that A is a finite set and that {S\}rea is a set of
pairwise disjoint, finitely generated semigroups Sy. Then VSy is finitely
generated, Eo(VS)\) = Xaeale(S\) and E,.(VSy) = Xrea&r(Sr)-

Proof. We consider the case for the number of left ends. The case for the
number of right ends is dual. If X is a finite set of generators for Sy, then
X = {0} U (Uyep X») is a finite set of generators for VSy. Write I' for
the left Cayley digraph ,['(X, V.Sy) and write I'y for the left Cayley digraph
(L(Xy, Sy). If, for each A € A, ) is a finite subset of Sy, define § to be
the finite set {0} U (U%A) The key observation is that if Ay # Ay, x € X,
and s € S),, then s = 0 in V.S) and the edge from x to s = 0 is not in
I" — §. Hence, the digraph I' — § is the disjoint union of the finitely many
digraphs I'y — §». If I'y — §» has m, infinite components then I' — § has
> my infinite components. If any £,(S)) is infinite, then we can choose
Fx C S, for which m is larger than any given natural number N and hence
E¢(VSy) must be larger than N also. If £,(S)) is finite for every A, then for
every A we can choose §y C Sy for which my = &,(S5)) and conclude that
Er(VSx) = D oaea €e(Sn). To prove Ep(VSy) < D \cn Ee(Sy), it suffices to
show that m <7, 4 £4(S)), whenever § is a finite subset of V.Sy and I' — §
has m infinite components. By Corollary 7, we may assume that 0 € §. For
each A, define §) to be N Sy and define m) to be the number of infinite
components of I'y — §x. Then, as above, I' — § is the disjoint union of the
digraphs I'y — §) and we have m = Y my <3\ £0(S)). O

Example 16. For an arbitrary natural number n, let A be an index set with
|A| = n and for each A € A, let Sy be a finitely generated abelian group with
Eu(Sn) = £,(Sn) = 1. For example, take Sy to be the free abelian group
of rank ry > 2. Let S = VvS). Then S is a finitely generated, completely
regular, commutative inverse semigroup with &£,(S) = £¢(S) = n.

If M is any monoid, End(M) is standard notation for the monoid of
monoid endomorphisms of M. For m € M and f € End(M ), mathematicians
sometimes find it convenient to write the argument m to the left of the
function f and other times find it more convenient to write the argument on
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the right. Then for f,g € End(M), the composition fg has, in general, two
different values depending upon which notational convention is followed. We
write End, (M) for End(M) when we write functions to the right of their
arguments and we write End,(M) for End(M) when we write functions to
the left of their arguments. Then Endy(M) and End, (M) are duals of each
other with respect to the functor °®. We use Monic,(M) for the submonoid
of End; (M) consisting of one-to-one endomorphisms and Monic, (M) for the
submonoid of End,(M) consisting of one-to-one endomorphisms. We note
that Monic, (M) and Monicy(M) are also dual.

Let A and B be monoids and let ® : A — Endy(B) be a monoid homo-
morphism. For consistency, we would ordinarily write ®(a) for the endo-
morphism of B which is the image of a € A and then write [®(a)](b) for the
value of this endomorphism at the element b € B. When the monoid homo-
morphism ® is understood from context, we will abbreviate [®(a)](b) as ®b.
Since ® is a monoid homomorphism, we have 'b = b and @ (92h) = 192p,
Since ®(a) is a monoid homomorphism for every a € A, we have ®1 = 1 and
*(bib2) = (“b1)(*b2). Similarly, if & : A — End,(B) is a monoid homomor-
phism, it is often convenient and unambiguous to abbreviate (b)[(a)®] as b*
and then observe that b* = b, (b%1)92 = 4192 1% = 1, and (b1b2)* = (b%)(b3).

