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Abstract

We give a graph-theoretic definition for the number of ends of Cayley digraphs for finitely
generated semigroups and monoids. For semigroups and monoids, left Cayley digraphs
can be very different from right Cayley digraphs. In either case, the number of ends
for the Cayley digraph does not depend upon which finite set of generators is used for
the semigroup or monoid. For natural numbers m and n, we exhibit finitely generated
monoids for which the left Cayley digraphs have m ends while the right Cayley digraphs
have n ends. For direct products and for many other semidirect products of a pair of
finitely generated infinite monoids, the right Cayley digraph of the semidirect product has
only one end. A finitely generated subsemigroup of a free semigroup has either one end
or else has infinitely many ends.

1. Ends for graphs and digraphs

A digraph is a quadruple Γ = (VΓ, EΓ, ιΓ , τΓ) where V = VΓ is a set of
vertices, E = EΓ is a set of edges and ιΓ , τΓ : E → V are functions desig-
nating initial and terminal vertices for each edge. A graph is a quintuple
Γ = (VΓ, EΓ, ιΓ , τΓ , invΓ) where invΓ is a function E → E and we require
axiomatically, for each e ∈ E, that e 6= invΓ(e), that invΓ(invΓ(e)) = e, that
ιΓ(invΓ(e)) = τΓ(e) and that τΓ(invΓ(e)) = ιΓ(e). We omit the subscripts on
the functions ιΓ and τΓ whenever context makes these unnecessary and we
routinely write e−1 for invΓ(e).

When we imagine some geometric realization of a graph, we regard e
and e−1 as occupying the same arc of points, but traversing these arcs in
opposite directions. In a geometric realization for a digraph, each edge has
an associated direction for traversal. We allow loops and multiple edges in
graphs and digraphs.

A graph (VΥ, EΥ, ιΥ , τΥ , invΥ) is a subgraph of (VΓ, EΓ, ιΓ , τΓ , invΓ) if
VΥ and EΥ are subsets of VΓ and EΓ, respectively, and the functions ιΥ , τΥ

c© XXXX Australian Mathematical Society 0263-6115/XX $A2.00 + 0.00

1



and invΥ are the respective restrictions of the functions ιΓ , τΓ and invΓ to
EΥ. Subdigraphs of digraphs are defined analogously, but we will routinely
use the word subgraph for both subgraphs and subdigraphs.

If Γ is a digraph (V,E, ι, τ) or a graph (V,E, ι, τ,−1) and V0 is a subset
of V , then the full subgraph of Γ on V0 is the digraph Γ0 = (V0, E0, ι, τ) or
the graph Γ0 = (V0, E0, ι, τ,

−1) where E0 consists of all of the edges in E
having both vertices in V0. If F is a subset of V , we write Γ− F for the full
subgraph of Γ on V − F.

Suppose Γ = (V,E, ι, τ) is a digraph and that E−1 is a set in one-to-
one correspondence with E, but disjoint from E. Then there is a graph←→
Γ = (V,E ∪ E−1, ι, τ,−1) where we extend ι, τ and −1 to E ∪ E−1 by
ι(e−1) = τ(e), τ(e−1) = ι(e) and (e−1)−1 = e. If ξ : Γ1 → Γ2 is a morphism of
digraphs, we obtain a graph morphism

←→
ξ :
←→
Γ 1 →

←→
Γ 2 by setting

←→
ξ (e−1) =

(ξ(e))−1. It is then easily seen that ←→ is a functor from the category of
digraphs to the category of graphs.

Conversely, we obtain a digraph (V,E, ι, τ) from a graph (V,E, ι, τ,−1)
by simply discarding the function −1 : E → E. This extends to a functor U
from the category of graphs to the category of digraphs. The functor ←→ is
a left adjoint to this functor U .

Suppose that Γ = (V,E, ι, τ) is a digraph. A positive walk ω of length
n in Γ is a sequence ω = (e1, . . . , en) of edges of Γ with τ(ei) = ι(ei+1)
for 1 ≤ i < n. Similarly, if Γ = (V,E, ι, τ,−1) is a graph, then a walk ω of
length n in Γ is a sequence ω = (e1, . . . , en) of edges of Γ with τ(ei) = ι(ei+1)
for 1 ≤ i < n. If ξ : Γ1 → Γ2 is a digraph morphism and ω = (e1, . . . , en)
is a positive walk in Γ1, then ξ(ω) = (ω(e1), . . . , ω(en)) is a positive walk
in Γ2. Likewise, if ξ : Γ1 → Γ2 is a graph morphism and ω is a walk in
Γ1, then the sequence ξ(ω) is a walk in Γ2. It is more convenient to write
just e1e2 . . . en rather than (e1, e2, . . . , en) for a walk or positive walk ω. We
define a walk in the digraph Γ = (V,E, ι, τ) to be a walk in

←→
Γ : that is,

we allow edges to be traversed in either direction. The vertices of ω are the
vertices ι(ei) and τ(ei) such that ei is an edge of ω. The initial vertex of ω
is ι(e1), the initial vertex of e1, and the terminal vertex of ω is τ(en), the
terminal vertex of en. We allow at each vertex v of a digraph Γ or a graph Γ
an empty walk of length 0 having v as both its initial and terminal vertex. A
walk ω = e1e2 . . . en in a graph or in a digraph is a trail if whenever ei = e
for some i, then ej is neither e nor e−1 for j 6= i. That is, identifying e with
e−1, all of the edges on ω are distinct. A walk in a graph or in a digraph
is a path if all of its vertices are distinct. An interior vertex on a path
ω is any vertex on ω other than its initial and terminal vertices. We are
largely concerned with paths rather than walks or trails. The reader should
be alert that these words are not consistently defined in the literature and
that the distinction between walks and paths is sometimes important in this
work. In a digraph, a positive walk is a positive trail if all of its edges are
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distinct and is a positive path if all of its vertices are distinct.
A graph Γ is connected if there is a path in Γ from any vertex v1 to any

vertex v2. We define a digraph Γ to be connected if
←→
Γ is connected. A

component of a graph or of a digraph Γ is a maximal connected subgraph
of Γ.

We write |X| for the cardinality of a set X. If v is a vertex in a graph
or in a digraph, then indegree(v), outdegree(v) and degree(v) are defined
respectively by indegree(v) = |{e : τ(e) = v}|, outdegree(v) = |{e : ι(e) =
v}| and degree(v) = indegree(v) + outdegree(v). A graph is locally finite if
each vertex has finite degree. It is usual practice to define the number of ends
of a graph only for locally finite graphs. For finitely generated semigroups
and monoids we define the number of ends for Cayley graphs which may
have vertices with infinite indegree.

We state several possible definitions for the number of ends of a graph
and additional possible definitions for the number of ends of a digraph. For
all of these definitions, Γ is a graph or a digraph, F a finite set of vertices of
Γ and, for various subscripts x, Cx = Cx(Γ− F) is some set whose elements
are infinite components, C, of Γ − F. For each subscript x, we define a
number, ex(Γ), of ends of Γ by

ex(Γ) = max
F⊆V, F finite

|Cx(Γ− F)|.

When Cx and ex are defined for graphs rather than for digraphs, we extend
the definition for ex to digraphs by ex(Γ) = ex(

←→
Γ ) for any digraph Γ.

If v1, v2 are vertices in the graph Γ, then the distance, dΓ(v1, v2), be-
tween v1 and v2 in Γ, is the length of the shortest path in Γ from v1 to v2.
This distance is not defined if v1 and v2 are in different components of Γ. A
path π having initial vertex v1 and terminal vertex v2 is a geodesic in Γ if
the length of π is dΓ(v1, v2). In a digraph Γ, a positive path π having initial
vertex v1 and terminal vertex v2 is a digeodesic in Γ if π is a positive path
of minimal length in Γ from v1 to v2. There is a digeodesic in Γ from v1 to
v2 if and only if there is a positive path in Γ from v1 to v2.

Suppose that Φ is a subgraph of a graph Γ or a digraph Γ. Then it is
easy to see that a path in Φ which is a geodesic or a digeodesic in Γ is also
a geodesic or a digeodesic in Φ. However, a geodesic or a digeodesic in Φ
need not be a geodesic or a digeodesic in Γ.

A graph Γ has unbounded paths (geodesics) if for every natural
number n there is a path (geodesic) of length n in Γ. A digraph Γ has
unbounded positive paths (digeodesics) if for every natural number n
there is a positive path (digeodesic) of length n in Γ. A vertex v in a graph
Γ initiates unbounded paths (geodesics) if for every natural number n
there is a path (geodesic) of length n in Γ with initial vertex v. A vertex v
in a digraph Γ initiates unbounded positive paths (digeodesics) if for
every natural number n there is a positive path (digeodesic) of length n in
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Γ with initial vertex v. A vertex v in a digraph Γ terminates unbounded
positive paths (digeodesics) if for every natural number n there is a
positive path (digeodesic) of length n in Γ with terminal vertex v.

To implement the definitions displayed above for ex(Γ), we need to define
various sets Cx(Γ − F) where Γ is a graph or digraph and F is a finite set
of vertices of Γ. For brevity and generality, we state these definitions for
Cx(Γ), in terms of Γ, rather than Γ− F. For a graph Γ, we define

C∞(Γ) = {C : C is a component of Γ having infinitely many vertices}
Cp(Γ) = {C : C is a component of Γ having unbounded paths}
Cg(Γ) = {C : C is a component of Γ having unbounded geodesics}
C∗(Γ) = {C : C contains a vertex which initiates unbounded paths}
C†(Γ) = {C : C contains a vertex which initiates unbounded geodesics}

Similarly, for a digraph Γ, we define

C+p(Γ) = {C : C is a component of Γ having unbounded positive paths}
Cδ(Γ) = {C : C is a component of Γ having unbounded digeodesics}

C−→∗ (Γ) = {C : C contains a vertex which initiates unbounded positive paths}
C←−∗ (Γ) = {C : C contains a vertex which terminates unbounded positive paths}
C−→
δ
(Γ) = {C : C contains a vertex which initiates unbounded digeodesics}

C←−
δ
(Γ) = {C : C contains a vertex which terminates unbounded digeodesics}

Lemma 1. Let Γ be a connected graph.
(1) If Γ has unbounded paths, then every vertex in Γ initiates unbounded

paths.
(2) If Γ has unbounded geodesics, then every vertex in Γ initiates un-

bounded geodesics.

Proof. Let v̂ be an arbitrary vertex in Γ. Write |π| for the length of a walk
π.

