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Abstract. We show that the semigroups Sk,` having semigroup presentations 〈a, b :

abk = b`a〉 are residually finite and finitely separable. Generally, these semigroups
have finite separating images which are finite groups and other finite separating
images which are semigroups of order-increasing transformations on a finite partially
ordered set. These semigroups thus have vastly different residual and separability
properties than the Baumslag-Solitar groups which contain them.

0: Introduction and Notation

Let k and ` be nonnegative integers. Throughout, we will write Sk,` for the
semigroup having semigroup presentation 〈a, b : abk = b`a 〉. We regard these
semigroups as being, in some respects, analogous to the groups Gk,` having group
presentations Gp〈a, b : abk = b`a 〉. The groups Gk,` are generally referred to
as Baumslag-Solitar groups. Since the Baumslag-Solitar groups have one-relator
presentations, it has long been known, by a theorem of Magnus, [15], that they
have solvable word problems. The Baumslag-Solitar groups are HNN-extensions
over the integers, so brief modern proofs that they have solvable word problems
follow from Britton’s Lemma. By a theorem of Baumslag and Solitar, [3], many
of the Baumslag-Solitar groups are non-hopfian and hence are not residually finite
[16]. For a more recent account of Baumslag-Solitar groups, see also [2].

When k ≥ 1 and ` ≥ 1, it is known by a theorem of Adjan, [1, Section II, Theorem
3], that the natural homomorphism from Sk,` to Gk,` is an embedding, and hence
the presentations given for Sk,` also have solvable word problems. Moreover, [1,
Section II, Theorem 1], a left-cancellation law holds in Sk,` provided that ` ≥ 1
and a right-cancellation law holds in Sk,` provided that k ≥ 1. In Section 1, we will
give direct explicit solutions of the word problem for the semigroups Sk,` (even in
the fairly simple cases where k and/or ` are 0). Later, we will outline an alternate
proof of the cancellation laws.

When A is a set, regarded as an alphabet of letters, we will use A+ to denote
the free semigroup of nonempty words on A. The free monoid, A∗ on A is the set
of all words on A, including the empty word. We will write 1 for the empty word.
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When the semigroup S is given by a semigroup presentation 〈A : R〉, write ρ for the
congruence on A+ that is generated by R. Then the elements of S are equivalence
classes [w]ρ or [w] of words w from A+. We will write s = s′ or [w] = [w′] to indicate
equality of elements of the semigroup S and use w ≡ w′ to indicate equality of words
in the free semigroup A+ or the free monoid A∗. For a word w from A+, we will
write |w| for the length of w as a word on the letters of the alphabet A. If x ∈ A
is a letter, we will write |w|x for the number of occurrences of x in w.

Given a semigroup presentation 〈A : R 〉, the membership problem for the pre-
sentation is to decide, given a word w on A and a finite set {w1, w2, . . . , wn} of words
on A, whether or not w is equivalent, modulo the congruence on the free semigroup
on A generated by R, to an element of the subsemigroup generated by the image of
{w1, w2, . . . , wn}. In Section 2, we give a brief proof that the membership problem
is always solvable for the semigroups Sk,`.

A semigroup S is residually finite if for any pair s, s′ of distinct elements of
S, there is a finite semigroup Q and a semigroup homomorphism Φ of S onto Q
such that Φ(s) 6= Φ(s′). Equivalently, S is residually finite if and only if it is a
subdirect product of finite semigroups. (See the analgous proof for groups in [21]
or the analogous exercise for monoids in [14].)

A semigroup S is finitely separable, see e.g. [8], [9], if for every subsemigroup
M of S and every element s ∈ S−M, there is a finite semigroup Q and a semigroup
homomorphism Φ of S onto Q such that Φ(s) /∈ Φ(M).

A semigroup S has finitely separable subsets, see [8], [9], if for every subset
M of S and every element s ∈ S−M, there is a finite semigroup Q and a semigroup
homomorphism Φ of S onto Q such that Φ(s) /∈ Φ(M). It is easily observed that a
semigroup having finitely separable subsets is finitely separable and residually finite.
We will denote by S1 the monoid obtained from a semigroup S by adjoining a new
unit 1 to S. In [9], Golubov has characterized semigroups with finitely separable
subsets as follows: for elements x and y of the semigroup S, define [y : x] to be
{(u, v) ∈ S1 × S1 : uxv = y}. Then S is a semigroup having finitely separable
subsets if and only if for every fixed element y ∈ S there are only a finite number
of distinct sets [y : x] as x ranges over all elements of S. In Section 2, will use this
to show that the semigroups Sk,` have finitely separable subsets. In Section 3, we
will strengthen this result by showing that we can generally require that the finite
images of Sk,` have additional properties.

For any set X, the full transformation semigroup T X on X is the set of functions
X → X, with operation composition of functions. T X is a monoid. When X is a
finite set with n elements then T X has order nn. If (P , 4 ) is a partially ordered
set, we will say that a transformation f ∈ T P is order-increasing if x 4 xf for
every x ∈ P. Order-increasing transformations are also called extensive transfor-
mations. It is known that a finite semigroup S has a faithful representation by
order-increasing transformations if and only if Green’s relation R on S is the trivial
relation. See Chapter 4 of Pin’s book, [18], Varieties of Formal Languages, for a
proof of the corresponding result for monoids. As usual, x 4 y means that either
x = y or else x ≺ y, and we may describe the partial ordering on P either by the
relation 4 on P or else by the relation ≺ on P .

An element 0 in a semigroup S is a zero element if 0 · s = s · 0 = 0 for every
s ∈ S. Such an element is unique. If S is a semigroup with a zero element 0, then
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an element s ∈ S is nilpotent if sn = 0 for some natural number n. A semigroup
S with a zero element is nilpotent if every element of S is nilpotent. It is not
difficult to prove that every finite nilpotent semigroup is R-trivial and hence has
a faithful representation as a semigroup of order-increasing transformations on a
finite partially ordered set.

