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BASIC COMMUTATORS AS RELATORS

David A. Jackson, Anthony M. Gaglione, and Dennis Spellman

Abstract. Charles Sims, [7] has asked whether or not the lower central subgroup
γn(F ) of a free group F coincides with the normal closure in F of the set of basic
commutators of weight n. Here, we investigate variations of this question where we
consider other varieties or other sets of commutators. We also give brief new proofs
that this question has a positive answer in the previously known cases for weight n
at most 4 and for the case where n = 5 and F is free with rank 2. We show that
for n ≥ 4, γn(F ) is the normal closure in F of the set of basic commutators having
weights n through 2n− 4, inclusive. This is a common generalization of Sims’ result
for weight 4 and a result of Martin Ward, but both of these earlier results are used
in the proof.

1: Introduction and Notation

For a natural number r ≥ 2, F = Fr is the free group on the ordered alphabet
X = {x1, x2, . . . , xr}.

We write yx for x−1yx and [y, x] for the commutator y−1x−1yx. If A and B
are subsets of any group G, then AG is the normal closure of A in G and [A, B] is
the subgroup of G that is generated by the set of elements [a, b] where a ∈ A and
b ∈ B. We write [z, x, y] for the commutator [[z, x], y]. The weight of a commutator
c is denoted by wt(c). We follow Marshall Hall’s definition for basic commutators.
See, for example, [2] or [6].

Fix an order on the alphabet X. (1) The basic commutators of weight one
are the letters of X taken in this order. (2) Having defined and ordered the
basic commutators of weight less than n, the basic commutators of weight n are all
of the commutators [ci, cj ] which satisfy the conditions: (a) ci and cj are basic
commutators with n = wt(ci) + wt(cj). (b) In the order that has been chosen
for basic commutators of weight less than n, cj < ci. (c) If ci = [cs, ct] where cs

and ct are basic commutators, then ct ≤ cj in the order that has been chosen for
basic commutators of weight less than n. (3) The basic commutators of weight n
follow all of the basic commutators of weight less than n in the order for the basic
commutators of weight less than n+1, but the basic commutators of weight n may
be ordered arbitrarily.

While we may order the commutators of weight n arbitrarily, the choices that we
make will have consequences for which commutators of higher weights are basic and
which are not. For example, depending upon which order we use for the commuta-
tors [x2, x1] and [x3, x1] in weight 2, either [[x2, x1], [x3, x1]] or else [[x3, x1], [x2, x1]]
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will be a basic commutator in weight 4. Following the terminology of Sims [7] we
will say that our choices determine a basic sequence of commutators. Whenever
we represent a basic sequence of commutators as a subscripted list, the subscripts
will reflect the order that we have chosen for the basic sequence and we will have
cj < ck if and only if j < k.

Write γn for the nth term, γn = γn(F ) := [γn−1(F ), F ] of the lower central
series for F . Let C = {x1, x2, . . . , xr, cr+1, . . . } be any fixed basic sequence of
commutators that begins with the ordered alphabet X. Throughout this paper, we
will let Nn denote the normal closure in F of the set Rn of basic commutators of
weight n from C. In [7], Charles Sims raised the question of whether or not γn = Nn

and answered this question positively for n ≤ 4 and for n = 5, r = 2. Our concern
throughout this paper will be variations upon this question. In section 2, we present
some useful tools for computing with commutators. We use these to give a brief
proofs of Sims’ results that γ4(F ) = N4 and that γ5(F ) = N5 when F has rank 2.
In section 3, we prove that the analogues of Sims’ question for the varieties [A , A ]
and [N 2,A ] have positive answers. In section 4, the principal result is that, for
n ≥ 4, γn(F ) is the normal closure in F of ∪2n−4

j=n Rj.
For the given alphabet X, a simple commutator of weight n is a commutator

[xi1 , xi2 , · · · , xin ] where each xi is a letter of X. It is not difficut to see that γn(F ) is
the normal closure in F of the set of simple commutators of weight n. If i1 > i2, and
i2 ≤ i3 ≤ · · · ≤ in, then the commutator [xi1 , xi2 , · · · , xin ] is a basic commutator
for any choice of basic sequence of commutators. This is noted by Sims [7] and
can be proved by a simple induction. Following standard notation, [d, c; b, a] is
an abbreviation for [[d, c], [b, a]] and more generally [C ; a1, a2, . . . ak] abbreviates
[C, [a1, a2, . . . ak]].