(1) For each natural number n, we want to show the existence of a path
πn in Γ with ι(πn) = v̂ and |πn| = n. Let χn be a path in Γ with |χn| = 2n.
Since Γ is connected, the distance dΓ(u, v) is defined and finite for any two
vertices u, v ∈ Γ. Choose vn to be a vertex v on χn for which dΓ(v̂, v) is
minimized as v ranges over the vertices on χn. Let γn be a path with length
dΓ(v̂, vn) from v̂ to vn. Write χn as (αn)−1βn where ι(αn) = ι(βn) = vn.
Since |χn| = 2n, either |αn| ≥ n or |βn| ≥ n. Assume, without loss of
generality, that |αn| ≥ n, so |γnαn| ≥ n. Observe that γnαn must be a path
by the minimality of dΓ(v̂, vn). Let πn be the initial subpath of γnαn having
length n.

(2) For each natural number n, we want to show the existence of a
geodesic πn in Γ with ι(πn) = v̂ and |πn| = n. Let χn be a geodesic in Γ
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Figure 1. Some subset inclusions for C∞

with |χn| = 2n. Since Γ is connected, we can find geodesics αn, βn in Γ with
ι(αn) = ι(βn) = v̂, τ(αn) = ι(χn) and τ(βn) = τ(χn). Then (αn)−1βn is
a walk in Γ from ι(χn) to τ(χn), hence |(αn)−1βn| ≥ 2n. But then either
|αn| ≥ n or |βn| ≥ n. Without loss of generality, assume |αn| ≥ n and let
πn be the initial subpath of αn having length n.

Corollary 2. (1) For any graph Γ, Cp(Γ) = C∗(Γ) and Cg(Γ) = C†(Γ).
(2) For any graph Γ, ep(Γ) = e∗(Γ) and eg(Γ) = e†(Γ).

Proof. (1) It is clear that C∗(Γ) j Cp(Γ) and C†(Γ) j Cg(Γ). The reverse
inclusions follow by applying Lemma 1 to connected components of Γ.

(2) By the first part, we have Cp(Γ− F) = C∗(Γ− F) and Cg(Γ− F) =
C†(Γ− F) for any finite subset F of vertices of Γ

In the next six examples, the subscripts ∞, p, g, ∗ and † are graph sub-
scripts while the subscripts +p, δ,−→∗ ,←−∗ ,

−→
δ and

←−
δ are digraph subscripts.

The subscripts −→∗ and
−→
δ are initial subscripts while ←−∗ and

←−
δ are terminal

subscripts. For Cayley digraphs of semigroups and monoids, we generally
ignore the two terminal subscripts. The following examples show that, ex-
cept for the equalities in the corollary above, the definitions in our list are
all distinct. We do not claim to have included all possible definitions.

Let Γ be a digraph and F a finite set of vertices in Γ. Write just Cx for
Cx(Γ − F). Every Cx is a subset of C∞ and we have illustrated some fairly
obvious subset inclusions in Figure 1.

Since, for example,

C−→
δ
(Γ− F) ⊆ C−→∗ (Γ− F) ⊆ C∗(Γ− F) ⊆ C∞(Γ− F),

we have e−→
δ
(Γ) ≤ e−→∗ (Γ) ≤ e∗(Γ) ≤ e∞(Γ), with similar inequalities following

from other inclusions. An important consequence is that, for non-terminal
subscripts x, all the numbers ex(Γ) have the same value if we have C−→

δ
(Γ−

F) = C∞(Γ − F) for every finite set F of vertices in Γ. Similarly, for non-
initial subscripts x, all the numbers ex(Γ) have the same value if we have
C←−
δ
(Γ− F) = C∞(Γ− F) for every finite set F of vertices in Γ.
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Figure 2. Γr, Γa and Γs

When a digraph Γ has no multiple edges, it can be notationally very
convenient to write e = (vi, vj) for the edge e which has ι(e) = vi and
τ(e) = vj . We follow this convention in the following six examples. If Γ is
a digraph without multiple edges, then the dual digraph Γop has the same
vertices as Γ and (vj , vi) is an edge in Γop if and only if (vi, vj) is an edge
in Γ. We write N for the natural numbers, Z for the integers and Zn for the
integers modulo n.

Example 1. For z = r, a, s, let Γz be the digraph (V,Ez, ι, τ) where

V = {vi : i ∈ Z}
Er = {(vi, vi+1) : i ∈ Z}
Ea = {(v2j , v2j+1), (v2j , v2j−1) : j ∈ Z}
Es = {(vi, vi+1), (v2j , v2j+1), (v2k, v2k−1) : i ≤ −1, j ≥ 0, k ≥ 1}.

The subscripts r, a, s are for right, alternating and split. See Figure 2.
We observe first that

←→
Γ r =

←→
Γ a =

←→
Γ s, so that ex(Γr) = ex(Γa) = ex(Γs)

for any graph subscript x and then that all of these have value 2. For Γr,
we observe that e+p(Γr) = eδ(Γr) = 2, while e−→∗ (Γr) = e−→

δ
(Γr) = e←−∗ (Γr) =

e←−
δ
(Γr) = 1. Since no positive path in Γa has length greater than 1, ex(Γa) =

0 for every digraph subscript x. Similarly, e+p(Γs) = eδ(Γs) = e←−∗ (Γs) =
e←−
δ
(Γs) = 1, while e−→∗ (Γs) = e−→

δ
(Γs) = 0.

Example 2. Let Γ be the digraph having vertex set VΓ = {vi,j : i, j ∈ N}
and edge set

EΓ = {(v2i,1, v2i−1,1), (v2i,1, v2i+1,1), (vi,2j , vi,2j−1), (vi,2j , vi,2j+1) : i, j ∈ N}.

Then ex(Γ) = ∞ for graph subscripts x while ex(Γ) = 0 for digraph sub-
scripts x.

Example 3. Let n ≥ 1 be any natural number. For distinct symbols
h and si,j let V = {h} ∪ {si,j : 1 ≤ i ≤ n, j ≥ 1 } be the set of
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vertices for a digraph Wn. Define the set E of edges for Wn by E =
{ (h, si,1), (si,j , si,j+1), (si,j , h) : 1 ≤ i ≤ n, j ≥ 1}. It is not difficult
to see that ex(Wn) = n except when x is a terminal subscript, ←−∗ or

←−
δ . For

those two cases, e←−∗ (Wn) = 1 while e←−
δ
(Wn) = 0. Similarly, ex(W

op
n ) = n

for non-initial subscripts x while e−→∗ (W op
n ) = 1 and e−→

δ
(W op

n ) = 0.

Example 4. Let n > 1 be a natural number. Let V = {c} ∪ {vi,k : i ∈
Zn, k ∈ N} be the set of vertices for a digraph Γn. Define the set E of
edges for Γn by E = { (vi,k, vi+1,k), (v0,k, c) : i ∈ Zn, k ∈ N }. Since we can
choose finite subsets F of V which exclude c, we see that e∞(Γn) = 1. For
any other subscript x, ex(Γn) = 0, since any trail in

←→
Γ n with length greater

than 2n+ 2 must pass through c at least twice and thus cannot be a path.

Example 5. Let V = {c} ∪ {vj,k : k ∈ N, k ≥ 3, j ∈ Zk } be the
set of vertices for a digraph Θ. Define the set E of edges for Θ by E =
{ (vj,k, vj+1,k), (vj,k, c) : k ∈ N, k ≥ 3, j ∈ Zk }. Here e∞(Θ) = ep(Θ) =
e∗(Θ) = e+p(Θ) = eδ(Θ) = e←−∗ (Θ) = 1. For the other five subscripts x,
ex(Θ) = 0.

Example 6. Let X be any infinite set. Let the set of all finite subsets of
X be the set, V = VΓ, of vertices for a digraph Γ. Define the set E of edges
for Γ by E = {(A,B) : A,B ∈ V, B ⊆ A}. Then any positive path of
length n with initial vertex A0 ∈ V corresponds to a chain of finite subsets
An $ An−1 $ · · · $ A2 $ A1 $ A0. Observe that there is a positive path in
Γ from A to B if and only if B is a subset of A, that the longest positive
path having A as an initial vertex has length |A| and that digeodesics in Γ
have length one.

Let F = {Aψ}ψ∈Ψ be any finite subset of V and define AF by AF =
∪ψ∈ΨAψ. Then AF is also finite. Choose some element x = xF ∈ X − AF.
Given any two vertices B1, B2 ∈ Γ − F, let B = B1 ∪ B2 ∪ {x}. Then
B ∈ Γ−F and (B,B1), (B,B2) are both edges in Γ−F, so Γ−F is connected
and geodesics in

←−−→
Γ− F have length at most two.

It is then clear that e∞(Γ) = ep(Γ) = e∗(Γ) = e+p(Γ) = e←−∗ (Γ) = 1 while
ex(Γ) = 0 for the other six subscripts x.

A set X ⊆ M is a set of monoid generators for the monoid M if every
nonidentity element of M can be written as a product of elements of X.
A set Y ⊆ M is a set of semigroup generators for the monoid M if every
element of M can be written as a product of elements of Y .

For any semigroup S, we define S1 to be the monoid S ∪ {1} where 1
is a new idempotent, not in S, and 1 · s = s = s · 1 for every s ∈ S. For
a semigroup homomorphism f : S → T , we have a monoid homomorphism
f1 : S1 → T 1, extending f , if we define f1(1) = 1. Then ( )1 is a functor
from the category of semigroups to the category of monoids and is the left
adjoint to the forgetful functor from the category of monoids to the category
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of semigroups. If 〈X : R〉 is a semigroup presentation for S, then we can
regard 〈X : R〉 as a monoid presentation for S1, by allowing the empty
word on X.

For a digraph Γ and a semigroup S, let φ be a function from S to E = EΓ.
Then the pair (Γ, φ) is a diagram over the semigroup S, φ is the label,
or labelling function for the diagram and for any edge e ∈ E, φ(e) ∈ S is
the label of e. We extend the label by concatenation to a label on positive
paths in Γ.

If S is any semigroup with a finite set X of generators and s ∈ S, we
write LX(s) for the smallest positive integer n such that s = xi1xi2 . . . xin
with xij ∈ X for 1 ≤ j ≤ n. Below, we will see that LX(s) is the length
of a digeodesic from 1 to s in either the right Cayley digraph Γr(S1, X) or
the left Cayley digraph `Γ(X,S1). When M is a monoid and X is a set of
monoid generators for M , the identity 1 is the product of 0 elements from
X and we define LX(1) = 0. For any nontrivial m ∈ M , we write LX(m)
for the smallest positive integer n such that m = xi1xi2 . . . xin with xij ∈ X
for 1 ≤ j ≤ n. When X is a set of monoid generators for the monoid M
and m ∈M , we will see that LX(m) is the length of a digeodesic from 1 to
m in either the right Cayley digraph Γr(M,X) or the left Cayley digraph
`Γ(X,M).