We begin Section 3 by proving the following proposition (Proposition 3.1). If
the semigroup S has a presentation 〈A : R〉 and s ∈ S is represented by only a
finite number of words on the alphabet A, then there is a homomorphism Φ of S
onto a finite nilpotent semigroup such that Φ(s) 6∈ Φ(S − s). As a first corollary
of this proposition, provided that neither k nor ` is 0, the semigroups Sk,` have
finitely separable subsets where we can take the finite images to be finite nilpotent
semigroups.

A word on the alphabet A is an R-word, with respect to the semigroup pre-
sentation 〈A : R〉, if it is one of the words in a pair from R. A piece, relative
to the presentation, is a word which occurs as a subword of R-words in at least
two distinct ways. For n ≥ 1, the presentation satisfies the small overlap hypoth-
esis C(n) if no R-word can be written as a product of fewer than n pieces. In
his thesis, [19], John Remmers proved that if a semigroup S has a finite presenta-
tion 〈A : R〉, which satisfies the small overlap hypotheses, C(3), then the word
problem for the presentation is solvable. Actually, he stated and proved a much
stronger result which has the following easy consequence: for any element s ∈ S,
there are only a finite number of words on the alphabet A which represent s in this
presentation. For a published version of this work, see Theorems 5.2.14 and 5.2.15
in Peter Higgins’ book [10]. Using Remmers’ geometric method, Cummings and
Goldstein, [6], proved that the word problem is also solvable for finite semigroup
presentations which satisfy the small overlap hypothesis C(2) and also a certain
semigroup hypothesis T (4). As the reviewer of their paper points out, they actu-
ally prove a conclusion that is strong enough to obtain the same consequence that
is noted above for Remmers’ result. As a second corollary of Proposition 3.1, every
semigroup which has a finite presentation satisfying either C(3) or else both C(2)
and T (4) has finitely separable subsets and we may take the finite images to be
nilpotent semigroups.

In Section 4, we prove that, for k and ` both at least 1, Sk,` is residually a finite
group: by this we mean that given any two distinct elements s, s′ ∈ Sk,` there is
a finite group G and a semigroup homomorphism Φ from Sk,` onto G such that
Φ(s) 6= Φ(s′).

1: Normal Forms for Sk,`

Example 1.1. Let u be the element of S2,3 which is represented by b5ab5a2b4ab4.
If we use the relation ab2 = b3a to push b3’s to the right, we shorten the length of
the word at every step and end with (b2a ·ba · ba ·a) · b8. If we use ab2 = b3a to push
b2’s to the left, we lengthen the word at every step and end with b44 · (a · ab · a · a).

The next two lemmas include definitions for explicit normal forms for elements
of Sk,`. We will need these normal forms in later sections of the paper. Readers
familiar with either the van der Waerden trick or with string-rewriting techniques
will regard the proofs of these lemmas as obvious.
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Lemma 1.2: Right-hand normal forms for Sk,`. Suppose that ` ≥ 1.
(1) Every element s of Sk,` can be written as [wbn] where n ≥ 0 and w is a

word on the set W` = {a, ba, b2a, . . . , b`−1a}. (We may have that n = 0 or that w
is the empty word, but not both of these for any element s of the semigroup Sk,`.)

(2) Let NR = {wbn : n ≥ 0, w is a word on W` and wbn is nonempty }.
Then distinct elements of NR represent distinct elements of Sk,`. We will call the
element of NR which represents s ∈ Sk,`, the right-hand normal form for s.

(3) Suppose that s is an element of Sk,`, that u is the right-hand normal form
for s and that v is any other word on the alphabet {a, b} which also represents s in
Sk,`. Then |u| < |v| if k < `, |u| = |v| if k = `, and |u| > |v| if k > `.

Proof. (1) Observe first that [bq`a] = [abqk] in Sk,` for any natural number q. Let u
be a word on {a, b} which represents s in Sk,`. We prove by induction on |u|a that [u]
is equal in Sk,` to [v] where v ≡ wbn is a word in the desired form. If |u|a = 0, then
u ≡ bn for some n > 0 and we are done. If |u|a > 0, then we may write u ≡ u′abn2

for some u′ and n2, and we are again done if u′ is the empty word. If u′ is not
empty, by the induction hypothesis, we have that [u′] is equal in Sk,` to [w′bn1 ] where
n1 ≥ 0 and w′ is a word on {a, ba, . . . , b`−1a}. Divide n1 by ` to write n1 = q` + j1

where 0 ≤ j1 < `. Then [u] = [w′bn1abn2 ] = [w′bj1bq`abn2 ] = [(w′ · bj1a) · bqk+n2 ].

(2) We adapt a well-known argument of van der Waerden [22] to show that
distinct elements of NR represent distinct elements of Sk,`. Write NR∗ for NR∪
{1} where 1 is the empty word, and let T NR∗ be the full transformation semigroup
on NR∗. We want to define transformations α and β on NR∗. First, 1α = a
and 1β = b. If wbn is a nontrivial element of NR∗, write n = q` + j, where
0 ≤ j < ` and let wbnα = (w · bja)bqk. Define β at wbn by wbnβ = wbn+1. Let
S be the subsemigroup of T NR∗ that is generated by α and β. It is routine to
verify that αβk = β`α as elements of S , so we have a homomorphism Φ : Sk,` → S 
defined by Φ([a]) = α and Φ([b]) = β. An easy argument by induction verifies that
1Φ([wbn]) ≡ wbn. From this, we may conclude that Φ is an isomorphism and that
every element of Sk,` has a unique representative in NR.

(3) This follows easily using the same induction on |u|a as in part (1) of this
proof.  

Lemma 1.3: Left-hand normal forms for Sk,`. Suppose that k ≥ 1.
(1) Every element s of Sk,` can be written as [bnw] where n ≥ 0 and w is a

word on the set Wk = {a, ab, ab2, . . . , abk−1}. (We may have that n = 0 or that w
is the empty word, but not both of these for any element s of the semigroup Sk,`.)

(2) Let NL = { bnw : n ≥ 0, w is a word on Wk and bnw is nonempty }. Then
distinct elements of NL represent distinct elements of Sk,`. We will call the element
of NL which represents s ∈ S, the left-hand normal form for s.