The following lemma, together with Groves’ Lemma and Proposition W in the
next section, will also be used in our related paper, [5].

Basic Lemma. Let r ≥ 2 and n ≥ 2 be fixed. Suppose that Nn−1 = γn−1 . If for
every basic commutator c of weight n − 1 and every x ∈ X, we have [c, x] ∈ Nn,
then Nn = γn .  
Proof. Write Rn−1 for the set of basic commutators of weight n− 1. It is clear that
Nn is always a subgroup of γn, so we need to show that γn ⊆ Nn. By hypothesis,
γn−1 = Nn−1, so γn = [γn−1, F ] = [Nn−1, F ] = [(Rn−1)

F , F ] = [Rn−1, F ] which is
contained in Nn since [c, x] ∈ Nn for every c ∈ Rn−1 and every x ∈ X.

2: Groves’ Lemma

Lemma 2.1. Suppose a, b, and c are elements of any group G. Then

[c, b, a] =
(
[b, a, a]c

a

([b, a, c]−1)a[b, a, a]−1
)[c,b]

[b, a, c][c,b][b, a, b]c
b

([b, a, c]−1)b[b, a, b]−1
(
[c, a, c][c,b][c, a, b]c

b

([c, a, c]−1)b
)[b,a]

.

Proof. It will suffice to show that the equation is valid in the free group on {a, b, c}.
Write both sides of the equation as words in this free group and observe that the
reduced forms are equal. See also the first parts of Groves’ Lemma and Proposition
W, below.  
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Lemma 2.2. N3 = γ3 .

Proof. By the Basic Lemma and the easy observation that N2 = γ2, we need only
check that [xk, xj , xi] is in N3 when i < j < k. This follows from the equation in
Lemma 2.1.  

In [3] Havas and Richardson published a wonderfully short proof by J.R.J. Groves
that the commutator [b, a, b, a] is in the normal closure of the set of basic commuta-
tors of weight 4 on the alphabet {a, b}. In the following lemma, we dissect Groves’
proof for generalization and further use.

Groves’ Lemma. Let A, B and C be elements in any group G.

(i) [C, B, A] = [C, B]−1[C, A]−1[B, A,C ]−1([C, B][C, A][C, A, B])[B,A]

(ii) If [B, A,C ], [C,A, B], [C, A;B,A] and [C, B; C,A] are trivial in G, then
[C, B, A] = [C, B; B, A].

(iii) If [B,A, C], [C, B, B], [C, A,A], [C, A, B] and [C, A,C ] are trivial in G, then
[C, B, A] and [C,B;B,A] are trivial in G.

(iv) If [C, B], [C, A,A] and [C, A, B] are trivial in G, then so is [B,A, C].

(v) If [C, A;B,A], [C, B; B, A] and [C,B; C, A] are trivial in G, then when any
two of [C, B, A], [B, A,C ] and [C,A, B] are trivial in G, the third is also.

(vi) If [C, A, C], [C, B, C], [C, A; B, A] and [C, B; B, A] are trivial in G, then

[C, B, A] = [B, A, C]−1[C, B; C,A][C,A, B][B,A].

Proof. (i) Note that BA = AB[B, A] and apply the commutator identity [x, yz] =
[x, z][x, y][x, y, z] = [x, z][x, y]z to both [C,BA] and [C, (AB)[B,A]]. Equate these
and solve for [C, B, A].