2. Cayley digraphs for semigroups and monoids

Suppose that X ⊆ T is a set of semigroup generators for the semigroup
T or that X ⊆ T is a set of monoid generators for the monoid T . The
right Cayley digraph for T with respect to X is the digraph Γr(T,X) =
(V,E, ι, τ) where V = T ,

E = T ×X = {(t, x) : t ∈ T, x ∈ X}, ι((t, x)) = t and τ((t, x)) = tx.

Dually, the left Cayley digraph for T with respect to X is the digraph
`Γ(X,T ) = (V,E, ι, τ) where V = T ,

E = X × T = {(x, t) : x ∈ X, t ∈ T}, ι((x, t)) = t and τ((x, t)) = xt.

The monoid Cayley digraphs are connected, but the semigroup Cayley
digraphs need not be. For example, if n is any natural number and Fn is
the free semigroup on the set Xn = {x1, . . . , xn} of generators, then both
Γr(Fn, Xn) and `Γ(Xn, Fn) have n components. For a given semigroup or
monoid, these left and right Cayley digraphs can be quite dissimilar and will
not in general have the same number of ends. Given a Cayley digraph Γ, the
graph

←→
Γ is the Cayley graph. A reference in this work to a positive path

in a Cayley graph will always mean a positive path in the Cayley digraph.
To define the corresponding right and left Cayley diagrams, we define a
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label φ by φ(t, x) = x or φ(x, t) = x, respectively. We can regard this label
as having values in the semigroup or monoid T or as having values in the
free semigroup or free monoid on the set X of generators for T .

Lemma 3. Suppose that X is a finite set of monoid generators for the
monoid T . Let Γ be the right (left) Cayley digraph, Γr(T,X) (`Γ(X,T )). If
F is any finite set of vertices of Γ and C is an infinite component of Γ− F,
then there is a vertex v̂ in C which initiates unbounded digeodesics.

Proof. The proof is the same for the right and left Cayley digraphs. We
want to find a vertex v̂ in C and for each natural number n, a digeodesic,
πn ∈ C, with ι(πn) = v̂ and |πn| = n.

Since C is infinite and there are only finitely many products of elements
of X having any fixed length, for each natural number N , we can find an
element vN of C such that LX(vN ) ≥ N. Select a digeodesic γN in Γ from 1
to vN .

Suppose first that, for infinitely many values of N , the digeodesic γN is
contained in C. Then 1 ∈ C. We let v̂ = 1 and for each natural number n,
we select a digeodesic γN ∈ C with N ≥ n. Since |γN | = LX(vN ) ≥ N , the
digeodesic γN has length at least n and we let πn be the initial subpath of
γN of length n.

Suppose then that γN is in C for only finitely many values of N . Then,
for some sufficiently largeN0, the digeodesic γN contains some vertex aN ∈ F

wheneverN ≥ N0. Let δF = {v ∈ Γ−F : there is an edge e of Γ with ι(e) ∈
F and τ(e) = v}. Since F and X are finite, δF is finite. For N ≥ N0, we
have aN ∈ F and vN ∈ C j Γ− F, so γN contains at least one vertex which
is in δF. For N ≥ N0, define uN to be the unique vertex u on γN such that
u ∈ δF, but no vertex following u on γN is in δF. Since δF is finite, there
is at least one vertex v̂ in δF such that v̂ = uN for infinitely many different
values of N. This is the vertex v̂ required for the conclusion of the lemma.
For any natural number n, choose N so that uN = v̂ and N ≥ LX(v̂) + n.
Then the terminal subpath of γN from v̂ to vN has length at least n. Let
πn be the subpath of γN having length n and initial vertex v̂. Since πn is a
subpath of a digeodesic, πn is a digeodesic.

Corollary 4. Suppose that X is a finite set of monoid generators for the
monoid T . Let Γ be the right Cayley digraph, Γr(T,X). Then ex(Γ) = e∞(Γ)
if x is p, g, ∗, †,+p,−→∗ or

−→
δ . Similarly, ex(Γ) = e∞(Γ) if Γ is the left Cayley

digraph `Γ(X,T ) and x is any of these subscripts.

Remark: The previous two results and arguments also hold for finitely
generated semigroups.

Example 7. If X is a finite alphabet with |X| > 1, F is the free monoid
generated by X and Γ is the corresponding right Cayley digraph, then
e∞(Γ) =∞, but e←−∗ (Γ) = e←−

δ
(Γ) = 0.
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Lemma 5.
(a) Suppose that M is a monoid with a finite set X of monoid generators,

that Γ is the right (left) Cayley digraph for M with respect to X and that F

is any finite subset of M. Then Γ− F has at most 1 + |X| |F| components.
(b) Suppose that S is a semigroup with a finite set X of generators, that

Γ is the right (left) Cayley digraph for S with respect to X and that F is any
finite subset of S. Then Γ− F has at most (1 + |F|)|X| components.

Proof. The proof is the same for the right and left Cayley digraphs.
(a) One of the components of Γ− F might contain the identity element

of M. We regard this potential component as accounting for the “1” in
1+ |X| |F|. Suppose that C is a component of Γ−F which does not contain
the identity element. Choose an element m ∈ C for which LX(m) is minimal
and, for the sake of notation, assume that LX(m) = k. Choose a positive
path of length k from the identity element to m in Γ and let v be the vertex
occurring just before m on this path. Observe that we must have v ∈ F:
otherwise, v ∈ Γ− F and the edge from v to m is in Γ− F, hence in C but
this contradicts our choice of m ∈ C with LX(m) minimal. Then the edge
from v to m is one of the |X| edges having v as its initial vertex and we can
have at most |X| |F| such edges from vertices of F to components of Γ − F

which do not contain the identity of M.
(b) Suppose that S is a semigroup, that Γ = Γ(S,X) and that F is

a finite subset of S. By part (a), Γ(S1, X) − F has at most 1 + |X| |F|
components. One of these components contains the identity element of S1.
With this identity element removed in Γ, the remaining elements of this
component partition into at most |X| components of Γ−F. Hence Γ−F has
at most |X|+ |X||F| components.

It is not difficult to see that the bounds given in Lemma 5 are attained
when we let F be the set of all words of some fixed length on the free
generators of a free monoid or a free semigroup.

The following three corollaries of Lemma 5 are useful, expected and easy.
We state and prove these for finitely generated monoids, but we remark that
essentially the same proofs hold for finitely generated semigroups.

Corollary 6. Suppose that X is a finite set of monoid generators for the
monoid T . Let Γ be the right (left) Cayley digraph, Γr(T,X) (`Γ(X,T )). If
T is infinite, then e∞(Γ) ≥ 1.

Proof. For any finite F, T is the disjoint union of F and the components of
Γ − F. By Lemma 5, there are only finitely many components, so at least
one of these must be infinite.

Corollary 7. Suppose that X is a finite set of monoid generators for the
monoid T . Let Γ be the right (left) Cayley digraph, Γr(T,X) (`Γ(X,T )). If
F and F̂ are finite subsets of T with F j F̂, then |C∞(Γ−F)| ≤ |C∞(Γ− F̂)|.
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Proof. Observe that each component of Γ − F̂ must be contained in some
component of Γ − F. Since Γ − F̂ has only finitely many components, an
infinite component, C, of Γ− F can contain only finitely many components
of Γ− F̂ and finitely many elements of F̂, so at least one of the components
of Γ− F̂ contained in C must also be infinite.

Example 8. The conclusion of the corollary above need not hold for arbi-
trary digraphs Γ. Let Γn be the digraph of Example 4, F any finite set of
vertices of Γn which does not include the vertex c and F̂ = F ∪ {c}. Then
|C∞(Γn − F)| = 1 but |C∞(Γn − F̂)| = 0.

Corollary 8. Suppose that X is a finite set of monoid generators for the
monoid T . Let Γ be the right (left) Cayley digraph, Γr(T,X) (`Γ(X,T )).
For every natural number n, define Fn to be {t ∈ T : LX(t) ≤ n}. Then Fn
is finite and e∞(Γ) = limn→∞ |C∞(Γ− Fn)|.

Proof. It is clear that |Fn| ≤
∑n

j=0 |X|j and that

max
Fn

|C∞(Γ− Fn)| ≤ e∞(Γ) = max
F⊆VΓ, F finite

|C∞(Γ− F)|

If e∞(Γ) is finite, then for some finite F ⊆ T , we have |C∞(Γ − F)| =
e∞(Γ). Let m = maxt∈F{LX(t)}. Then F ⊆ Fn for n ≥ m, hence e∞(Γ) =
|C∞(Γ−F)| ≤ |C∞(Γ−Fn)| by Corollary 7. It follows that limn→∞ |C∞(Γ−
Fn)| = e∞(Γ).

If e∞(Γ) =∞, then for every natural number k we can find a finite F ⊆ T
with |C∞(Γ− F)| ≥ k. Given such an F, let n = maxt∈F{LX(t)}. Then F ⊆
Fn so k ≤ |C∞(Γ− F)| ≤ |C∞(Γ− Fn)| and limn→∞ |C∞(Γ− Fn)| =∞.

Lemma 9. If X and Y are finite sets of semigroup generators for the semi-
group S, then e∞(Γr(S,X)) = e∞(Γr(S, Y )) and e∞(`Γ(X,S)) = e∞(`Γ(Y, S)).

If X and Y are finite sets of monoid generators for the monoid M , then
e∞(Γr(M,X)) = e∞(Γr(M,Y )) and e∞(`Γ(X,M)) = e∞(`Γ(Y,M)).

Proof. We state the argument in terms of the right Cayley digraphs for semi-
groups: the argument for the left Cayley digraphs is dual and the monoid
argument is essentially the same as the semigroup argument. Observe first
that, by symmetry, it suffices to prove that e∞(Γr(S,X)) = e∞(Γr(S,X∪Y ))
and second, that we can reduce to the case of proving that e∞(Γr(S,X)) =
e∞(Γr(S,X ∪ {y})) where y ∈ Y by using induction on |X ∪ Y | − |X|.

Suppose then that S is a semigroup, that X is a finite set of generators
for S and that y ∈ S −X. For brevity, write Γ for the right Cayley digraph,
Γr(S,X) and write Γ′ for the right Cayley digraph, Γr(S,X ∪{y}). Then we
have S = VΓ = VΓ′ and EΓ ⊂ EΓ′ , so we may regard Γ as a proper subgraph
of Γ′.