Suppose that A and B are monoids and that ¢ : A — End,(B) is a

monoid homomorphism. We define the monoid semi-direct product A x¢ B
to have elements {(a,b) : a € A,b € B} and multiplication (a1, by)(az,b2) =
(a1ag,b]?b). Similarly, if ® : A — End,(B) is a monoid homomorphism, we
define the monoid semi-direct product B x¢ A to have elements {(b,a)
b € B,a € A} and multiplication (b1, a1)(b2,a2) = ((b1)(*'b2),a1a2). It
is easily verified that both multiplications are associative with respective
identity elements (14,1p) and (1p,14). If ®(a) (or (a)®) is the identity
endomorphism b — b of B for every a € A, then A Xg B is the monoid direct
product A x B while B x A is the monoid direct product B x A and thus
A Xy B = B xg A in this case. More generally, we have A xg B = (B°P x4
A°P)oP If A and B are commutative monoids, then B°? = B, A°? = A and
A X & B = (B AP A)Op.

Theorem 13. Suppose that M; is a finitely generated infinite monoid fori =
1,2. If ® : My — Monic(Ms) is a monoid homomorphism, then E.(M; Xg
Mg) = (c;g(MQ X Ml) =1.

Proof. Since Maxg My = (M7P x ¢ M3P)°P, it suffices to prove that &, (M X
M) = 1. Write M for M; xq¢ My. For i = 1,2, let X; be a finite set of
monoid generators for M;. Let X = {(z,1) : z € X1}U{(l,z) : z € Xs}.
Then X is a finite set of monoid generators for M.

For the proof below, the reader might find it useful to visualize and
then generalize the Cayley digraph for a direct product of two infinite cyclic
monoids.
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Write I for the right Cayley digraph T',.(M, X). Since X; is a finite set
for i+ = 1,2, for every positive integer n, there can be only finitely many
elements m; € M; with Lx,(m;) < n. Let § be a finite subset of Vr = M.
Since § is finite, we may fix a natural number N = N, depending upon §,
such that § C {(m1,mg) : Lx,(m;) < N for i = 1,2}. As a consequence, an
element (my,mg2) € M is not in § if either Lx, (m1) > N or Lx,(m2) > N.

Suppose that m € M; and ¢,p € My with Lx,(p) = t > 0. Write
P =T %j,...xj withz;, € Xofor1 <4 <+¢. Then we have a positive path in
I" of length ¢ from (m, ¢) to (m, gp) with consecutive edges labelled by (1, z;,)
for 1 <14 < t. For further reference, we may refer to this as the vertical path
from (m, q) to (m, gp). If we further assume that Lx, (m) > Nz, then all of
the vertices of this path occur in I' — § and hence in the same component
of I' - §.

Suppose that we have m € My and ¢,p € M; with Lx,(p) =t > 0.
Write p = zj,xj, ... xj, with z;, € Xy for 1 < ¢ <t¢. Then we have a positive
path in T" of length ¢ from (¢, m) to (gp, mP) with consecutive edges labelled
by (xj,,1) for 1 <7 < t. For further reference, we may refer to this as the
oblique path from (¢, m) to (¢gp, mP). We need to discuss hypotheses which
will guarantee that this oblique path is in I' — .

Let k be a fixed natural number and x € X; a fixed generator of M;.
Then {b € My : Lx,(b) < k} is a finite set and hence {b* : b €
Ms, Lx,(b) < k} is finite also. For this k and z, define k by

k=1+max{Lx,(b") : b€ My, Lx,(b) < k}.

Then if b € My and Ly, (b) < k, we also have that Ly,(b*) < k, or equiva-
lently, if Ly, (b%) > k then Lx,(b) > k. We may slightly modify our definition
for k and assume that k& > k. Thus, for every natural number k, there is a
natural number k > k such that whenever b € My and Ly,(b%) > k then
Lx,(b) > k.

Similarly, suppose that z € X; and that ¢ is any natural number. Since
x® is one-to-one, there is a natural number /> ¢, depending upon ¢ and z,
such that whenever b € My and Lx., (b) >, then Lx,(b%) > L.

We use the values k to keep an oblique path within I' — § by our choice
of the path’s final endpoint. We use the values 7 to keep an oblique path
within I' — § by our choice of the path’s initial endpoint.

Consider again oblique paths from (g, m) to (gp, mP). We regard ¢ as
varying over M; and m as varying over Ms, but we want to fix p € My with
Lx,(p) =t > 0 and write p = xj, ...xj, with z;, € X; for 1 <i <.