(ii) With [B, A, C] = 1, and [C, A,B] = 1, the equation in part (i) simpli-
fies to [C,B,A] = [C, B]−1[C, A]−1([C, B][C,A])[B,A]. With [C, A;B,A] = 1, and

[C, B; C, A] = 1, we can write this as [C, B, A] = [C, B]−1[C, A]−1[C, A][C,B][B,A]

= [C, B]−1[C, B][B,A] = [C, B; B, A].
(iii) Observe first that with [C,A, A], [C, A,B], and [C, A, C] trivial in G, we do

have that [C,A; B, A] and [C, B; C, A] are trivial in G also, so we have [C,B,A] =
[C, B; B, A] by part (ii). Write this as [C, B, A] = [C,B, (B−1A−1B)A], and use
[x, yz] = [x, z][x, y]z to rewrite this as [C, B, A] = [C, B, A][C, B, B−1A−1B]A. Mul-
tiply this last on the left by [C, B, A]−1 and then conclude that [C, B, B−1A−1B]
is trivial. It then follows, using the triviality of [C,B,B] that [C,B, A−1] is trivial
and hence [C, B, A] is trivial.

(iv) Since [C, B] and hence [C,B,A] are trivial, from the first part of Groves’
Lemma we have 1 = [C,A]−1[B, A, C]−1([C,A][C, A, B])[B,A]. Since both [C, A, A]
and [C, A, B] are trivial in G, we obtain 1 = ([B, A, C]−1)[C,A] and the triviality of
[B, A, C] follows.

(v) From part (i), with [C,B;B,A] and [C, A;B,A] trivial, we have

[C, B, A] = [C, B]−1[C, A]−1[B,A, C]−1[C, B][C, A][C, A, B][B,A]

If [B, A, C] and [C, A, B] are trivial, then [C, B, A] = [C, B; C, A]. If [C, B, A] and

[B, A, C] are trivial, then 1 = [C,B;C, A][C, A, B][B,A]. If [C, B,A] and [C, A,B] are
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trivial, then [B, A, C] = [C, B][C, A][C, B]−1[C, A]−1 = [C, B; C, A]([C,B][C,A])−1

.
See also Proposition W, below.

(vi) Since [C, B] commutes with both [B, A] and with C, it commutes with
[B, A, C]. Similarly, [C, A] commutes with [B, A, C]. Since [C,B][B,A] = [C, B] and

[C, A][B,A] = [C, A], the result then follows from the equation of part (i).  

Parts (i), (ii), and (iii) and their proofs are visible in [3]. We find it convenient to
also place the other parts under the common umbrella of “Groves’ Lemma.” Both
Groves’ Lemma and Proposition W, below, were originally formulated as tools to
use in the proof that Sims’ question has a positive answer for weight 5 and rank 3.
Since these results do simplify some proofs in this paper, we have included them
here also. We make repeated use of all cases of Groves’ Lemma in [5].

For any group G and elements x, y, and z in G, define W (x, y, z) by

W (x, y, z) = [z, y]−1[z, x]−1[y, x]−1[z, y][z, x][y, x].

W (x, y, z) can be written in a number of different moderately lengthy forms. We
will find it convenient to be able to make brief reference to this element without
immediately committing to any one of the forms.

Proposition W. If G is any group and x, y, and z are elements of G, then

(i) [z, y, x] =
(
[y, x, z]−1

)[z,x][z,y]
W (x, y, z)[z, x, y][y,x]

(ii) W (x, y, z) = [z, y; z, x][z, y; y, x][z,x][z, x; y, x]

(iii) W (x, y, z) = [z, x; y, x][z,y][z, y; y, x][z, y; z, x][y,x]

Proof. These may be verified by substitution and reduction in the free group on
{x, y, z}. The subgroup of G generated by x, y and z is an image of this free group.
The first part of the proposition can also be regarded as a restatement of the first
part of Groves’ Lemma.  