We want first to show that e∞(Γ′) ≤ e∞(Γ). Let F be any finite subset
of S. It suffices to show that each of the finitely many infinite components
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of Γ′−F must contain one or more of the finitely many infinite components
of Γ − F. Since all of the edges in Γ − F are also edges in Γ′ − F, every
component of Γ− F is entirely contained in some one component of Γ′ − F.
Since F is finite and Γ − F has only finitely many finite components, the
union of the infinite components of Γ − F contains all but finitely many of
the vertices of Γ and hence the union of the components of Γ′ − F which
contain infinite components of Γ − F contains all but finitely many of the
vertices in VΓ′ = VΓ. Hence every infinite component of Γ′ must be one of
those which contains some infinite component of Γ− F.

Suppose next that e∞(Γ) is finite. Then there is a finite subset F1 of S
such that Γ−F1 has exactly e∞(Γ) infinite components. Let F+ be the set of
vertices in Γ which can be reached from some vertex of F1 by a positive path
in Γ having length at most LX(y). Observe that F+ is a finite set and let
F2 = F1∪F+. Then Γ−F2 also has e∞(Γ) infinite components. Each infinite
component, C, of Γ − F2 is contained in some infinite component, D, of
Γ′−F2. To show that Γ′−F2 has e∞(Γ) infinite components it suffices to show
that no two distinct infinite components of Γ−F2 are contained in the same
infinite component of Γ′−F2. To this purpose, observe also that each infinite
component, C, of Γ−F2 is contained in an infinite component, Ĉ, of Γ−F1.
Since F1 ⊆ F2, it follows from Lemma 7 that |C∞(Γ − F1)| = |C∞(Γ − F2)|
and hence that if C1, C2 are distinct infinite components of Γ − F2, then
Ĉ1, Ĉ2 are distinct infinite components of Γ− F1. For the sake of obtaining
a contradiction, suppose that two distinct infinite components, C1 and C2,
of Γ − F2 are contained in the same infinite component, D, of Γ′ − F2. By
choosing C1 and C2 to minimize the length of a path in Γ′ − F2 connecting
them, we may assume that there is an edge f in Γ′−F2, labelled by y, having
its initial vertex in C1 and its terminal vertex in C2. Write v1 for the initial
vertex of f and v2 for the terminal vertex of f . Then v1 is also in Ĉ1 and v2
is also in Ĉ2. Since the edge f of Γ′ has v1 and v2 for its endpoints, there is
a path πf in Γ having length LX(y) from v1 to v2. If πf connects Ĉ1 and Ĉ2

in Γ− F1, then Ĉ1 = Ĉ2 and C1 = C2, so there must be some vertex on πf
which occurs in F1. But then v2 ∈ F+ ⊂ F2, contradicting our assumption
that v2 is in a component of Γ′ − F2.

In the case where e(Γ) is infinite, we need to show that for every natural
number N , there is a finite subset F of S such that Γ′ − F has at least N
infinite components. Let F1 be a finite subset of S such that Γ − F1 has
at least N distinct infinite components. Use F1 and LX(y) to construct F2

just as in the preceding paragraph. Then Γ−F2 also has at least N infinite
components and moreover we can select N of these which are contained in N
different components of Γ− F1. It suffices to show that no two of these can
be contained within the same component of Γ′−F2. For that, we may repeat
the argument above using some edge f and corresponding path πf .

For a finitely generated semigroup S, we define Er(S) and E`(S) by
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Er(S) = e∞(Γr(S,X)) and E`(S) = e∞(`Γ(S,X)) for any finite set X of
semigroup generators for S. It is clear that we can state analogous definitions
for Er(M) and E`(M) when M is a finitely generated monoid.

We observe that when M is a finitely generated monoid, the values for
Er(M) and E`(M) do not change if we consider M as a semigroup rather
than as a monoid. By Lemma 9, we may assume that our set X of monoid
generators for M includes the identity element of M . Then X is also a set of
semigroup generators for M . When we regard M as a semigroup, we obtain
the same right (left) Cayley digraph for M with respect to X that we obtain
when we regard M as a monoid.

If G is a finitely generated group with a finite set X of group generators,
thenX∪X−1 is a finite set of monoid generators for G. It is usual to consider
a Cayley graph rather than a Cayley digraph for a group. Typically, this
is the right Cayley graph, but it is isomorphic to the left Cayley graph.
All vertices in the Cayley graph Γ(G,X) have degree 2|X|, so Γ(G,X) is
locally finite. There are numerous equivalent definitions for the number of
ends of a finitely generated group. See [2, 3, 10, 11, 12]. One of these, see
[10], is to define the number of ends of G to be limn→∞ |C∞(Γ(G,X)−Fn)|
where Fn = {g ∈ G : LX∪X−1(g) ≤ n}. By Corollary 8, when a group G is
considered as a monoid, then its number of ends (considered as a group) is
equal to both of the monoid values Er(G) and E`(G).

A function ψ from a semigroup S1 to a semigroup S2 is an anti-homo
morphism, see [1, Volume 1, page 9], if ψ(ab) = ψ(b)ψ(a) for all a, b ∈ S1.
Easily, the composition of two anti-homomorphisms is a homomorphism.
An anti-homomorphism is an anti-automorphism if S1 = S2 and ψ is a
bijection.

For any semigroup (S, ·) with associative multiplication · the dual semi-
group Sop = (S, ∗) has the same set of elements as S and has associative
multiplication ∗ defined by s1∗s2 = s2 ·s1. Then the identity function on the
set S is an anti-automorphism between the semigroup S and the semigroup
Sop. Using this and composition, we may regard any anti-homomorphism
from S1 to S2 as either a homomorphism from Sop

1 to S2 or else as a ho-
momorphism from S1 to Sop

2 . In particular, anti-automorphisms of S corre-
spond to isomorphisms between S and Sop. Any set of generators for S is
also a set of generators for Sop and whenever X is a finite set of generators
for S, then Γr(S,X) = `Γ(X,Sop), so Er(S) = E`(Sop) and E`(S) = Er(Sop).
It is worth observing that op is a functor from the category of semigroups
to itself. If S1 and S2 are semigroups and f : S1 → S2 is a homomorphism,
then we may define fop : Sop

1 → Sop
2 by fop(s) = f(s) for s ∈ S1. It is easy to

verify that fop is a homomorphism. Generally, it is notationally convenient
to suppress the distinction between f and fop.

Proposition 10. If the semigroup S is isomorphic to Sop, then Er(S) =
E`(S).
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A semigroup S is an inverse semigroup if for every element s ∈ S
there is a unique element, denoted s−1, in S such that ss−1s = s and
s−1ss−1 = s−1. A monoid is an inverse monoid if it is an inverse semigroup
when regarded as a semigroup. It is easy to see that ss−1 and s−1s are
idempotent elements in any inverse semigroup and it is very well-known
(see [1] or [8]) that idempotents in an inverse semigroup commute with each
other. From these, it follows easily that for s, t ∈ S, (st)−1 = t−1s−1 and
hence that ()−1 is an anti-automorphism.

Corollary 11. If T is a finitely generated inverse semigroup or a finitely
generated inverse monoid, then Er(T ) = E`(T ).

Proof. As noted, the inversion operation is an anti-automorphism.

3. Some constructions and examples

We are going to give three equivalent descriptions for the construction
of a useful monoid M̂ followed by some comments about the corresponding
semigroup construction.

Suppose thatM and T are monoids and thatM = S1 for some semigroup
S, or equivalently that the identity element of M is the only element of M
that is a left unit or a right unit. Define a multiplication ∗ on the set T ×M
by

(t1,m1) ∗ (t2,m2) =

{
(t1t2,m2) if m1 = 1
(t1,m1m2) otherwise

We need the assumption that M = S1 to prove that ∗ is associative. It is
easy to see that (1, 1) is an identity element, so (T ×M, ∗) is a monoid. We
use M̂ for a brief notation for this monoid. If T is also a monoid in which
the identity element is the only left or right unit, then this assumption also
holds for M̂ .

For the sake of notation, let 〈A : R1〉 be a monoid presentation for T and
〈X : R2〉 a monoid presentation for M . Then the monoid M̂ has monoid
presentation

〈A ∪X : R1 ∪R2 ∪ {(xa, x) : a ∈ A, x ∈ X}〉 .

We want to identify the ordered pair (t,m) with the word tm where t is a
word on A and m is a word on X. It is easy to show that every element
of the presentation can be written in the form tm. It is more tedious to
show that tm = t′m′ in M̂ implies that t = t′ in T and that m = m′ in
M : the assumption that M = S1 for some semigroup S is necessary for this
uniqueness result.

14



Later in the paper we will provide a more elaborate discussion of semidi-
rect products of monoids. Define θT ∈ End(T ) to be the monoid endomor-
phism of T which takes every element of T to the identity element 1T and
write ιT for the identity automorphism of T . Define a monoid homomor-
phism Φ0 : M → End(T ) to be the monoid homomorphism which takes
1M to ιT and takes every other element of M to θT . Here, we need the
assumption that M = S1 to ensure that Φ0 is a homomorphism. Then the
multiplication ∗ above and the monoid presentation above are the multi-
plication and a presentation for the monoid semidirect product T oΦ0 M .
This approach to describing M̂ has the notational advantage that we can
conveniently describe different M̂ ’s for different choices of M and T . We
utilize this notation in some examples.

If S and T are semigroups with semigroup presentations 〈X : R2〉 and
〈A : R1〉, respectively, then we can define a semigroup Ŝ having semigroup
presentation

〈A ∪X : R1 ∪R2 ∪ {(xa, x) : a ∈ A, x ∈ X}〉

which is clearly analogous to the monoid presentation for M̂ given above. We
could also describe this semigroup Ŝ by defining the obvious multiplication
on the set (T × S) ∪ T ∪ S or by recognizing Ŝ as the subsemigroup of
nonidentity elements of the monoid semidirect product T 1oΦ0S

1. We won’t
need the semigroup version of the following lemma.

Layer Lemma. Let T be a finite monoid and M a finitely generated monoid.
Assume that M = S1 for some semigroup S. Then Er(ToΦ0M) = |T |Er(M)
and E`(T oΦ0 M) = E`(M).

Proof. Let X be a finite set of monoid generators for M and let A be a finite
set of monoid generators for T . We write x or xj for elements of X and a or
ak for elements of A. Write T = {1T = t1, t2, . . . , tn} for some fixed ordering
of the |T | = n elements of T . We use m,m1,m2 as notation for arbitrary
elements of M and use t, ti, ti1 , ti2 as notation for arbitrary elements of T .
We use M̂ as an abbreviation for T oΦ0 M . We write just tm, t and m for
elements (t,m), (t, 1M ) and (1T ,m) of M̂ and we similarly identify X with
{1T } ×X and A with A× {1M}.