Let kp = N = Nz and choose ko > ko such that whenever b € M,
with Lx,(b%1) > ko, then Lx,(b) > ko. Define k1 to be ko. By induc-
tion on 4, for 1 < i < t, choose k; > k; such that whenever b € M,
with Ly, (b"+1) > k;, then Ly,(b) > k;. Define k;11 to be k;. Then k;
depends upon both N and p. To emphasize this, we may write ky, for
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ki. Suppose that for the oblique path from (q,m) to (gp, mP), we know
that Lx,(mP) > k;. Then it is routine to show, by induction on ¢, that
for each vertex (qz;,xj, ...xj_,, m™1*2"-i) on the path, that we have
Lx,(m™%2%i—i) > ky_; > kg = N and that Lx,(m) > N, so that all of
these vertices are in I' — §. Thus, the oblique path from (g, m) to (gp, m?)
is in I' — § provided that Lx,(mP) > ky p.

Let ¢o = N = Nz and choose EAO > {o such that whenever b € My with
Lx,(b) > fo, then Ly, (b%) > fy. Define ¢, to be ¢y. By induction on 4, for
1 <i < t, choose {; > ¢; such that whenever b € My with Lx,(b) > f}-, then
Lx,(b"=i) > ¢;. Define ¢; 11 to be ¢;. Then ¢; depends upon both N and p.
To emphasize this, we may write {y, for ;. Suppose that for the oblique
path from (g, m) to (¢gp, m?), we know that Lyx,(m) > ¢;. Then it is routine
to show, by induction on ¢, that for each vertex (gzj, xj, ... xj,, m*n1%i2%ii)
on the path, that we have Lx,(m®1%2%i) > {,_; > {y = N, so that all of
these vertices are in I' — §. Thus, the oblique path from (g, m) to (gp, m?)
is in I' — § provided that Lx,(m) > {n .

Let C be an infinite component of I' — §. Define sets Ic and Jo by
Ic = {c € My : (¢,d) € C for infinitely many different d € My} and
Jo={d € My : (c,d) € C for infinitely many different ¢ € M;}. Below,
we will show that I and Jo are nonempty, that I is a right ideal in M;
and Jo is a right ideal in M5 and finally that Ic = M; and Jo = Ms.

Let Cy and C}, be two infinite components of I' — §. To prove that I'
has one end, it suffices to show that C;, = C}, by exhibiting a vertex of I'
which is in Cy N Cj. Suppose that we know that Jo, = M. Then 1 € J¢,
so there are infinitely many ¢ € M; with (c,1) € Cy. We may then choose
p € My with (p,1) € Cy and Lx,(p) > Nz. Suppose also that we know
that Ic, = M;. Then 1 € Ig,, so there are infinitely many d € My with
(1,d) € Cy. Choose m € My with (1,m) € Cj and Lx,(m) > {x,. Since
Lx,(p) > Ng, the vertical path, labelled by m?, in T" from (p,1) to (p, mP)
is in I' — § and hence in Cj. Since Lx,(m) > {np, the oblique path in I'
from (1,m) to (p,m?) is in I' — § and hence in C}. Then the vertex (p, mP)
is in both Cy and Cj, so Cy = C},.

We want to show that, for any infinite component C' of I' — §, the set I
is nonempty, is a right ideal in M7, and is all of Mj.

If it were the case that there were only finitely many elements ¢ € M,
with (¢,d) € C for some d € My, then, since C is infinite, for at least
one such element, ¢, we must have infinitely many different d € My with
(¢,d) € C and then ¢ € I¢. Suppose then that there are infinitely many
different elements ¢ € M; with (¢,d) € C for some d € My. Then there is an
element (¢,8) € C with Lx, (¢) > Ng. The vertical path from (& 1) to (¢,0)
isin C, so (¢,1) € C. But then the vertical path from (¢,1) to (¢,d) is in C
for every d € M, so ¢ € I¢.

To show that I is a right ideal in My, it suffices to show that cz € I
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whenever ¢ € I and x € X;. Choose 0 = !N such that Lx,(d*) > N
whenever d € My and Ly, (d) > (. Since ¢ € I¢, there are infinitely many
d € My with (¢,d) € C and hence for infinitely many of these, we have
Lx,(d) > (. For each of these, the edge with label (z,1) from (c,d) to
(cz,d*) is in C. Since z® is one-to-one, these values for d* are distinct and
cx € Ic.