(3) Suppose that s is an element of Sk,`, that u is the left-hand normal form for
s and that v is any other word on the alphabet {a, b} which also represents s in
Sk,`. Then |u| > |v| if k < `, |u| = |v| if k = `, and |u| < |v| if k > `.

Proof. This result and its proof are dual to Lemma 1.2.  

We can solve the word problem for 〈a, b : abk = b`a〉 using Lemma 1.2 when
` > 0 or by using Lemma 1.3 when k > 0. If k = ` = 0, then S0,0 = {a, b}+.
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We can slightly strengthen Lemma 1.2 (and dually for Lemma 1.3) to show that
if k < ` and v is an arbitrary word on {a, b} which represents s ∈ S, then there
is a sequence of elementary transitions from v to the right-hand normal form for
s which shortens the length of the representative for s at every transition. If two
words, v1 and v2 represent the same element of S, then by reducing both to their
common right-hand normal form, we find a derivation for their equality which has
length at most |v1| + |v2|. In particular, we see that the Dehn function is in this
case at most linear. When k = `, it is not hard to see that the Dehn functions are
bounded by quadratic functions.

2: Sk,` Has Finitely Separable Subsets

Lemma 2.1. Suppose that ` > 0 and that u1 and u2 are words on the alphabet
{a, b} with [u1] = [u2] in Sk,`. If u1 ≡ bn1av1 and u2 ≡ bn2av2 with 0 ≤ n1 < ` and
0 ≤ n2 < `, then n1 = n2 and [v1] = [v2] as elements of Sk,`.

Proof. Let w1 be the right-hand normal form for v1 and w2 be the right-hand normal
form for v2. By the restrictions on n1 and n2, bn1aw1 is the right-hand normal form
for u1 and bn2aw2 is the right-hand normal form for u2. Since [u1] = [u2] in Sk,`,
these normal forms are the same and we have that n1 = n2 and that w1 ≡ w2. By
the definition of the normal forms, we have that [v1] = [w1] and [v2] = [w2] in Sk,`.
 

Lemma 2.2. Let u and v be words on the alphabet {a, b} such that [u] = [v] in
Sk,`. Then |u|a = |v|a.

If 0 < k ≤ `, then |u|b (k/`)
|u|a ≤ |v|b ≤ |u|b (`/k)

|u|a .

If 0 < ` ≤ k, then |u|b (`/k)
|u|a ≤ |v|b ≤ |u|b (k/`)

|u|a .

Proof. If w → w′ is any elementary transition, replacing an occurrence of abk by
b`a or vice versa, then |w|a = |w′|a. It follows that |u|a = |v|a.

By symmetry, it will suffice, for the rest, to prove that |u|b(k/`)|u|a ≤ |v|b when
0 < k ≤ `. We prove this by induction on |u|a. If |u|a = |v|a = 0, then u ≡ v ≡ bn,
for some n > 0 and we are done, with equality in this case. Assume then that
|u|a > 0 and write u ≡ bn1au′ and v ≡ bn2av′. For i = 1, 2 divide ni by ` to find
ni = `qi + ji where 0 ≤ ji < `. Then [u] = [bj1abkq1u′] in Sk,` and [v] = [bj2abkq2v′]
in Sk,`. By Lemma 2.1, we see that j1 = j2 and [bkq1u′] = [bkq2v′] in Sk,`. Each of
this last pair of words has |u|a − 1 occurrences of a, so we may apply the induction
hypothesis to conclude

|bkq1u′|b (k/`)
|u|a−1 ≤ |bkq2v′|b or (kq1 + |u′|b) (k/`)

|u|a−1 ≤ kq2 + |v′|b.

Then |u|b(k/`)|u|a

=(`q1 + j1 + |u′|b)(k/`)|u|a = (kq1 +
k

`
j1 +

k

`
|u′|b)(k/`)|u|a−1

≤(kq1 + j1 + |u′|b)(k/`)|u|a−1 ≤ j1 + (kq1 + |u′|b)(k/`)|u|a−1

≤j1 + kq2 + |v′|b ≤ j1 + `q2 + |v′|b = |v|b.  
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If s ∈ Sk,` and u is any word on the alphabet {a, b} which represents s, then we
will define |s|a to be |u|a. By the first conclusion of Lemma 2.2, this is unambiguous.

The next result is a known consequence of Theorem 2.5, below. The proof here
gives a direct, explicit solution of the membership problem. For both Theorem
2.3 and Theorem 2.5, the most difficult cases are when 0 = k < ` or 0 = ` < k.
For these difficult cases of Theorem 2.3, the membership problem is known to be
solvable in polynomial time by a result of R.V. Book, [4, Theorem 4.2], since the
string-rewriting systems with rules b`a → a or abk → a are convergent and monadic.
The author thanks F. Otto for bringing Book’s paper to his attention.

Theorem 2.3. The membership problem is solvable for 〈a, b : abk = b`a〉.

Proof. Let v be a word on {a, b} which represents some arbitrary element of Sk,`

and let U = {u1, u2, . . . , uN} be a set of words representing the generators for some
finitely generated subsemigroup of S. We need to exhibit an algorithm which will
decide whether or not the element represented by v is in this subsemigroup.

If k = ` = 0, then Sk,` is the free semigroup on {a, b}. Let

W =

{
ui1ui2 . . . uiM : ui ∈ U and

M∑

m=1

|uim | = |v|
}

.

Then W is a finite set and we can examine whether or not any element of W is v.

If 0 = k < `, write U = U1 ∪ U2, where |ui|a = 0 if ui ∈ U1 and |ui|a > 0 if
ui ∈ U2. If U1 is empty, let

W =

{
ui1ui2 . . . uiM : ui ∈ U and

M∑

m=1

|uim |a = |v|a
}

.