Write Γ for the right Cayley digraph Γr(M,X) and Γ̂ for the right Cayley
digraph Γr(M̂,A∪X). Here, it will be useful to regard Γ and Γ̂ as diagrams
with labelled edges. For 1 ≤ i ≤ n, we define the ith layer in Γ̂ to be
the subdiagram Γi of Γ̂ having vertices Vi = {tim : m ∈ M} and edges
Ei = {f : f ∈ EΓ̂, ι(f) = tim, τ(f) = timx, x ∈ X}. Then, for each i with
1 ≤ i ≤ n, we have a diagram isomorphism φi : Γ→ Γi, defined on vertices
and edges by φi(m) = tim and φi(f) is the edge from tim to timx with
label x if f is the edge from m to mx having label x. Since timak = tim
in M̂ if m 6= 1M , the edges of Γ̂ having labels in A are loops at the given
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vertex except for the edges from ti to tiak. We build Γ̂ from the n layers by
constructing the finite right Cayley digraph Γr(T,A), identifying the vertex
ti in this digraph with the vertex ti1 in Γi and adding loops labelled by each
element of A at each vertex tim,m 6= 1 of Γi.

Suppose first that Er(M) is finite and choose a finite subset F ⊆M such
that Γ− F has Er(M) infinite components. We may assume by Corollary 7
that 1 ∈ F. For 1 ≤ i ≤ n, let Fi = {tim : m ∈ F} ⊆ Vi and let F̂ = ∪ni=1Fi.
Observe that F̂ is finite. Since Γi − Fi has Er(M) infinite components for
each i and the edges of Γ̂ − F̂ having labels in A are all loops, Γ̂ − F̂ has
nEr(M) infinite components. This shows that Γ̂ has at least nEr(M) ends.
Suppose that F̄ is an arbitrary finite subset of M̂ . Let

F = F1 = {m : tim ∈ F̄ for some i with 1 ≤ i ≤ n}, Fi = {tim : m ∈ F}

for 1 ≤ i ≤ n and F̂ = ∪ni=1Fi. Observe again that F̂ is finite. Because F̄ ⊆ F̂,
we know that Γ̂ − F̂ has at least as many infinite components as Γ̂ − F̄. It
suffices to prove that Γ̂ − F̂ has at most nEr(M) infinite components. If
this were not the case, then by the pigeonhole principle, we would have
more than Er(M) infinite components in some Γi−Fi. Since all of these are
isomorphic to Γ1−F1, we would then have the contradiction that Γ−F has
more than Er(M) infinite components.

The argument when Er(M) is infinite is similar. For every natural num-
ber h we can find a finite subset F of M such that 1 ∈ F and Γ − F has at
least h infinite components. Then, with F̂, as above, Γ̂ − F̂ has at least hn
infinite components.

Now write Γ for the left Cayley digraph `Γ(X,M) and Γ̂ for the left
Cayley digraph `Γ(A∪X, M̂). Write Υ for the left Cayley digraph `Γ(A, T ).
For any m ∈M , define the tower at m to be the the subdiagram Υm of Γ̂
having vertex set Vm = {tm : t ∈ T} and edge set Em = {f : f ∈ EΓ̂, ι(f) =
tm, τ(f) = atm, a ∈ A}. Then for every m ∈ M , we have a diagram
isomorphism φm : Υ → Υm defined on vertices and edges by φm(t) = tm
and φm(f) is the edge from tm to atm if f is the edge from t to at in Υ
having label a. We can think of constructing Γ̂ from the set of towers by
identifying each vertex 1Tm in the tower Υm with the vertex m in Γ and
for each x ∈ X and m 6= 1 in M adjoining an edge from tm in Υm to xm in
Γ having label x.

Corresponding to any finite subset F of M , let F̂ be the finite subset
F̂ = {tim : 1 ≤ i ≤ n,m ∈ F} of M̂ . Corresponding to any finite subset F̄ of
M̂ , let F = F1 = {m : tkm ∈ F̄ for some 1 ≤ k ≤ n}. Since F̄ ⊆ F̂, we have
e∞(Γ̂) = e∞(Γ) if we show that Γ − F and Γ̂ − F̂ have the same number of
infinite components for any finite F. After discussing some technical details,
we will construct a bijection ̂ between infinite components C of Γ − F

and infinite components Ĉ of Γ̂− F̂.
If for some x ∈ X, the edge f̂ ∈ EΓ̂ has label x, ι(f̂) = tm and τ(f̂) =

xm, define the projection of f̂ to be the edge f = π(f̂) in EΓ having label
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x, ι(f) = m and τ(f) = xm. If the edge f̂ ∈ EΓ̂ has label a for a ∈ A,
ι(f̂) = tm and τ(f̂) = atm, define the projection, π(f̂), of f̂ to be the empty
path in Γ at the vertex m. We regard the inverse of an empty path at any
vertex to be the same empty path. If ω = f̂ε11 f̂ε22 . . . f̂εk

k , where εj = ±1
and f̂j ∈ EΓ̂ for 1 ≤ j ≤ k, is a walk in Γ̂ − F̂ from ι(ω) to τ(ω), then
by induction on k, (π(f̂1))ε1(π(f̂2))ε2 . . . (π(f̂k))εk is a walk in Γ − F from
ι((π(f̂1))ε1) to τ((π(f̂k))εk). Denote this walk by π(ω). In this paragraph
and the next, walks and paths (allowing negative edges) in a digraph are to
be interpreted as walks in the corresponding graph.

If C is an infinite component of Γ−F, define Ĉ by Ĉ = {tm : t ∈ T, m ∈
C}. Then Ĉ is an infinite set, since {1m : m ∈ C} ⊆ Ĉ. To see that Ĉ is
connected in Γ̂− F̂, suppose ti1m1, ti2m2 ∈ Ĉ. Then m1,m2 ∈ C, so there is
a path from m1 to m2 in Γ−F and hence a corresponding path from 1m1 to
1m2 in Γ̂− F̂. We also have paths, with all edges labeled by elements of A
in Γ̂− F̂ from 1m1 to ti1m1 and from 1m2 to ti2m2. We compose paths and
their inverses to find a path from ti1m1 to ti2m2. If C∗ is the component of
Γ̂ − F̂ which contains Ĉ, let t∗m∗ be any vertex in C∗, t̂m̂ any vertex in Ĉ
and ω a path in Γ̂− F̂ from t∗m∗ to t̂m̂. Then π(ω) is a walk in Γ− F from
m∗ to m̂, hence m∗ ∈ C, t∗m∗ ∈ Ĉ and C∗ = Ĉ. That is, Ĉ is always a
component of Γ̂− F̂. If C1 and C2 are any two infinite components of Γ−F

and ω is a path in Γ̂− F̂ from some vertex in Ĉ1 to some vertex in Ĉ2, then
π(ω) is a walk in Γ− F from ι(π(ω)) ∈ C1 to τ(π(ω)) ∈ C2, hence C1 = C2.

To see that b is onto, suppose that C̄ is some infinite component of Γ̂−F̂.
Define C by C = {m : tm ∈ C̄ for some t ∈ T}. It is then routine to verify
that C is an infinite set, that C is connected, that C is a component of Γ−F

and that Ĉ = C̄.

It is well-known that for any finitely generated group, G, and finite
set, X, of generators for G the left and right Cayley graphs for G, with
generating set X are isomorphic, and that such a Cayley graph has 0, 1, 2
or else infinitely many ends. See [2, 3, 10, 11, 12]. The next six examples
illustrate that these conclusions do not hold for left and right Cayley graphs
for semigroups and monoids.

Example 9. For n ≥ 2, define An to be the monoid semidirect product
T oΦ0 M where M is the infinite cyclic monoid having generator x and T
is the monogenic monoid having monoid presentation 〈t : tn = tn−1〉. It
is apparent that M = S1 where S is the infinite cyclic semigroup having
generator x. It is easy to see that the left and right Cayley digraphs for
M have one end. By the Layer Lemma, we have that Er(An) = n and
E`(An) = 1.

To greatly generalize, let S1 be any semigroup with Er(S1) = E`(S1) = 1
and let S2 be any semigroup with n − 1 elements. With M = S1

1 and
T = S1

2 , we have Er(T oΦ0 M) = n and E`(T oΦ0 M) = 1. The monoid
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An is arguably the most elementary example of this construction. Another
elementary possibility is to replace T = 〈t : tn = tn−1〉 by a cyclic group
of order n having generator t. This has the disadvantage that the element
(t, 1) ∈ T oΦ0 M is then a left and right unit, preventing us from using this
T oΦ0 M as the monoid Mop in the next example.

Example 10. For arbitrary natural numbers m,n ≥ 2, let M = Aop
n and

let T = Tm now be the the monogenic monoid having monoid presentation
〈t : tm = tm−1〉. Then by the Layer Lemma, Er(T oΦ0 M) = m and
E`(T oΦ0M) = n. For later reference, denote this monoid T oΦ0M by Jn,m.

Example 11. Let B be the monoid having monoid presentation 〈a, b : ba =
a2〉. We want to show that the right Cayley digraph Γr(B, {a, b}) has one
end while the left Cayley digraph `Γ({a, b}, B) has infinitely many ends.
Every element of B can be uniquely written in the form ajbk where j, k ≥ 0.
For either the right or the left Cayley digraph for B, we place the vertex ajbk

at the lattice point (j, k) in the first quadrant of the real plane. It is easy to
show that ajbk · a = aj+k+1 and it is clear that ajbk · b = ajbk+1. Similarly,
a · ajbk = aj+1bk, while b · bk = bk+1 when j = 0, but b · ajbk = aj+1bk when
j > 0.

Suppose first that Γ is the right Cayley digraph Γr(B, {a, b}) and let F

be a finite set of vertices in B. Let t = max{j + k : ajbk ∈ F} and define Ft
by Ft = {ajbk : j+k ≤ t}. The graph Γ has one end by Lemma 7 if Γ−Ft is
connected. Let aj1bk1 , aj2bk2 be vertices in Γ − Ft and assume without loss
of generality that j1 + k1 ≤ j2 + k2. Then we have a positive or empty path
in Γ−Ft from aj1+k1+1 to aj2+k2+1, with edges labelled by a and edges with
label a from aj1bk1 to aj1+k1+1 and from aj2bk2 to aj2+k2+1.

Now suppose that Γ is the left Cayley digraph `Γ({a, b}, B). For every
natural number h, define the subset Fh of B by Fh = {bi : 0 ≤ i < h}. We
then observe that Γ − Fh has h + 1 infinite components Ci where Ci has
vertices {ajbi : j > 0} if 0 ≤ i < h and Ch has vertices {ajbk : j ≥ 0, k ≥ h}.