Like Lemma 2.2 above and Theorem 2.6 below, the following result is known
by Sims, [7]. The proofs in [7] rely on a computer implementation of a string
rewriting algorithm. Our proofs here are reasonably short and direct. The method
anticipates that used in [5] to prove that N5 = γ5 for all r.

Theorem 2.5. N4 = γ4 for arbitrary r ≥ 2.

Proof. By the Basic Lemma and Lemma 2.2, it will suffice to show that [c, x`] ∈ N4

(or equivalently [c, x`] ≡ 1 modulo N4) whenever c is a basic commutator of weight
3 and x` ∈ X. Then c = [xj, xi, xk] where i < j and i ≤ k. If ` ≥ k, then [c, x`]
is a basic commutator of weight 4, so we may assume that we have ` < k as well
as i < j and i ≤ k. We use part (iii) of Groves’ Lemma with C = [xj , xi], B = xk,
and A = x`. Then [B, A] = [xk, x`] which is basic of weight 2, so [B,A, C] =
[xk, x`; xj , xi] which, when nontrivial in F , is either a basic commutator of weight
4, or else the inverse of such, depending upon the order we have chosen in C for the
basic commutators of weight 2. Also [C, B, B] = [xj , xi, xk, xk] is always a basic
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commutator of weight 4, so it will suffice to show that [C, A] commutes with A,B
and C modulo N4. We will see that the following four cases naturally occur:

(1) ` = i (2) ` > i and j ≥ ` (3) ` > i and j < ` (4) ` < i

Case 1: ` = i In this case, we have A = x` = xi, so that [C,A] = [xj , xi, xi].
Then [xj , xi, xi, xi], [xj , xi, xi, xj ] and [xj , xi, xi, xk] are all basic commutators of
weight 4, so [C,A] commutes modulo N4 with A = xi,B = xk and C = [xj , xi].

Case 2: ` > i and j ≥ ` With ` > i, [C,A] = [xj , xi, x`] is a basic commutator
of weight 3 and then [C, A, B] = [xj , xi, x`, xk] and [C,A, A] = [xj , xi, x`, x`] are
basic commutators of weight 4. It remains to show that [C,A, C] is trivial modulo
N4 and for this it will suffice to show that [xj , xi, x`, xi] and [xj, xi, x`, xj ] are
trivial modulo N4. The former is trivial by case 1. Since we assume here that
j ≥ `, [xj , xi, x`, xj ] is a basic commutator of weight 4 and we are done.

Case 3: ` > i and j < ` Exactly as in case 2, to show that [xj , xi, xk, x`] is
trivial modulo N4, it will suffice to show that [C, A, xj ] = [xj, xi, x`, xj ] is trivial

modulo N4. This is immediate from case 2, applied to [xj , xi, xk̂, xˆ̀] where k̂ = `

and ˆ̀= j.

Case 4: ` < i We again have that [C, A] = [xj , xi, x`], but with ` < i, this is
no longer a basic commutator. We have in this case that ` < i < j and ` < i ≤ k.
We need to use eventually that [xi, x`, xj ] and [xj , x`, xi] are basic commutators of
weight 3 and that both of these commute with xi, xj , xk and x`. The commutators
[xj , x`, xi, xi], [xj, x`, xi, xj ], [xj , x`, xi, xk] and [xi, x`, xj , xj ] are basic commutators
of weight 4. With a change of notation, [xi, x`, xj , x`] and [xj , x`, xi, x`] are trivial
modulo N4 by case 1. Similarly, [xi, x`, xj , xi] is trivial modulo N4 by case 2, while
[xi, x`, xj , xk] is basic if k ≥ j and is trivial by case 2 if k < j.