If v is equal in Sk,` to some product of elements of U , then this product must
occur in W. Since W is finite, we can calculate the right-hand normal form for
each element of W and check whether or not one of these is also the right-hand
normal form for v. If U1 is nonempty, rearrange the order of U , if necessary so that
U1 = {u1, u2, . . . , uP } = {bn1 , . . . , bnP } and U2 = {uP+1, . . . , uN}. Let

B =
{

uj1
1 uj2

2 . . . ujP

P : 0 ≤ ji < ` for 1 ≤ i ≤ P
}

=
{

b
∑P

1 jini : 0 ≤ ji < ` for 1 ≤ i ≤ P
}

.

Since [b`a] = [a], we observe that if z is any word in the subsemigroup of {a, b}+

generated by the words U1 and u is any nonempty word on U2, then there is a word
z′ in B such that [zu] = [z′u] in Sk,`. Write v in its right-hand normal form as wḃn

where n ≥ 0 and w is a word on {a, ba, . . . , b`−1a}.

Let W =

{
u′

i1ui1u
′
i2ui2 . . . u′

iM
uiM bnj1 bnj2 . . . bnjR :

u′
i ∈ B, ui ∈ U2,

M∑

m=1

|uim |a = |v|a and

R∑

r=1

njr ≤ n

}
.
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If v is equal in Sk,` to some product of elements of U , then such a product must
occur in W . Since B is finite, W is also finite and we can again compare the
right-hand normal form for v to the right-hand normal forms for elements of W.

The case where 0 = ` < k is similar to the previous case.

Assume next that 0 < k ≤ `. In this case, define W by

W =

{
ui1ui2 . . .uiM : ui ∈ U ,

M∑

m=1

|uim |a = |v|a and

M∑

m=1

|uim |b ≤ |v|b(`/k)|v|a
}

.

Then we know by Lemma 2.2 that if v is equal in Sk,` to some product u of elements
of U, this product must occur in W. Since W is finite, we can calculate the right-
hand normal form for each element of W and check whether or not one of these is
also the right-hand normal form for v.

A similar argument works if 0 < ` ≤ k.  

Recall that for elements y and x of a semigroup S, the set [y : x] is defined by
[y : x] = {(u, v) ∈ S1 × S1 : uxv = y}.

Theorem 2.4, Golubov, [9]. In order that the semigroup S have finitely separable
subsets, it is necessary and sufficient that for every element y ∈ S, there are only
a finite number of distinct sets [y : x] as x ranges over all elements of S.  

Theorem 2.5. The semigroups Sk,` have finitely separable subsets.

Proof. By the theorem of Golubov Theorem just cited, it will suffice to show that
for each s ∈ Sk,`, there are at most a finite number of distinct sets [s : x].

If k = ` = 0, then S0,0 is the free semigroup on {a, b} and [s : x] is nonempty
only when x is a subword of s. If k > 0 and ` > 0, then we see by Lemma 2.2 that
there are only a finite number of words on {a, b} which represent s. If [s : x] is
nonempty, then x must be represented by one of the subwords of this finite set of
words. We see again that there can be only a finite number of elements x ∈ Sk,`

for which [s : x] is nonempty. For the remainder of the proof, we may assume by
symmetry that 0 = k < `.

Suppose first that s = [bn] for some n ≥ 1. Then [s : x] is nonempty only when

x = [bn′
] with 1 ≤ n′ ≤ n.

For any element z ∈ S0,` with |z|a > 0, we may write the right-hand normal
form of z as bjpa . . . bj2abj1abn where n ≥ 0 and 0 ≤ ji < ` for 1 ≤ i ≤ p. In

S0,`, multiplication takes the form [biqabiq−1a . . . bi1abi0 ] · [bi′pabi′p−1a . . . bi′1abi′0 ] =

[biqabiq−1a . . . bi1abrabi′p−1a . . . bi′1abi′0 ] where i0 and i′0 are arbitrary whole numbers,
but we may assume that other exponents on b are at most `−1 and that the exponent
r is obtained as the remainder when i0 + i′p is divided by `. Assume then that s

has right-hand normal form bjma . . . bj2abj1abn where m ≥ 1 and 0 ≤ ji < ` for
1 ≤ i ≤ m. If s = uxv, then we must have m = |u|a + |x|a + |v|a. We observe that
[s : x] can be nonempty only when |x|a ≤ |s|a = m. If [s : x] is nonempty and
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|x|a = m′, we write the right-hand normal form for x as bj′
m′ abj′

m′−1a . . . abj′
1abn′

if

m′ > 0 or as bn′
if m′ = 0. If [s : x] contains an element (u, 1) or an element (u, bt)

then we must have n′ ≤ n. Since m′ ≤ m and 0 ≤ j′i < ` for 1 ≤ i ≤ m′, there can
be only a finite number of different elements x such that [s : x] contains an element
(u, 1) or an element (u, bt). If every element (u, v) ∈ [s : x] has |v|a ≥ 1, divide n′

by ` to write n′ = q` + n′′ where 0 ≤ q and 0 ≤ n′′ < `. For i ≥ 0 define xi to be

bj′
m′ abj′m′−1a . . . abj′

1abn′′+i` (or bn′′+i` if m′ = 0). Then [s : x] = [s : xi] = [s : x0]
for i ≥ 0. Since there are only finitely many possible choices for x0, there can be only
finitely many different nonempty sets [s : x0] for which every element (u, v) ∈ [s : x0]
has |v|a ≥ 1.  

3: Semigroups Having Finitely Separable Subsets

Proposition 3.1. Suppose that 〈A : R〉 is a semigroup presentation for the semi-
group S, that ρ is the congruence on A+ generated by R and write [w] for the
ρ-congruence class of the word w ∈ A+. For s ∈ S, let Cs = { w′ ∈ A+ : [w′] = s}.
If Cs is a finite set, then there is a finite nilpotent semigroup Q and a homomor-
phism Φ from S onto Q such that Φ(s′) 6= Φ(s) whenever s′ ∈ S and s′ 6= s.