Example 12. We have remarked earlier that a Cayley digraph for a semi-
group need not be connected. Let B be the monoid from Example 11 above
and S the subsemigroup of nontrivial elements in B. We observe that the
right Cayley digraph Γr(S, {a, b}) is connected, but the left Cayley digraph
`Γ({a, b}, S) has two components.

Example 13. Let B be the monoid of Example 11 and observe that the
identity element is the only left or right unit in B. Let T = Tm again be the
the monogenic monoid having monoid presentation 〈t : tm = tm−1〉. Then
by the Layer Lemma, Er(T oΦ0 B) = m and E`(T oΦ0 B) =∞.

An element t in a semigroup or a monoid T is a regular element if there is
an element x ∈ T such that txt = t. The semigroup or monoid T is regular
if every element of T is regular. An element t in a semigroup or a monoid T is
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completely regular if there is an element x ∈ T such that txt = t and xt =
tx. A semigroup or monoid T is completely regular if every element of T
is completely regular. There are several other equivalent characterizations
of completely regular semigroups. For example, a semigroup is completely
regular if and only if it is a union of groups. In [9], this is part of Theorem
II.1.4, which the authors there describe as the fundamental theorem for the
global structure of completely regular semigroups.

Example 14. We know by Corollary 11 that Er(I) = E`(I) for any finitely
generated inverse monoid I. In this example and the next, we show that
this equality need not hold for completely regular monoids.

Let G1 be any finitely generated group having one end. There are many
of these and G1 = Z× Z is a standard example. Regard G1 as a semigroup
with a finite setX of semigroup generators and form the monoidM = (G1)1.
ThenX is a finite set of monoid generators forM andM is both a completely
regular monoid and an inverse monoid. For a natural number n > 1, let G2

be any completely regular semigroup with n− 1 elements. For example, we
might take G2 to be any group or any semilattice with n− 1 elements. Let
T = (G2)1. Then T is a completely regular monoid with n elements. A
routine argument by cases shows that T oΦ0 M is a (completely) regular
monoid whenever M and T are (completely) regular. By the Layer Lemma,
we have that Er(T oΦ0 M) = n and E`(T oΦ0 M) = 1. To have one explicit
example of this for later reference, let Dn be T oΦ0 M when G1 = Z × Z
and G2 is the cyclic group with n− 1 elements.

Example 15. Let M = Dop
n where Dn is the completely regular monoid

from Example 14. Then Er(M) = 1 and E`(M) = n. For a natural number
m > 1, let G3 be any competely regular semigroup with m−1 elements and
T = (G3)1. Then T oΦ0 M is a completely regular monoid and we have
Er(T oΦ0 M) = m and E`(T oΦ0 M) = n by the Layer Lemma.

We now embark upon a second, more common, construction that will
allow us to present some interesting examples of commutative and inverse
monoids.

Let Λ be an index set and (Sλ, ∗λ) be a semigroup for each λ ∈ Λ.
Assume that Sλ1 ∩ Sλ2 = ∅ if λ1 6= λ2 and that 0 is a new element not in
∪Sλ. Define ∨Sλ to be {0} ∪

( ⋃
λ∈Λ Sλ

)
and define a multiplication ∗ on

∨Sλ by

s ∗ t =

{
s ∗λ t if there exists λ ∈ Λ such that s ∈ Sλ and t ∈ Sλ
0 otherwise

.

It is easy to see that ∗ is associative. Observe that ∨Sλ is commutative if
and only if every Sλ is commutative. When |Λ| = 2 and {Sλ} = {A,B},
write A ∨B for ∨Sλ and observe that A ∨B = B ∨A.
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For a first variant description of ∨Sλ, for any λ, define S0
λ to be the

semigroup having elements {0}∪Sλ with the multiplication ∗λ extended by
setting s ∗λ 0 = 0 ∗λ s = 0 ∗λ 0 = 0 for all s ∈ Sλ. Then ∨Sλ is the 0-direct
union of the semigroups S0

λ. See Clifford and Preston [1, Volume II, page
13], Howie, [5, page 71] or Higgins, [4, page 26].

For a second variant description of ∨Sλ, write S0 for the one element
semigroup {0} and define a multiplication on Λ0 = Λ∪{0} by 0 · 0 = λ · 0 =
0 · λ = λ1 · λ2 = 0 for all λ, λ1, λ2 ∈ Λ. Then Λ0 is a rather trivial lower
semilattice and ∨Sλ is a Λ0 semilattice of the semigroups Sλ. See [1, pages
25,26], [5, page 89] or [4, pages 37–39].

Lemma 12. Suppose that Λ is a finite set and that {Sλ}λ∈Λ is a set of
pairwise disjoint, finitely generated semigroups Sλ. Then ∨Sλ is finitely
generated, E`(∨Sλ) = Σλ∈ΛE`(Sλ) and Er(∨Sλ) = Σλ∈ΛEr(Sλ).

Proof. We consider the case for the number of left ends. The case for the
number of right ends is dual. If Xλ is a finite set of generators for Sλ, then
X = {0} ∪

( ⋃
λ∈ΛXλ

)
is a finite set of generators for ∨Sλ. Write Γ for

the left Cayley digraph `Γ(X,∨Sλ) and write Γλ for the left Cayley digraph
`Γ(Xλ, Sλ). If, for each λ ∈ Λ, Fλ is a finite subset of Sλ, define F to be
the finite set {0} ∪

( ⋃
Fλ

)
. The key observation is that if λ1 6= λ2, x ∈ Xλ1

and s ∈ Sλ2 , then xs = 0 in ∨Sλ and the edge from x to xs = 0 is not in
Γ − F. Hence, the digraph Γ − F is the disjoint union of the finitely many
digraphs Γλ − Fλ. If Γλ − Fλ has mλ infinite components then Γ − F has∑
mλ infinite components. If any E`(Sλ) is infinite, then we can choose

Fλ ⊆ Sλ for which mλ is larger than any given natural number N and hence
E`(∨Sλ) must be larger than N also. If E`(Sλ) is finite for every λ, then for
every λ we can choose Fλ ⊆ Sλ for which mλ = E`(Sλ) and conclude that
E`(∨Sλ) ≥

∑
λ∈Λ E`(Sλ). To prove E`(∨Sλ) ≤

∑
λ∈Λ E`(Sλ), it suffices to

show that m ≤
∑

λ∈Λ E`(Sλ), whenever F is a finite subset of ∨Sλ and Γ−F

has m infinite components. By Corollary 7, we may assume that 0 ∈ F. For
each λ, define Fλ to be F ∩ Sλ and define mλ to be the number of infinite
components of Γλ − Fλ. Then, as above, Γ − F is the disjoint union of the
digraphs Γλ − Fλ and we have m =

∑
mλ ≤

∑
λ∈Λ E`(Sλ).

Example 16. For an arbitrary natural number n, let Λ be an index set with
|Λ| = n and for each λ ∈ Λ, let Sλ be a finitely generated abelian group with
E`(SΛ) = Er(SΛ) = 1. For example, take Sλ to be the free abelian group
of rank rλ ≥ 2. Let S = ∨Sλ. Then S is a finitely generated, completely
regular, commutative inverse semigroup with Er(S) = E`(S) = n.

If M is any monoid, End(M) is standard notation for the monoid of
monoid endomorphisms ofM. Form ∈M and f ∈ End(M), mathematicians
sometimes find it convenient to write the argument m to the left of the
function f and other times find it more convenient to write the argument on

20



the right. Then for f, g ∈ End(M), the composition fg has, in general, two
different values depending upon which notational convention is followed. We
write Endr(M) for End(M) when we write functions to the right of their
arguments and we write End`(M) for End(M) when we write functions to
the left of their arguments. Then End`(M) and Endr(M) are duals of each
other with respect to the functor op. We use Monicr(M) for the submonoid
of Endr(M) consisting of one-to-one endomorphisms and Monic`(M) for the
submonoid of End`(M) consisting of one-to-one endomorphisms. We note
that Monicr(M) and Monic`(M) are also dual.

Let A and B be monoids and let Φ : A → End`(B) be a monoid homo-
morphism. For consistency, we would ordinarily write Φ(a) for the endo-
morphism of B which is the image of a ∈ A and then write [Φ(a)](b) for the
value of this endomorphism at the element b ∈ B. When the monoid homo-
morphism Φ is understood from context, we will abbreviate [Φ(a)](b) as ab.
Since Φ is a monoid homomorphism, we have 1b = b and a1(a2b) = a1a2b.
Since Φ(a) is a monoid homomorphism for every a ∈ A, we have a1 = 1 and
a(b1b2) = (ab1)(ab2). Similarly, if Φ : A → Endr(B) is a monoid homomor-
phism, it is often convenient and unambiguous to abbreviate (b)[(a)Φ] as ba

and then observe that b1 = b, (ba1)a2 = ba1a2 , 1a = 1, and (b1b2)a = (ba1)(b
a
2).

Suppose that A and B are monoids and that Φ : A → Endr(B) is a
monoid homomorphism. We define the monoid semi-direct product AnΦB
to have elements {(a, b) : a ∈ A, b ∈ B} and multiplication (a1, b1)(a2, b2) =
(a1a2, b

a2
1 b2). Similarly, if Φ : A→ End`(B) is a monoid homomorphism, we

define the monoid semi-direct product B oΦ A to have elements {(b, a) :
b ∈ B, a ∈ A} and multiplication (b1, a1)(b2, a2) = ((b1)(a1b2), a1a2). It
is easily verified that both multiplications are associative with respective
identity elements (1A, 1B) and (1B, 1A). If Φ(a) (or (a)Φ) is the identity
endomorphism b 7→ b of B for every a ∈ A, then AnΦB is the monoid direct
product A×B while B oΦ A is the monoid direct product B ×A and thus
AnΦ B ∼= B oΦ A in this case. More generally, we have AnΦ B ∼= (Bop oΦ

Aop)op. If A and B are commutative monoids, then Bop = B,Aop = A and
AnΦ B ∼= (B oΦ A)op.

Theorem 13. Suppose that Mi is a finitely generated infinite monoid for i =
1, 2. If Φ : M1 → Monic(M2) is a monoid homomorphism, then Er(M1 nΦ

M2) = E`(M2 oΦ M1) = 1.

Proof. SinceM2oΦM1
∼= (Mop

1 nΦM
op
2 )op, it suffices to prove that Er(M1nΦ

M2) = 1. Write M for M1 nΦ M2. For i = 1, 2, let Xi be a finite set of
monoid generators for Mi. Let X = {(x, 1) : x ∈ X1} ∪ {(1, x) : x ∈ X2}.
Then X is a finite set of monoid generators for M .