By either the second or the third part of Proposition W, we see that W (x`, xi, xj)
is trivial modulo N4. Using this, and the first part of Proposition W, we have that
[xj , xi, x`] is equivalent to ([xi, x`, xj]

−1)[xj ,x`][xj ,xi][xj , x`, xi]
[xi,x`]. Since we have

just seen that [xi, x`, xj ] and [xj , x`, xi] commute with xi, xj and x`, we have that
[xj , xi, x`] ≡ [xi, x`, xj ]

−1[xj , x`, xi] modulo N4. Since these factors commute with
xk also, we are done.  

Theorem 2.6. If F is free with rank 2, then N5 = γ5(F ).

Proof. Let F be free on the ordered alphabet {a, b}. Then the basic commutators
of weight 4 are [b, a, a, a], [b, a, a, b] and [b, a, b, b]. By Theorem 2.5 and the Basic
Lemma, it will suffice to prove that [b, a, a, b, a] and [b, a, b, b, a] are trivial modulo
N5.

To show that [b, a, a, b, a] and [b, a, a, b; b, a] are trivial, we use part (iii) of Groves’
Lemma with C = [b, a, a], B = b and A = a. Then [B, A,C ]−1, [C,B, B], [C, A, A]
and [C, A,B] are basic commutators of weight 5. Since [C, A] = [b, a, a, a], it com-
mutes with a, b and C = [b, a, a] modulo N5.

To show that [b, a, b, b, a] is trivial modulo N5, we first show that [b, a, b; b, a, a]
is trivial modulo N5 and that [b, a, b, a] is equivalent modulo N5 to [b, a, a, b].

To show that [b, a, b; b, a, a] is trivial modulo N5, we use part (iv) of Groves’
Lemma with C = [b, a, a], B = [b, a] and A = b. Then [C,B] and [C, A, A] are basic
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commutators of weight 5. Since [C, A] = [b, a, a, b], it commutes with B = [b, a] by
the second paragraph of this proof.

To show that [b, a, b, a] is equivalent to [b, a, a, b] modulo N5, we use part (vi) of
Groves’ Lemma with C = [b, a], B = b and A = a. Then all of the commutators
[C, A,C ], [C, B, C], [C, A; B, A] and [C, B; B, A] are basic commutators of weight 5,
so we have [b, a, b, a] ≡ [b, a; b, a]−1[b, a, b; b, a, a][b, a, a, b][b,a]. Since [b, a, b; b, a, a] is
trivial by the previous paragraph and [b, a, a, b] commutes with [b, a] by the second
paragraph, we have [b, a, b, a] ≡ [b, a, a, b].

To prove that [b, a, b, b, a] is trivial modulo N5, we use part (iii) of Groves’ Lemma
with C = [b, a, b], B = b and A = a. Then [B, A,C ]−1 and [C,B,B] are basic com-
mutators of weight 5. By the previous paragraph, we have that [C,A] is equivalent
to [b, a, a, b], so [C,A] commutes with A = a, B = b and C = [b, a, b].  

3: Varieties with Commutator Laws

Following [6], write A for the variety of abelian groups and N 2 for the variety
of groups which are nilpotent with nilpotency class at most 2. In this section, we
want to prove that Sims’ question has a positive answer in the variety [A , A ] of
metabelian groups and in the variety [N 2, A ].

Theorem 3.8. γn(F ) · K = Nn · K if either K = [γ2(F ), γ2(F )] or if K =
[γ3(F ), γ2(F )].

Equivalently, for a group G that is metabelian or a group G from the variety
[N 2, A ] (i.e., a group which satisfies the law [[x1, x2, x3], [x4, x5]]), we can verify
that G is nilpotent of class n − 1 by confirming that all of the basic commutators
of weight n are trivial in G.

By Theorem 2.5, we may assume that n ≥ 5. As noted in the introduction, γn(F )
is the normal closure in F of the set of simple commutators of weight n. Theorem
3.8 is then a consequence of the following theorem.