Proof. An element sd ∈ S1 is a left divisor of s if sds′d = s for some s′d ∈ S1. We
are not requiring left divisors to be proper or to be nontrivial, so 1 and s are left
divisors of s. Let As be the set of left divisors of s and let Ω be the set of elements
of S which are not left divisors of s. Let Xs = As ∪ {Ω}, so that the set Ω is an
element of the set Xs. If s = s1s2, then Cs1 and Cs2 must also be finite: if w1 ∈ Cs1

and w2 ∈ Cs2 , then w1w2 ∈ Cs. If sds′d = s, then sd must be represented in S by
one or more of the finitely many initial subwords of one or more of the finitely many
words in Cs. Thus Xs is finite, and the transformation semigroup T Xs is finite also.
We observe that Ω is nonempty.

For a letter ai ∈ A, define a transformation αi ∈ T Xs by Ωαi = Ω and for
sd ∈ As, sdαi = sd[ai] if sd[ai] is also a left divisor of s and sdαi = Ω, otherwise.

Let Q be the subsemigroup of T Xs that is generated by {αi : ai ∈ A }. Define
a semigroup homomorphism φ : A+ → Q by φ(ai) = αi. If v1 = v2 is an
arbitrary relation from the set R of relations for S, write ν1 and ν2 for φ(v1) and
φ(v2), respectively. We want to show that ν1 = ν2 so that φ induces a well-defined
homomorphism Φ : S → Q. Observe that Ων1 = Ω = Ων2. If sp is a left divisor
of s, then, by construction, spνi is either sp[vi] or else Ω depending upon whether
or not sp[vi] is also a left divisor of s. Since [v1] = [v2], we have that both spν1 and
spν2 have value sp[v1] = sp[v2] when this is a left divisor of s and both have value
Ω otherwise.

If w is any word on A whose length is greater than every word in Cs, then Φ([w])
is the zero element in Q. If

∏
αij is any element of Q, then for some sufficiently large

N , (
∏

aij )
N cannot be one of the finitely many words in Cs and hence (

∏
αij )

N

must be the zero element in Q.
Finally, observe that 1Φ(s) = s and that if s′ is some element of S that is distinct

from s, then either 1Φ(s′) = Ω, in the commonly occurring case where s′ is not a
left divisor of s, or else s′ is one of the left divisors of s and 1Φ(s′) = s′.  

The author thanks S. Margolis for formulating and and giving a brief proof of the
following result which should be regarded as a converse to Proposition 3.1. Suppose
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that A is a finite alphabet and that 〈A : R〉 is a semigroup presentation for the
semigroup S. If S is residually a finite nilpotent semigroup, then every nonzero
element of S has a finite congruence class for the congruence generated by R.

We can define a very natural partial order on the set As of left divisors of s by
s1 ¹ s2 if and only if s1 is a left divisor of s2. It follows easily from the finiteness
of Cs that ¹ is antisymmetric. We extend this partial order to Xs by taking Ω to
be the greatest element and observe that all of the transformations αi are order-
increasing.

Let Γ be the right Cayley graph of S1 with respect to the generating set A. Then
Xs can be obtained from the set of vertices in Γ by collapsing the set Ω to a single
point. The partial order in the previous paragraph then follows from the natural
order on Γ.

The proof of Proposition 3.1 works equally well if one replaces the set As of
left divisors of s by the larger set of all divisors of s. Then Ω becomes the set of
elements of S which are not divisors of s. This Ω is a two-sided ideal in S and the
Rees quotient S/Ω is a finite nilpotent semigroup which separates the image of s
from the images of all other elements of S. One might reasonably argue that this
is a better way to prove the proposition, but this change will ruin the connection
with the right Cayley graph discussed in the previous paragraph.

If the set R of relations in Proposition 3.1 is finite and we know some word w in
the finite set Cs, then it is not difficult to see that we can effectively calculate all
of Cs and then use this to construct Xs and Q. Since we first fix s and hypothesize
only that the one set Cs is finite, we might construct this finite separating image
Q for s even when the presentation 〈A : R〉 has an unsolvable word problem.

When the set R of relations in Proposition 3.1 is the empty set and S is the free
semigroup on A, then each set Cs has exactly one element and the order ≺ on Xs

is actually a linear order. As one consequence of Proposition 3.1, we obtain new
proofs of well-known separability properties of free semigroups. Below, we state
additional consequences.

Corollary 3.2. Suppose neither k nor ` is 0. If s ∈ Sk,`, then there is a homo-
morphism Φ from Sk,` onto a nilpotent semigroup such that Φ(s) 6= Φ(s′) for any
s′ ∈ Sk,` that is distinct from s.

Proof. If s is an element of Sk,`, let u be any word on the alphabet {a, b} which
represents s. By Lemma 2.2 we have a bound on length |u′|a + |u′|b for all words u′

on {a, b} which represent s. Therefore, the set Cs of Proposition 3.1 is finite.  

In the introduction, we stated the definition for the small overlap hypotheses,
C(n). Following [6] and [11], we state a definition for the semigroup hypothesis,
T (4). Assume for the semigroup presentation, 〈A : R〉, that the set R is transitively
closed: that is, if w1 = w2 and w2 = w3 are both relations in R, then R also includes
the relation w1 = w3. We will use P as a symbol for the presentation 〈A : R〉, here.
Let Ā be a set disjoint from A but in one-to-one correspondence with A. The star
(or coinitial) graph, Pst, for the presentation P , is a graph having A ∪ Ā as its
vertex set. The edge set for Pst is the union of three sets: (1) m-edges: If the
segment aiaj occurs in any R-word, we include an edge between the vertices ai

and āj of Pst. (2) i-edges: If w1 = w2 is a relation in R, ai is the initial letter of
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w1, and aj is the initial letter of w2, then we include an edge in Pst between the
vertices āi and āj . We allow here the possibility that ai and aj are the same letter
of A and the resulting edge is a loop. (3) t-edges: If w1 = w2 is a relation in R, ai

is the final letter of w1, and aj is the final letter of w2, then we include an edge in
Pst between the vertices ai and aj . Again, this edge will be a loop if the two words
end in the same letter. Then the presentation P has the property T (4) provided
that every closed walk of length 3 in Pst either has all of its vertices in A or else
has all of its vertices in Ā. More generally, P has property T (k + 1) provided there
are no closed walks in Pst of length k′ for 3 ≤ k′ ≤ k having the form eγie

′γt where
e and e′ are m-edges, γi, if nonempty, is composed of i-edges, and γt, if nonempty,
is composed of t-edges.