Since I¢ is a right ideal in M, we will have that I = M; if we show
that 1 = 1p, € Ic. Suppose that ¢ € Io with Lx,(¢) > Ngz. Then, as
above, (¢,1) € C and (¢,d) € C for every d € My. There are infinitely many
d € My with Lx,(d) > {y¢. For each of these, (¢,d°) € C' and there is the
oblique path from (1,d) to (¢,d®) in C. If I¢ is infinite, we always have
some ¢ € Ic with Ly, (¢) > Nz. Suppose that instead I¢ is finite. Then,
since I¢ is a subsemigroup of M, it must contain an idempotent e. Then
there are infinitely many d € My with (e, d) € C hence infinitely many such
d with both Lx,(d) > ¢y, and Lx,(d°) > kn.e. For the latter, we use
the hypothesis that e® is one-to-one. Since Lx,(d) > {x., for each such
d, the oblique path from (e,d) to (e -e,d?) = (e,d) is in C for each of
these infinitely many d. Since Lx,(d®) > kne, the oblique path from (1, d)
to (e,d®) is also in C for each of these infinitely many d and we see that
1M1 e Ilc.

We want to show that, for any infinite component C' of I' — §, that
1y, € Jeo, and that Jo is a right ideal in M5 and hence is all of M. We
now know that I = M, so there are infinitely many elements ¢ € I with
Lx,(¢) > Nz and for each such ¢ an element d. € My with (¢,d.) € C.
For each such ¢, the vertical path from (¢, 1) to (¢,d,.) is in C, so we have
infinitely many different ¢ with (¢,1) € C and 1 € Jo. Suppose that d € J¢o
and that © € Xo. Then for infinitely many ¢ € M;, we have (¢,d) € C, and
thus infinitely many such ¢ with Ly, (¢) > Ng. For those ¢ with Lx, (¢) > N,
we can be sure that the edge labelled (1, z) from (c,d) to (¢,dx) is in C, so
(¢,dx) € C for infinitely many ¢ and dx € J¢. O

Example 17. In this example, we want to show that, in the previous theo-
rem, the hypothesis that ® has its range in Monic(M3) rather than just in
End(M>) is necessary. We also see that the second conclusion of the Layer
Lemma need not hold if 7" is an infinite monoid. Let A = (a) and B = (b)
be free monogenic monoids and M = A xg, B. Here a®y = 0p where
b"™0p = 1p for every non-negative integer m, hence 6 is not one-to-one.

Then M has monoid presentation (a,b : ba = a) and every element of
M can be represented by a unique word in the form 6™ for non-negative
integers m,n. We illustrate the right and left Cayley digraphs for A x¢, B
in Figure 3. We remark that

Er(Axg, B) =E(AXgp, B) =Er(B X, A) = E¢(B X, A) = 0.
Since M°? ~ B x4, A, we see that £/(B x¢, A) = £,(M) = oo. This

24



ab a?b? a’b3 a bé o

ab a?b? a’b? a bé. '

ab " g2p a®b a*b
A
14 a a2 a3 a4. o
Left digraph Right digraph

FIGURE 3. Left and right Cayley digraphs for A x¢, B

shows that, we won’t necessarily have £y(B x4, A) = 1, as in Theorem 13,
if ® = &g and we won’t necessarily have £¢(B g, A) = £4(A), as in the
Layer Lemma, if B is infinite.

Example 18. Our initial impression was that, with the hypotheses of the
previous theorem, we should also be able to prove that £,(M; xg M) =
Er(Mz xe My) = 1. This is not valid. Here, we give an example where
® : M; — Monic(Ms) is a monoid homomorphism but E,(M; xg Ms) =
ET(MQ Ao Ml) = Q.