Theorem 3.7. Suppose either that n ≥ 2 and K = [γ2(F ), γ2(F )] or else that
n ≥ 5 and K = [γ3(F ), γ2(F )]. If w is any simple commutator of weight n in F ,
then in F/K we will have one of the following three possibilities occur, where c1

and c2 are simple basic commutators of weight n.

wK = c1K or wK = c−1
1 K or wK = c−1

1 c2K.

We will prove Theorem 3.7 after establishing a few easy facts about groups in
the varieties [A , A ] and [N 2, A ]. In terms of verifying nilpotence, Theorem 3.7 is
substantially stronger than Theorem 3.8. To verify that a group G in one of these
varieties is nilpotent of class n− 1 for some sufficiently large n, we need only show
that the simple basic commutators of weight n are all trivial in G.

If G is any metabelian group, then it is well-known and easily verified that for
any elements c1, c2, c3 ∈ G′ and x ∈ G, we have [c1c2, x] = [c1, x][c2, x], [c−1

1 , x] =
[c1, x]−1 and cc2

3 = c3. If G is any group from the variety [N 2, A ], then it is similarly
verified that for any elements c1, c2 ∈ G′, c3 ∈ γ3(G) and x ∈ G, we have [c1c2, x] =
[c1, x][c2, x], [c−1

1 , x] = [c1, x]−1 and cc2
3 = c3.

Recall that we have defined the element W (a, b, c) in any group G by W (a, b, c) =
[c, b]−1[c, a]−1[b, a]−1[c, b][c, a][b, a]. It is then clear that W (a, b, c) is trivial in any
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metabelian group G. If G is a group from the variety [N 2,A ], then from Proposition
W, in section 2, we see that W (a, b, c) is a product of three commuting factors
[c, b; c, a], [c, b; b, a] and [c, a; b, a].

Lemma 3.1. If G is any metabelian group, then [c, b, a] = [b, a, c]−1[c, a, b] for any
a, b, c ∈ G and [c, b, a] = [c, a, b] if c ∈ G′.

Proof. Since W (a, b, c) is trivial in G, the first conclusion follows from part (i)
of Proposition W in section 2. Since [b, a, c] = [[b, a], c] by definition, the second
conclusion then follows from the first.  

Lemma 3.2. Suppose that G is a group in the variety [N 2,A ]. If a, b, c, d ∈ G,
then [d, c; , b, a] is central in G. As a consequence, W (a, b, c) is central in G.

Proof. We do not require that a, b, c and d are distinct here, so we will have that
W (a, b, c) is central once we have that [c, b; c, a], [c, b; b, a] and [c, a; b, a] are all central
by the first conclusion of this lemma.

Let x be an arbitrary element of G. It will suffice to show that [d, c; b, a; x] is
trivial. We use part (v) of Groves’ Lemma with C = [d, c], B = [b, a] and A = x to
prove that [C, B, A] = [d, c; b, a; x] is trivial.  

Lemma 3.3. Suppose that G is a group in the variety [N 2, A ]. Then for any a, b, c ∈
G, [c, b, a] = [b, a, c]−1[c, a, b]W (a, b, c). If c ∈ G′, then [c, b, a] = [b, a, c]−1[c, a, b].
If c ∈ γ3(G), then [c, b, a] = [c, a, b].

Proof. The first conclusion again follows immediately from part (i) of Proposition
W. From either part (ii) or part (iii) of Proposition W, we see that W (a, b, c) is
trivial for G ∈ [N 2,A ] if c ∈ G′. When c ∈ γ3(G), then [b, a, c] is trivial.  

Lemma 3.4. Suppose that G is a group in the variety [N 2, A ]. Then for any
a, b, c, d ∈ G, [d, c, b, a] = [d, c; b, a][d, c, a, b].

Proof. Replace c by [d, c] in the second conclusion of Lemma 3.3.  

Lemma 3.5. If G is any metabelian group, x ∈ G′, yi ∈ G and π ∈ St is any
permutation, then [x, y1, y2, . . . , yt] = [x, yπ1, yπ2, . . . , yπt].