Theorem 3.3, (Remmers, [19, 10]). Suppose that the semigroup S has a pre-
sentation, 〈A : R〉, which satisfies the small overlap hypothesis, C(3) and that δ is
a bound on the lengths of the R-words. If w1, w2 ∈ A+ are words that represent the
same element of S, then |w2| ≤ δ|w1|.  

Theorem 3.4, (Cummings and Goldstein, [6]). Suppose that the semigroup
S has a finite presentation, 〈A : R〉, which satisfies the small overlap hypotheses,
C(2) and T (4) and that δ is a bound on the lengths of the R-words. If w1, w2 ∈ A+

are words that represent the same element of S, then |w2| ≤ 2δ|w1|.  

Corollary 3.5. Suppose that the semigroup S has a finite presentation 〈A : R〉
which satisfies either the small overlap hypothesis C(3) or else the hypotheses C(2)
and T (4) and let s be some element of S. Then there is a homomorphism Φ from
S onto a nilpotent semigroup such that Φ(s) 6= Φ(s′) for any s′ ∈ S that is distinct
from s.

Proof. If s ∈ S, let w be a word on A which represents s. When the presentation
satisfies C(3), we see by the theorem of Remmers that every word in the set Cs of
Proposition 3.1 has length at most δ|w|. When the presentation satisfies C(2) and
T (4), we see by the theorem of Cummings and Goldstein that every word in Cs

has length at most 2δ|w|. Since the alphabet A is finite, we see that Cs is finite in
either case and the conclusion follows from Proposition 3.1.  

4 Sk,` Is Residually a Finite Group

Theorem 4.1. If k and ` are positive integers whose greatest common divisor is
1, then the semigroup Sk,` is residually a finite metabelian group.

Proof. Let s and s′ be distinct elements of Sk,`. If |s|a 6= |s′|a, let G be a finite
cyclic group with generator c whose order is greater than max{ |s|a, |s′|a }. Define
Φ : Sk,` → G by Φ([a]) = c and Φ([b]) = 1G. Then it is easily seen that Φ is

well-defined and that Φ(s) = c|s|a 6= c|s
′|a = Φ(s′).

For the rest of the proof, we will assume that |s|a = |s′|a = m for some m ≥ 0.
Let u and u′ be the right-hand normal forms for s and s′, respectively. Write
these as u ≡ bjma . . . bj2abj1abj0 and u′ ≡ bj′

ma . . . bj′
2abj′1abj′0 where 0 ≤ ji, j

′
i < `

for 1 ≤ i ≤ m and j0, j
′
0 ≥ 0. For an arbitrary right-hand normal form w ≡

bJM a . . . bJ2abJ1abJ0 where M = |w|a, 0 ≤ Ji < ` for 1 ≤ i ≤ M and J0 ≥ 0, define

the polynomial Pw of degree at most M by Pw(x) =
∑M

i=0 Jix
i.
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We want to show that the rational numbers Pu(k/`) and Pu′(k/`) are not equal.
We use induction on m and our claim is obvious when m = 0. When m > 0, define
right-hand normal forms v and v′ by u ≡ bjmav and u′ ≡ bj′

mav′, respectively. By
this construction, we have Pu(x) = jmxm + Pv(x) and Pu′(x) = j′mxm + Pv′(x).
Suppose then, for the sake of obtaining a contradiction, that Pu(k/`) = Pu′(k/`).

Then 0 = `m
(
Pu(k/`) − Pu′(k/`)

)
= (jm − j′m)km + `

( ∑m−1
i=0 (ji − j′i)`

m−i−1ki
)
.

Thus ` divides (jm − j′m)km. Since ` and k are relatively prime by hypothesis and
0 ≤ jm, j′m < `, we must have jm = j′m. Then Pv(k/`) = Pv′(k/`), so v = v′ by the
induction hypothesis and then u = u′. This contradicts our assumption that s and
s′ are distinct elements.

Let p be any prime which is relatively prime to both k and `. Write the nonzero
rational number Pu(k/`) − Pu′(k/`) in reduced form as pt · r

q , where r and q are

integers with r 6= 0, q > 0 and p is neither a factor of r nor a factor of q. We note
that q must be a factor of `m and that t ≥ 0. Let n be any natural number that is
greater than t. By our choice of n, we have that the integer `m

(
Pu(k/`)−Pu′(k/`)

)

is not equivalent to 0 modulo pn. We write Z pn for the ring of integers modulo pn.
We generally abuse notation by writing just c for the equivalence class, [c], in Z pn

of the integer c.

Since p is relatively prime to ` and k, using a standard result from elementary
number theory, see [17], there is an integer g with g` ≡ 1 mod pn and an integer
h with hk ≡ 1 mod pn. Let f be the unique natural number with gk ≡ f mod pn

and 0 < f < pn. It is then easy to see that f` ≡ k mod pn, so that f is in some
sense k/` in the ring of integers modulo pn and that f(`h) ≡ 1 mod pn, so that f
is an invertible element in this ring. Below, we will use the easy observation that
`mf i ≡ `m−iki mod pn for 0 ≤ i ≤ m.

Define 2×2 matrices α and β over the ring Z pn by α =

[
f 0
0 1

]
and β =

[
1 0
1 1

]
.

Then α and β are invertible matrices and generate a subgroup G of GL2(Z pn). It

is easily checked that βr =

[
1 0
r 1

]
for all r. Using our construction of f with

f` ≡ k mod pn, we also see that β`α =

[
f 0
k 1

]
= αβk. Thus, we have a well-

defined homomorphism Φ : Sk,` → G defined by Φ([a]) = α and Φ([b]) = β.

A routine induction on m shows that Φ(s) = Φ([u]) =

[
fm 0

Pu(f) 1

]
and that

Φ(s′) =

[
fm 0

Pu′(f) 1

]
. If Pu(f) ≡ Pu′(f) mod pn, then, 0 ≡ `m

(
Pu(f) − Pu′(f)

)

= `m
∑m

i=0(ji − j′i)f
i ≡

∑m
i=0(ji − j′i)`

m−iki = `m
(
Pu(k/`) − Pu′(k/`)

)
and this

contradicts our choice of n.