Let M; = (a) be the free cyclic monoid with generator a. Let My be
the monoid having monoid presentation (b, : bt = t,t> = t). Then
one can show that every element of My has a unique representative of the
form t°b"™ where ¢ has value 0 or 1 and n is a nonnegative integer. We
want to define a semidirect product, M7 X ¢ Mo, so we write functions to the
right of their arguments. Define o : My — Ms by b"a = b" and (t0")a =
tb" 1. Then « is a monoid homomorphism and is one-to-one. Since M is
free on a, we obtain a monoid homomorphism ® : M; — Monic,(Ms) by
setting a® = «. Then the semidirect product M = M; X M> has elements
{(a™,t°b™) : m >0,n >0, =0,1} and is generated by (a,1),(1,b) and
(1,t). If we identify (a, 1), (1,b) and (1,t) with a,b and ¢, respectively, then
M has a monoid presentation (a,b,t : ta = atb,ba = ab,bt = t,1*> = t)
and every element of M has a unique representative of the form a™tb™
with m > 0,n > 0, ¢ = 0,1. Write just I' for the left Cayley digraph
[I'({a,b,t}, M). We want to show that e (I') = co. It is easily verified that

a- (amtsbn) _ CLerltsbn, b- (ambn) — amanrl’
b (amtb") = a™tb", t-(a"b") =a™tb™™ and t-(a"th") = a"tb".
We thus account for all of the edges in I To show that e (I') = oo, it

suffices to exhibit, for every natural number &, a finite subset §; C Vi such
that |Coo (I’ — §k)| > k.
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Let §x = {a™tb"™ : 0 < m < k,0<n <k} For0<i<Ek,letC;
be the full subgraph of T' on the set {a™th® : m > k}. We will be done
when we show that each C; is a component of I' — F. (There is one more
component of I' — Fx, but we don’t need to concern ourselves with it.) C;
is connected since we have an edge labelled by a from a™tb’ to a™+1tb* for
each m > k. For a vertex v = a™tb’ in C;, the other edges having v as an
initial vertex are loops labelled by b and ¢t. Examining the account of the
edges in I' in the previous paragraph, we see that the only other edges in I"
having a vertex v = a™tb’ as a terminal vertex are edges with label ¢ from
a™b™ to a™tb™ ™. But such an edge cannot have its terminal vertex in C;
ifm+n=i<kandm>k.

Corollary 14. Suppose that G; is a finitely generated infinite group for
i=12. If®: Gy — Aut(Ga) is a group automorphism, then the group
semidirect product Go X G1 has one end.

Proof. Group automorphisms are endomorphisms and are one-to-one.  [J

Corollary 15. Suppose, for i = 1,2, that M; is an infinite monoid with a
finite set of monoid generators X;. Let M = My x My be the monoid direct
product. Then E.(M) = E,(M) = 1.

Proof. The direct product is a special case of Theorem 13 where ® takes
each element of M; to the identity automorphism of Ma. O

Example 19. Let m,n,m,n be arbitrary natural numbers. We construct a
monoid M having a submonoid J such that £,(M) = m,E¢(M) =n,E,.(J) =
m and £,(J) = n. Let J = J,,, be the monoid of Example 10 and let P
be the direct product of J with any infinite monoid of the form S! for some
semigroup S. Then P contains a submonoid which is isomorphic to J, and
P, like J and S, contains no nontrivial left or right units. By the corollary,
Er(P) = &¢(P) = 1. For any natural number k and generator y, let T'(y, k)
be the the monogenic monoid having monoid presentation (y : y* = y*~1).
The monoid M = T'(u,m) xg, (T'(v,n) xe, P°P?)°P contains a submonoid
isomorphic to P. With two applications of the Layer Lemma, we have
Er(M) =1 and E¢(M) = n.

4. Subsemigroups of free semigroups

Our principal results in this section are about the number of ends of
subsemigroups of free semigroups. Theorem 18 says that every commutative
subsemigroup of a free semigroup has one end. Theorem 20 says that every
finitely generated noncommutative subsemigroup of a free semigroup has
infinitely many ends. The analogous results for submonoids of free monoids
follow immediately by adjoining the empty word. The next two lemmas will
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be used in the proof. We regard the first lemma as elementary and well-
known. The group versions in [6, Exercise 1.4.6] and [7, Proposition 1.2.17]
are easily modified to obtain the semigroup version.