Proof. This is Lemma 34.51 from [6]. As observed in the proof there, this follows
easily from Lemma 3.1.  

Lemma 3.6. Suppose that G is a group in the variety [N 2, A ] and that either
x ∈ γ3(G) and t ≥ 1 or else that x ∈ G′ and t ≥ 3. If yi ∈ G for 1 ≤ i ≤ t and
π ∈ St is any permutation, then [x, y1, y2, . . . , yt] = [x, yπ1, yπ2, . . . , yπt].

Proof. When x ∈ γ3(G), then this lemma follows from the final conclusion of
Lemma 3.3, using the fact that every permutation is a product of transpositions,
in the same way that Lemma 3.5 follows from Lemma 3.1.

Suppose then that x ∈ G′ and t ≥ 3. Note that it will suffice to prove the lemma
in the case where x is a simple basic commutator [d, c]. We will assume that this is
so, mostly so we can reuse the notation x. If π1 = 1, then by the previous paragraph
with x = [d, c, y1] ∈ γ3(G) and π replaced by its restriction to {2,3, . . . , t}, we are
done. If π1 = 2, then [d, c, y1, y2] = [d, c; y1, y2][d, c, y2, y1] by Lemma 3.4 and
then [d, c, y1, y2, y3] = [d, c, y2, y1, y3] since [d, c; y1, y2] is central by Lemma 3.2. It
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then follows that [d, c, y1, y2, y3, . . . , yt] = [d, c, y2, y1, y3, . . . , yt] and we obtain the
conclusion by the result of the first paragraph with x = [d, c, y2].

If π1 > 2, let τ be the transposition which interchanges 2 and π1. Then we
can use the conclusion of the first paragraph with x = [d, c, y1] ∈ γ3(G) and the
permutation τ to find [d, c, y1, y2, y3, . . . , yt] = [d, c, y1, yπ1, y3, . . . , y2, . . . , yt]. We
are then done, since [d, c, y1, yπ1, y3, . . . , yt] is one of the cases we treated in the
second paragraph.  

Proof of Theorem 3.7. Much of the proof will be the same whether we are in the
case where K = [γ2(F ), γ2(F )] or in the case where K = [γ3(F ), γ2(F )]. Write
w = [xi1 , xi2 , . . . , xin ]. Since we are only concerned with nontrivial commutators,
we may assume that either i1 < i2 or i2 < i1. (If i1 = i2 then w is trivial
and we have wK = c−1

1 c1K.) We want to reduce immediately to the case where
i2 < i1. If we do have i1 < i2, then [xi1 , xi2 ] = [xi2 , xi1 ]

−1 so [xi1 , xi2 , xi3 ]K =
[[xi2 , xi1 ]

−1, xi3 ]K = [xi2 , xi1 , xi3 ]
−1K and eventually [xi1 , xi2 , xi3 , . . . , xin ]K =

[xi2 , xi1 , xi3 , . . . , xin ]−1K. We will continue with the assumption that we have i1 >
i2 and we will show that in this case we have either wK = c1K or w = c−1

1 c2K.
We next use either Lemma 3.5 or Lemma 3.6 to find that [xi1 , xi2 , xi3 , . . . , xin ]K =
[xi1 , xi2 , xiπ3 , xiπ4 , . . . , xiπn ]K where π is chosen to be a permutation on {3,4, . . . , n}
such that iπ3 ≤ iπ4 ≤ · · · ≤ iπn. We are then done if i2 ≤ iπ3. If not, then we may
assume, in order to better manage notation, that we have i1 > i2 > i3 ≤ i4 ≤ i5 ≤
· · · ≤ in.