Routine calculations show that commutators in G have the form

[
1 0
r 1

]
for

some element r in Z pn and then that any two such commutators commute with
each other, so G is a metabelian group.  

The original proof of Theorem 4.1 was much longer and the author sincerely
thanks the anonymous referee for comments which have strengthened the conclu-
sion and greatly shortened the proof. Those familiar with the p-adic integers, will
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understand that the proof above is a self-contained version of the following much
shorter proof as outlined by the referee. Rather than using the normal forms for
s and s′ to choose a sufficiently large n, begin by embedding Sk,` into the general
linear group of 2 × 2 matrices over the rational numbers, replacing the f in the
definition of α by k/`. We still need to check that this is an embedding. Then,
with p relatively prime to k and `, the group generated by α and β embeds into
the general linear group of 2× 2 matrices over the p-adic integers, which is known,
see [7], to be residually finite.

We want to show that Sk,` is still residually a finite group if we remove the
hypothesis that k and ` are relatively prime in the last theorem. If d > 1, let Πd

be the monoid having monoid presentation Mon〈a, b : bd = 1〉. We will show in
Lemma 4.4 that Πd is residually a finite group. There is a natural homomorphism
from Skd,`d onto Πd and also a natural homomorphism from Skd,`d onto Sk,`. These
induce a natural homomorphism θ : Skd,`d → Sk,` × Πd where θ([u]) = ([u], [u])
for any word u on {a, b}. We want to show that θ is one-to-one in some important
cases. The following lemma will be useful.

Lemma 4.2. If ` ≥ 1, then the semigroup Sk,` is a left-cancellation semigroup. If
k ≥ 1, then the semigroup Sk,` is a right-cancellation semigroup.

Proof. Since the presentations for Sk,` have no left cycles when ` ≥ 1 and have
no right cycles when k ≥ 1 this follows immediately from well-known results of
Adjan [1]. For a geometric proof of these results of Adjan and related results, see
the paper by Remmers [20], the account of Remmers’ work given in Peter Higgins’
book [10], and the paper by Kashintsev, [13] .

We outline a reasonably short direct proof of this lemma. To prove that Sk,` is
a left-cancellation semigroup, define for [v] ∈ Sk,` a transformation λ[v] ∈ T Sk,` by
λ[v]([u]) = [vu]. It is easily seen that λ[a] is one-to-one and it will suffice to show
that λ[b] is also one-to-one. For this, we quickly see that λ[b]([u]) 6= λ[b]([u

′]) if
|u|a 6= |u′|a. If |u|a = |u′|a = m, but u 6= u′ then an induction on m shows that
λ[b]([u]) 6= λ[b]([u

′]).  

We will write GCD(m, n) for the greatest common divisor of two integers, m
and n. To distinguish between [u] as an element of Skd,`d, as an element of Sk,`, or
as an element of Πd, we will generally write s for [u] as an element of Skd,`d. Us-

ing pri((z1, z2, . . . , zn)) for the ith projection of an n-tuple z, we can then write
pr1((θ[u])) or pr1(θ(s)) for occurrences of [u] as an element of Sk,` and write
pr2((θ[u])) or pr2(θ(s)) for occurrences of [u] as an element of Πd.

Lemma 4.3. Define θ : Skd,`d → Sk,` ×Πd by θ([u]) = ([u], [u]) for any word u on
the alphabet {a, b}. Then θ is a well-defined homomorphism. If either GCD(k, d) =
1 or GCD(`, d) = 1, then θ is one-to-one.

Proof. By induction on n, it is easily seen that [b`na] = [abkn] in Sk,` for every
natural number n. In particular, [b`da] = [abkd] in Sk,`. Since [b`d] = [bkd] = 1 in
Πd, we have θ([b`da]) = ([b`da], [a]) = ([abkd], [a]) = θ([abkd]) and θ is well-defined.

We observe that if s is an element of any of the semigroups Skd,`d, Sk,` or Πd and
w and w′ are both words on the alphabet {a, b} which represent s as an element of
that semigroup, then |w|a = |w′|a, so we may define |s|a to be this common value.
When s ∈ Skd,`d, then |s|a = | pr1(θ(s))|a = | pr2(θ(s))|a.
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Suppose that s and s′ are distinct elements of Skd,`d. If |s|a 6= |s′|a in Skd,`d,
then | pr1(θ(s))|a 6= |pr1(θ(s))|a and |pr2(θ(s))|a 6= | pr2(θ(s))|a so θ(s) 6= θ(s′).

We may thus assume that |s|a = |s′|a = M. If M = 0, then s = [bj0 ] and s′ = [bj′
0 ]

with j0 6= j′0. Then pr1(θ(s)) = [bj0 ] 6= [bj′0 ] = pr1(θ(s
′)) in Sk,`, so we may continue

with |s|a = |s′|a = M > 0. For this remaining case, we need to make use of the
hypothesis that either GCD(k, d) = 1 or that GCD(`, d) = 1. By symmetry, we will
assume that GCD(`, d) = 1 and then write elements of Skd,`d and Sk,` using their
right-hand normal forms. We will assume that s and s′ are distinct elements of
Skd,`d with |s|a = |s′|a = M > 0 and also pr2(θ(s)) = pr2(θ(s

′)) and we will prove
that we must then have pr1(θ(s)) 6= pr1(θ(s′)).

Write u ≡ bjM · · · bj2abj1abj0 for the right-hand normal form for s in Skd,`d

and u′ ≡ bj′
M · · · bj′

2abj′
1abj′

0 for the right-hand normal form for s′ in Skd,`d where
0 ≤ ji, j

′
i < `d for 1 ≤ i ≤ M. The assumption that we have pr2(θ(s)) = pr2(θ(s′))

is equivalent to the requirement that we have ji ≡ j′i mod d for 0 ≤ i ≤ M. Let
m be the largest i with 0 ≤ i ≤ M such that ji 6= j′i. If m = 0, then j0 6= j′0, but

ji = j′i for 1 ≤ i ≤ M . Let v ≡ bjM · · · bj2abj1a so that u ≡ vbj0 and u′ ≡ vbj′0 . If

we had pr1(θ(s)) = pr1(θ(s′)), then we would have [v][bj0 ] = [u] = [u′] = [v][bj′
0 ] in

Sk,`. Since Sk,` is a left-cancellation semigroup by Lemma 4.2, we would then have

[bj0 ] = [bj′
0 ] in Sk,` and j0 = j′0, a contradiction.