For the proof below, the reader might find it useful to visualize and
then generalize the Cayley digraph for a direct product of two infinite cyclic
monoids.
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Write Γ for the right Cayley digraph Γr(M,X). Since Xi is a finite set
for i = 1, 2, for every positive integer n, there can be only finitely many
elements mi ∈ Mi with LXi(mi) < n. Let F be a finite subset of VΓ = M.
Since F is finite, we may fix a natural number N = NF, depending upon F,
such that F ⊆ {(m1,m2) : LXi(mi) < N for i = 1, 2}. As a consequence, an
element (m1,m2) ∈M is not in F if either LX1(m1) ≥ N or LX2(m2) ≥ N .

Suppose that m ∈ M1 and q, p ∈ M2 with LX2(p) = t > 0. Write
p = xj1xj2 . . . xjt with xji ∈ X2 for 1 ≤ i ≤ t. Then we have a positive path in
Γ of length t from (m, q) to (m, qp) with consecutive edges labelled by (1, xji)
for 1 ≤ i ≤ t. For further reference, we may refer to this as the vertical path
from (m, q) to (m, qp). If we further assume that LX1(m) ≥ NF, then all of
the vertices of this path occur in Γ − F and hence in the same component
of Γ− F.

Suppose that we have m ∈ M2 and q, p ∈ M1 with LX1(p) = t > 0.
Write p = xj1xj2 . . . xjt with xji ∈ X1 for 1 ≤ i ≤ t. Then we have a positive
path in Γ of length t from (q,m) to (qp,mp) with consecutive edges labelled
by (xji , 1) for 1 ≤ i ≤ t. For further reference, we may refer to this as the
oblique path from (q,m) to (qp,mp). We need to discuss hypotheses which
will guarantee that this oblique path is in Γ− F.

Let k be a fixed natural number and x ∈ X1 a fixed generator of M1.
Then {b ∈ M2 : LX2(b) < k} is a finite set and hence {bx : b ∈
M2, LX2(b) < k} is finite also. For this k and x, define k̄ by

k̄ = 1 + max{LX2(b
x) : b ∈M2, LX2(b) < k}.

Then if b ∈ M2 and LX2(b) < k, we also have that LX2(b
x) < k̄, or equiva-

lently, if LX2(b
x) ≥ k̄ then LX2(b) ≥ k.We may slightly modify our definition

for k̄ and assume that k̄ ≥ k. Thus, for every natural number k, there is a
natural number k̄ ≥ k such that whenever b ∈ M2 and LX2(b

x) ≥ k̄ then
LX2(b) ≥ k.

Similarly, suppose that x ∈ X1 and that ` is any natural number. Since
xΦ is one-to-one, there is a natural number ˆ̀≥ `, depending upon ` and x,
such that whenever b ∈M2 and LX2(b) ≥ ˆ̀, then LX2(b

x) ≥ `.
We use the values k̄ to keep an oblique path within Γ− F by our choice

of the path’s final endpoint. We use the values ˆ̀ to keep an oblique path
within Γ− F by our choice of the path’s initial endpoint.

Consider again oblique paths from (q,m) to (qp,mp). We regard q as
varying over M1 and m as varying over M2, but we want to fix p ∈M1 with
LX1(p) = t > 0 and write p = xj1 . . . xjt with xji ∈ X1 for 1 ≤ i ≤ t.

Let k0 = N = NF and choose k̄0 ≥ k0 such that whenever b ∈ M2

with LX2(b
xj1 ) ≥ k̄0, then LX2(b) ≥ k0. Define k1 to be k̄0. By induc-

tion on i, for 1 ≤ i < t, choose k̄i ≥ ki such that whenever b ∈ M2

with LX2(b
xji+1 ) ≥ k̄i, then LX2(b) ≥ ki. Define ki+1 to be k̄i. Then kt

depends upon both N and p. To emphasize this, we may write kN,p for
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kt. Suppose that for the oblique path from (q,m) to (qp,mp), we know
that LX2(m

p) ≥ kt. Then it is routine to show, by induction on i, that
for each vertex (qxj1xj2 . . . xjt−i ,m

xj1
xj2

...xjt−i ) on the path, that we have
LX2(m

xj1
xj2

...xjt−i ) ≥ kt−i ≥ k0 = N and that LX2(m) ≥ N , so that all of
these vertices are in Γ − F. Thus, the oblique path from (q,m) to (qp,mp)
is in Γ− F provided that LX2(m

p) ≥ kN,p.
Let `0 = N = NF and choose ˆ̀

0 ≥ `0 such that whenever b ∈ M2 with
LX2(b) ≥ ˆ̀

0, then LX2(b
xjt ) ≥ `0. Define `1 to be ˆ̀

0. By induction on i, for
1 ≤ i < t, choose ˆ̀

i ≥ `i such that whenever b ∈M2 with LX2(b) ≥ ˆ̀
i, then

LX2(b
xjt−i ) ≥ `i. Define `i+1 to be ˆ̀

i. Then `t depends upon both N and p.
To emphasize this, we may write `N,p for `t. Suppose that for the oblique
path from (q,m) to (qp,mp), we know that LX2(m) ≥ `t. Then it is routine
to show, by induction on i, that for each vertex (qxj1xj2 . . . xji ,m

xj1
xj2

...xji )
on the path, that we have LX2(m

xj1
xj2

...xji ) ≥ `t−i ≥ `0 = N , so that all of
these vertices are in Γ − F. Thus, the oblique path from (q,m) to (qp,mp)
is in Γ− F provided that LX2(m) ≥ `N,p.

Let C be an infinite component of Γ − F. Define sets IC and JC by
IC = {c ∈ M1 : (c, d) ∈ C for infinitely many different d ∈ M2} and
JC = {d ∈ M2 : (c, d) ∈ C for infinitely many different c ∈ M1}. Below,
we will show that IC and JC are nonempty, that IC is a right ideal in M1

and JC is a right ideal in M2 and finally that IC = M1 and JC = M2.

Let Cg and Ch be two infinite components of Γ − F. To prove that Γ
has one end, it suffices to show that Cg = Ch by exhibiting a vertex of Γ
which is in Cg ∩ Ch. Suppose that we know that JCg = M2. Then 1 ∈ JCg ,
so there are infinitely many c ∈ M1 with (c, 1) ∈ Cg. We may then choose
p ∈ M1 with (p, 1) ∈ Cg and LX1(p) ≥ NF. Suppose also that we know
that ICh

= M1. Then 1 ∈ ICh
, so there are infinitely many d ∈ M2 with

(1, d) ∈ Ch. Choose m ∈ M2 with (1,m) ∈ Ch and LX2(m) ≥ `N,p. Since
LX1(p) ≥ NF, the vertical path, labelled by mp, in Γ from (p, 1) to (p,mp)
is in Γ − F and hence in Cg. Since LX2(m) ≥ `N,p, the oblique path in Γ
from (1,m) to (p,mp) is in Γ− F and hence in Ch. Then the vertex (p,mp)
is in both Cg and Ch, so Cg = Ch.

We want to show that, for any infinite component C of Γ−F, the set IC
is nonempty, is a right ideal in M1, and is all of M1.

If it were the case that there were only finitely many elements c ∈ M1

with (c, d) ∈ C for some d ∈ M2, then, since C is infinite, for at least
one such element, ĉ, we must have infinitely many different d ∈ M2 with
(ĉ, d) ∈ C and then ĉ ∈ IC . Suppose then that there are infinitely many
different elements c ∈M1 with (c, d) ∈ C for some d ∈M2. Then there is an
element (ĉ, δ̂) ∈ C with LX1(ĉ) ≥ NF. The vertical path from (ĉ, 1) to (ĉ, δ̂)
is in C, so (ĉ, 1) ∈ C. But then the vertical path from (ĉ, 1) to (ĉ, d) is in C
for every d ∈M2, so ĉ ∈ IC .

To show that IC is a right ideal in M1, it suffices to show that cx ∈ IC
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whenever c ∈ IC and x ∈ X1. Choose ˆ̀ = `N,x such that LX2(d
x) ≥ N

whenever d ∈ M2 and LX2(d) ≥ ˆ̀. Since c ∈ IC , there are infinitely many
d ∈ M2 with (c, d) ∈ C and hence for infinitely many of these, we have
LX2(d) ≥ ˆ̀. For each of these, the edge with label (x, 1) from (c, d) to
(cx, dx) is in C. Since xΦ is one-to-one, these values for dx are distinct and
cx ∈ IC .

Since IC is a right ideal in M1, we will have that IC = M1 if we show
that 1 = 1M1 ∈ IC . Suppose that ĉ ∈ IC with LX1(ĉ) ≥ NF. Then, as
above, (ĉ, 1) ∈ C and (ĉ, d) ∈ C for every d ∈M2. There are infinitely many
d ∈ M2 with LX2(d) ≥ `N,ĉ. For each of these, (ĉ, dĉ) ∈ C and there is the
oblique path from (1, d) to (ĉ, dĉ) in C. If IC is infinite, we always have
some ĉ ∈ IC with LX1(ĉ) ≥ NF. Suppose that instead IC is finite. Then,
since IC is a subsemigroup of M1, it must contain an idempotent e. Then
there are infinitely many d ∈M2 with (e, d) ∈ C hence infinitely many such
d with both LX2(d) ≥ `N,e and LX2(d

e) ≥ kN,e. For the latter, we use
the hypothesis that eΦ is one-to-one. Since LX2(d) ≥ `N,e, for each such
d, the oblique path from (e, d) to (e · e, de) = (e, de) is in C for each of
these infinitely many d. Since LX2(d

e) ≥ kN,e, the oblique path from (1, d)
to (e, de) is also in C for each of these infinitely many d and we see that
1M1 ∈ IC .

We want to show that, for any infinite component C of Γ − F, that
1M2 ∈ JC , and that JC is a right ideal in M2 and hence is all of M2. We
now know that IC = M1, so there are infinitely many elements c ∈ IC with
LX1(c) ≥ NF and for each such c an element dc ∈ M2 with (c, dc) ∈ C.
For each such c, the vertical path from (c, 1) to (c, dc) is in C, so we have
infinitely many different c with (c, 1) ∈ C and 1 ∈ JC . Suppose that d ∈ JC
and that x ∈ X2. Then for infinitely many c ∈ M1, we have (c, d) ∈ C, and
thus infinitely many such c with LX1(c) ≥ NF. For those c with LX1(c) ≥ NF,
we can be sure that the edge labelled (1, x) from (c, d) to (c, dx) is in C, so
(c, dx) ∈ C for infinitely many c and dx ∈ JC .