Lemma 16. Suppose that F is the free semigroup on the alphabet A and
that u,v € F. If uv = vu, then there is an element w € F and natural
numbers m,n such that u = w™ and v = w".

Lemma 17. If S is any subsemigroup of the additive semigroup N of natural
numbers, then £,(S) = &,(S) = 1.

Proof. Let S be a subsemigroup of the additive semigroup N. Since S is
commutative, it is clear from Proposition 10 that we must have £,(5) =
E,(S) when these are defined. Since we have only defined £,(S) and &,.(S) for
finitely generated semigroups S, we need to show that S is finitely generated.

If all of the elements of .S are divisible by some natural number d > 1,
assume that d is the largest natural number dividing all of the elements of
S and define S by S = {s/d : s € S}. Then S is a subsemigroup of
N which is isomorphic to S. We can replace S by S and assume that the
greatest common divisor of the set of all elements of S is 1. It is easy to
see, using elementary number theory, that S then contains all but finitely
many natural numbers. If we write ng — 1 for the greatest natural number
that is not in S, then we may write S = XoU {n € N : n > ng} for
some finite set Xg C N. We then see that S is generated by the finite set
X =XoU{neN:ny<n<2np}. Write I for I,.(S, X).

Now let § be any finite subset of vertices of I', let m be the largest
element in § and choose any k£ € N which satisfies m < kng. Then the
set C ={n : n> (k+1)ng} is an infinite subset of I' — § having a finite
complement in N, so we will be done when we show that C is contained
in the component of I' — § which contains kng. For an arbitrary element
n € C, write n = qng + r, where 0 <r < ng and ¢ > k+ 1. Then we have a
path of length ¢ — k from kng to n in I' — § having 1 edge labeled by ng + r
and g — k — 1 edges having label ny. O

Theorem 18. If S is a commutative subsemigroup of a free semigroup, then

E4(S) = E,(S) = 1.

Proof. Using Lemma 16, it can be shown that any set of pairwise commuting
elements in a free semigroup must consist of powers of a single word. Hence
S is isomorphic to a subsemigroup of N and the conclusion follows from
Lemma 17. ]

Lemma 19. Let I be the free semigroup on the alphabet A and let S be a
finitely generated subsemigroup of F with finite set of generators X. Let I’
be the right Cayley graph T'.(S,X). If § is a finite subset of S and w is a
element of S —§, write Cy, for the component of I' —§ containing w. If the
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length, La(w), of w on the alphabet A is minimal among elements of S — 3§,
then w is a prefix of every vertex in Cy,.

Proof. Let u be an arbitrary element of C,. We use induction on the length
of a path in C,, from w to u to show that w is a prefix of u. The base case,
where u = w is obvious. Suppose that u # w and write p for the vertex
before u on a path from w to w in C),. By the induction hypothesis, w is a
prefix of p and p = wp’ for some, possibly empty, word p’. If u = pr = wp'z
for some generator x € X, we are done. If wp’ = p = uz, then by the
minimality of L4 (w) among elements of S—§, we must have L4(w) < L(u)
and again w is a prefix of u. O

Theorem 20. If S is a finitely generated subsemigroup of a free semigroup
and S is not commutative, then £4(S) = £,(5) = oo.

Proof. As in Lemma 19, we write F' for the free semigroup on the alphabet
A, write X for some finite set of generators for the subsemigroup S of F,
and T for the right Cayley graph I'.(S, X). We have hypothesized that S is
not commutative and we choose two elements x,y € S such that xy # yz.
It suffices to exhibit, for every natural number n, a finite subset § of S such
that I'—§ has at least n+1 infinite components. Let n € N be arbitrary. For
integers 0 < i < n, define the element w; € S by w; = xyaz""*. All of the
w; have the same length, nL4(x) + La(y). For notational convenience, we
write ¢ for this length. By the cancellative properties in the free semigroup
S, all of the w; are distinct. Let § = {s € S : L(s) < {}. By construction,
each w; must have minimal length in S — § and using Lemma 19, we see
that elements w; must occur in distinct components of I' — §. It is easily
seen that these components are infinite. ]

We thank the referee very much for the current treatment in this final
section. The proofs are much briefer and cleaner than our original proofs.
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