Assume then that m ≥ 1. By symmetry, we may assume that jm > j′m. In

this paragraph, define words v, u, and u′ by v ≡ bjM abjM−1 . . . abjm+1abj′m , u ≡
bjm−j′mabjm−1 . . . abj1abj0 and u′ ≡ abj′m−1a . . . abj′

1abj′
0 so that s = [v][u] and s′ =

[v][u′] either as elements of Skd,`d or as elements of Sk,`. By Lemma 4.2 again,
it will suffice to show that [u] 6= [u′] as elements of Sk,`. (If j′M = 0 and jM >
0, then m = M,s = [u], s′ = [u′] and v is vacuous, but generally, we want to
reduce to this situation.) As noted above, we are assuming that ji ≡ j′i mod d
for 0 ≤ i ≤ M. In particular, jm ≡ j′m mod d. To begin the reduction of u ≡
bjm−j′mabjm−1 . . . abj1abj0 to its right-hand normal form in Sk,`, we should divide
jm − j′m by ` to find a quotient q and a remainder r : jm − j′m = q` + r where
q ≥ 0 and 0 ≤ r < `. Then, in Sk,`, [u] = [brabqk+jm−1abjm−2 . . . bj1abj0 ]. We
continue by reducing bqk+jm−1abjm−2 . . . bj1abj0 to its right-hand normal form in
Sk,` and similarly reducing u′ to its right-hand normal form in Sk,`. If we show that
r > 0, then we are done, since the right-hand normal forms for [u] and [u′] in Sk,`

will have different exponents on the left-most b. Suppose, for the sake of obtaining
a contradiction, that r = 0. Then jm − j′m ≡ 0 mod ` and jm − j′m ≡ 0 mod d.
Since we assume here that GCD(`, d) = 1, we then have jm − j′m ≡ 0 mod (`d).
But 0 ≤ jm, j′m < `d, so this leads to jm = j′m, contradicting our choice of m.  

Lemma 4.4. Suppose d > 1 and that Πd is the monoid having monoid presentation
Mon〈a, b : bd = 1〉. If s and s′ are distinct elements of Πd, then there is a finite
group G and a homomorphism Φ from Πd onto G such that Φ(s) 6= Φ(s′).

Proof. Πd is the monoid free product of the infinite free cyclic monoid with gener-
ator a with the cyclic group having generator b of order d. Every element s in this
free product Πd can be uniquely represented by a word bjmabjm−1a . . . bj1abj0 where
0 ≤ ji < d for 0 ≤ i ≤ m = |s|a. If s and s′ are two elements of Πd with |s|a = m
and |s′|a = m′, choose n > max{m, m′} and let G1 = Gp〈a, b : an = 1, bd = 1〉.
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Then, both as a monoid, and as a group, G1 is the free product of the finite cyclic
group of order n having generator a and the finite cyclic group of order d having
generator b. There is a natural homomorphism from Πd onto G1 and the elements
s and s′ have distinct images σ and σ′ under this homomorphism. Then σ−1σ′ is
a nontrivial element of G1. Since G1 is a free product of two finite groups, G1 is a
residually finite group. See [5, Section 1.3]. If the group G is a finite image of G1

in which σ−1σ′ is nontrivial, then the images of σ and σ′ are distinct in G.  

Theorem 4.5. If K > 0 and L > 0, then the semigroup SK,L is residually a finite
group.

Proof. If K = L = 1, then SK,L is the free commutative semigroup on {a, b},
and every element of SK,L can be written uniquely in the form ambn. Given two
elements am1bn1 and am2bn2 choose p > max{m1, m2} and q > max{n1, n2}. Let G
be the direct product of two cyclic groups with orders p and q, respectively. Then
it is easy to see that the function taking a to a generator of the first direct factor
and b to a generator of the second direct factor is a homomorphism which separates
am1bn1 and am2bn2 .

If 1 ≤ K < L and GCD(K,L) = 1, then the result follows from Theorem 4.1
and the case where 1 ≤ L < K and GCD(K, L) = 1 is similar.

If K = L > 1, then SK,K embeds in the direct product S1,1×ΠK by Lemma 4.3.
If s and s′ are distinct elements of SK,K , then they have distinct images in either
S1,1 or else in ΠK . If they have distinct images in S1,1, then we can separate these
images in a finite group by the first paragraph of this proof. If they have distinct
images in ΠK , then we are done by Lemma 4.4.

The case where 1 ≤ L < K and GCD(K, L) = D > 1 is similar to the case
where 1 ≤ K < L and GCD(K, L) = D > 1 and we treat only the latter case. For
this case, let k = K/D and ` = L/D. Every prime factor of D must be relatively
prime to at least one of k or `. Let d1 be the product of all of the prime factors of
D which are relatively prime to k and let d2 be the product of the remaining prime
factors of D. Then d2 is relatively prime to ` and to `d1. If d1 = 1, then D = d2 is
relatively prime to ` and if d2 = 1, then D = d1 is relatively prime to k. In either
case, we have that the homomorphism θ : SK,L → Sk,` × ΠD is one-to-one by
Lemma 4.3. If neither d1 nor d2 is 1, then K = kd1d2 and L = `d1d2 where d2 is
relatively prime to `d1 and d1 is relatively prime to k. Making two applications of
Lemma 4.3, we see that SK,L embeds in the product (Sk,` ×Πd1)×Πd2 where each
of the three direct factors is residually a finite group.  

In addition to the remark following the proof of Theorem 4.1, the author thanks
the referee for numerous other comments which both strengthened results and short-
ened their proofs.
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