Example 17. In this example, we want to show that, in the previous theo-
rem, the hypothesis that Φ has its range in Monic(M2) rather than just in
End(M2) is necessary. We also see that the second conclusion of the Layer
Lemma need not hold if T is an infinite monoid. Let A = 〈a〉 and B = 〈b〉
be free monogenic monoids and M = A nΦ0 B. Here aΦ0 = θB where
bmθB = 1B for every non-negative integer m, hence θB is not one-to-one.

Then M has monoid presentation 〈a, b : ba = a〉 and every element of
M can be represented by a unique word in the form anbm for non-negative
integers m,n. We illustrate the right and left Cayley digraphs for AnΦ0 B
in Figure 3. We remark that

Er(AnΦ0 B) = E`(AnΦ0 B) = Er(B oΦ0 A) = E`(B oΦ0 A) =∞.

Since Mop ≈ B oΦ0 A, we see that E`(B oΦ0 A) = Er(M) = ∞. This
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Figure 3. Left and right Cayley digraphs for A nΦ0 B

shows that, we won’t necessarily have E`(B oΦ0 A) = 1, as in Theorem 13,
if Φ = Φ0 and we won’t necessarily have E`(B oΦ0 A) = E`(A), as in the
Layer Lemma, if B is infinite.

Example 18. Our initial impression was that, with the hypotheses of the
previous theorem, we should also be able to prove that E`(M1 nΦ M2) =
Er(M2 oΦ M1) = 1. This is not valid. Here, we give an example where
Φ : M1 → Monic(M2) is a monoid homomorphism but E`(M1 nΦ M2) =
Er(M2 oΦ M1) =∞.

Let M1 = 〈a〉 be the free cyclic monoid with generator a. Let M2 be
the monoid having monoid presentation 〈b, t : bt = t, t2 = t〉. Then
one can show that every element of M2 has a unique representative of the
form tεbn where ε has value 0 or 1 and n is a nonnegative integer. We
want to define a semidirect product, M1 nΦM2, so we write functions to the
right of their arguments. Define α : M2 → M2 by bnα = bn and (tbn)α =
tbn+1. Then α is a monoid homomorphism and is one-to-one. Since M1 is
free on a, we obtain a monoid homomorphism Φ : M1 → Monicr(M2) by
setting aΦ = α. Then the semidirect product M = M1 nΦ M2 has elements
{(am, tεbn) : m ≥ 0, n ≥ 0, ε = 0, 1} and is generated by (a, 1), (1, b) and
(1, t). If we identify (a, 1), (1, b) and (1, t) with a, b and t, respectively, then
M has a monoid presentation 〈a, b, t : ta = atb, ba = ab, bt = t, t2 = t〉
and every element of M has a unique representative of the form amtεbn

with m ≥ 0, n ≥ 0, ε = 0, 1. Write just Γ for the left Cayley digraph
`Γ({a, b, t},M). We want to show that e∞(Γ) =∞. It is easily verified that

a · (amtεbn) = am+1tεbn, b · (ambn) = ambn+1,

b · (amtbn) = amtbn, t · (ambn) = amtbm+n and t · (amtbn) = amtbn.

We thus account for all of the edges in Γ. To show that e∞(Γ) = ∞, it
suffices to exhibit, for every natural number k, a finite subset Fk ⊆ VΓ such
that |C∞(Γ− Fk)| > k.
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Let Fk = {amtbn : 0 ≤ m ≤ k, 0 ≤ n ≤ k}. For 0 ≤ i ≤ k, let Ci
be the full subgraph of Γ on the set {amtbi : m > k}. We will be done
when we show that each Ci is a component of Γ − Fk. (There is one more
component of Γ − Fk, but we don’t need to concern ourselves with it.) Ci
is connected since we have an edge labelled by a from amtbi to am+1tbi for
each m > k. For a vertex v = amtbi in Ci, the other edges having v as an
initial vertex are loops labelled by b and t. Examining the account of the
edges in Γ in the previous paragraph, we see that the only other edges in Γ
having a vertex v = amtbi as a terminal vertex are edges with label t from
ambn to amtbm+n. But such an edge cannot have its terminal vertex in Ci
if m+ n = i ≤ k and m > k.

Corollary 14. Suppose that Gi is a finitely generated infinite group for
i = 1, 2. If Φ : G1 → Aut(G2) is a group automorphism, then the group
semidirect product G2 oΦ G1 has one end.

Proof. Group automorphisms are endomorphisms and are one-to-one.

Corollary 15. Suppose, for i = 1, 2, that Mi is an infinite monoid with a
finite set of monoid generators Xi. Let M = M1 ×M2 be the monoid direct
product. Then Er(M) = E`(M) = 1.

Proof. The direct product is a special case of Theorem 13 where Φ takes
each element of M1 to the identity automorphism of M2.

Example 19. Let m,n, m̂, n̂ be arbitrary natural numbers. We construct a
monoidM having a submonoid J such that Er(M) = m̂, E`(M) = n̂, Er(J) =
m and E`(J) = n. Let J = Jn,m be the monoid of Example 10 and let P
be the direct product of J with any infinite monoid of the form S1 for some
semigroup S. Then P contains a submonoid which is isomorphic to J , and
P , like J and S1, contains no nontrivial left or right units. By the corollary,
Er(P ) = E`(P ) = 1. For any natural number k and generator y, let T (y, k)
be the the monogenic monoid having monoid presentation 〈y : yk = yk−1〉.
The monoid M = T (u, m̂) oΦ0 (T (v, n̂) oΦ0 P

op)op contains a submonoid
isomorphic to P . With two applications of the Layer Lemma, we have
Er(M) = m̂ and E`(M) = n̂.

4. Subsemigroups of free semigroups

Our principal results in this section are about the number of ends of
subsemigroups of free semigroups. Theorem 18 says that every commutative
subsemigroup of a free semigroup has one end. Theorem 20 says that every
finitely generated noncommutative subsemigroup of a free semigroup has
infinitely many ends. The analogous results for submonoids of free monoids
follow immediately by adjoining the empty word. The next two lemmas will
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be used in the proof. We regard the first lemma as elementary and well-
known. The group versions in [6, Exercise 1.4.6] and [7, Proposition I.2.17]
are easily modified to obtain the semigroup version.

Lemma 16. Suppose that F is the free semigroup on the alphabet A and
that u, v ∈ F . If uv = vu, then there is an element w ∈ F and natural
numbers m,n such that u = wm and v = wn.

Lemma 17. If S is any subsemigroup of the additive semigroup N of natural
numbers, then E`(S) = Er(S) = 1.

Proof. Let S be a subsemigroup of the additive semigroup N. Since S is
commutative, it is clear from Proposition 10 that we must have E`(S) =
Er(S) when these are defined. Since we have only defined E`(S) and Er(S) for
finitely generated semigroups S, we need to show that S is finitely generated.

If all of the elements of S are divisible by some natural number d > 1,
assume that d is the largest natural number dividing all of the elements of
S and define Ŝ by Ŝ = {s/d : s ∈ S}. Then Ŝ is a subsemigroup of
N which is isomorphic to S. We can replace S by Ŝ and assume that the
greatest common divisor of the set of all elements of S is 1. It is easy to
see, using elementary number theory, that S then contains all but finitely
many natural numbers. If we write n0 − 1 for the greatest natural number
that is not in S, then we may write S = X0 ∪ {n ∈ N : n ≥ n0} for
some finite set X0 ⊆ N. We then see that S is generated by the finite set
X = X0 ∪ {n ∈ N : n0 ≤ n < 2n0}. Write Γ for Γr(S,X).

Now let F be any finite subset of vertices of Γ, let m be the largest
element in F and choose any k ∈ N which satisfies m < kn0. Then the
set C = {n : n ≥ (k + 1)n0} is an infinite subset of Γ − F having a finite
complement in N, so we will be done when we show that C is contained
in the component of Γ − F which contains kn0. For an arbitrary element
n ∈ C, write n = qn0 + r, where 0 ≤ r < n0 and q ≥ k+ 1. Then we have a
path of length q− k from kn0 to n in Γ− F having 1 edge labeled by n0 + r
and q − k − 1 edges having label n0.

Theorem 18. If S is a commutative subsemigroup of a free semigroup, then
E`(S) = Er(S) = 1.

Proof. Using Lemma 16, it can be shown that any set of pairwise commuting
elements in a free semigroup must consist of powers of a single word. Hence
S is isomorphic to a subsemigroup of N and the conclusion follows from
Lemma 17.

Lemma 19. Let F be the free semigroup on the alphabet A and let S be a
finitely generated subsemigroup of F with finite set of generators X. Let Γ
be the right Cayley graph Γr(S,X). If F is a finite subset of S and w is a
element of S −F, write Cw for the component of Γ−F containing w. If the
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length, LA(w), of w on the alphabet A is minimal among elements of S−F,
then w is a prefix of every vertex in Cw.

Proof. Let u be an arbitrary element of Cw. We use induction on the length
of a path in Cw from w to u to show that w is a prefix of u. The base case,
where u = w is obvious. Suppose that u 6= w and write p for the vertex
before u on a path from w to u in Cw. By the induction hypothesis, w is a
prefix of p and p = wp′ for some, possibly empty, word p′. If u = px = wp′x
for some generator x ∈ X, we are done. If wp′ = p = ux, then by the
minimality of LA(w) among elements of S−F, we must have LA(w) ≤ LA(u)
and again w is a prefix of u.

Theorem 20. If S is a finitely generated subsemigroup of a free semigroup
and S is not commutative, then E`(S) = Er(S) =∞.

Proof. As in Lemma 19, we write F for the free semigroup on the alphabet
A, write X for some finite set of generators for the subsemigroup S of F ,
and Γ for the right Cayley graph Γr(S,X). We have hypothesized that S is
not commutative and we choose two elements x, y ∈ S such that xy 6= yx.
It suffices to exhibit, for every natural number n, a finite subset F of S such
that Γ−F has at least n+1 infinite components. Let n ∈ N be arbitrary. For
integers 0 ≤ i ≤ n, define the element wi ∈ S by wi = xiyxn−i. All of the
wi have the same length, nLA(x) + LA(y). For notational convenience, we
write ` for this length. By the cancellative properties in the free semigroup
S, all of the wi are distinct. Let F = {s ∈ S : LA(s) < `}. By construction,
each wi must have minimal length in S − F and using Lemma 19, we see
that elements wi must occur in distinct components of Γ − F. It is easily
seen that these components are infinite.

We thank the referee very much for the current treatment in this final
section. The proofs are much briefer and cleaner than our original proofs.
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