In the case where K = [γ2(F ), γ2(F )], we next use Lemma 3.1 to express
[xi1 , xi2 , xi3 ]K as [xi2 , xi3 , xi1 ]

−1[xi1 , xi3 , xi2 ]K. Then we see [xi1 , xi2 , xi3 , xi4 ]K =
[[xi2 , xi3 , xi1 ]

−1[xi1 , xi3 , xi2 ], xi4 ]K = [xi2 , xi3 , xi1 , xi4 ]
−1[xi1 , xi3 , xi2 , xi4 ]K. We

can continue in this manner to find that [xi1 , xi2 , xi3 , xi4 , . . . , xin ]K is equal to the
product [xi2 , xi3 , xi1 , xi4 , . . . , xin ]−1[xi1 , xi3 , xi2 , xi4 , . . . , xin ]K. If it happens that
i1 > i4 and/or that i2 > i4 we conclude by applying Lemma 3.5 again.

Suppose then that we are in the case where K = [γ3(F ), γ2(F )] and n ≥ 5.
In this case, we have [xi1 , xi2 , xi3 ]K = [xi2 , xi3 , xi1 ]

−1[xi1 , xi3 , xi2 ]W (xi3 , xi2 , xi1)K
by Lemma 3.3. Since W (xi3 , xi2 , xi1)K is central by Lemma 3.2, we again find that
[xi1 , xi2 , xi3 , xi4 , . . . , xin ] = [xi2 , xi3 , xi1 , xi4 , . . . , xin ]−1[xi1 , xi3 , xi2 , xi4 , . . . , xin ]K.
If it happens that i1 > i4 and/or that i2 > i4 we conclude by applying Lemma 3.6
again.  

4 Using higher commutators

For s ≥ 1, we will use the notation Nn:s for the normal closure in F of the basic
commutators from C having weights n through n + s − 1, inclusive. That is,

Nn:s =

( n+s−1⋃

j=n

{
c ∈ C | wt(c) = j

})F

.

In this notation, the normal closure, Nn, of the set of basic commutators of
weight n, becomes Nn:1. We want to show, consecutively, that γn(F ) is equal to
Nn:n−1, Nn:n−2 and Nn:n−3. The first of these is contained in work of Martin Ward,
see [8, 9, 4] and all of the cases rely heavily on the following theorem of Martin
Ward. We will use only the part of this theorem that says that the given set of
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“basic invertators” generate γn(F ). We will not need the more difficult conclusion
that this set is a free basis for γn(F ).

Theorem 4.1. (Martin Ward, [4,9]) For n ≥ 2, γn(F ) is freely generated by the

set of all commutators of the form [c, bβ1

1 , bβ2

2 , . . . , b
βq
q ] where q ≥ 1, c and the bi

are basic commutators having weights less than n, c > b1 ≤ b2 ≤ · · · ≤ bq, βi = ±1,

wt([c, bβ1

1 ]) ≥ n, if c = [c1, c2] then c2 ≤ b1 and if bi = bj , then βi = βj .  

Proposition 4.2. For n ≥ 2, γn(F ) = Nn:n−1.

Proof. It is clear that Nn:n−1 ⊆ γn(F ), and it will suffice to show that each of the

free generators, [c, bβ1
1 , bβ2

2 , . . . , b
βq
q ] from the theorem of Martin Ward is in Nn:n−1.

For this, we use induction on q. In the base case, q = 1, assume first that we
have a free generator, [c, b1], where β1 = +1. Then by the hypotheses for Theorem
4.1, we have that [c, b] is a basic commutator, that wt(c) < n, wt(b1) < n and
wt([c, b1]) ≥ n. We see that [c, b1] is a basic commutator with n ≤ wt([c, b1]) ≤
2n − 2, so [c, b1] ∈ Nn:n−1. If we have instead the free generator [c, b−1

1 ], then

[c, b−1
1 ] = ([c, b1]

−1)b−1
1 which is also in Nn:n−1. Suppose then by induction, that

C = [c, bβ1
1 , bβ2

2 , . . . , b
βq−1

q−1 ] has been shown to be in Nn:n−1. Then [C, bq] = C−1Cbq

and [C, b−1
q ] = ([C, bq ]

−1)b−1
q are in Nn:n−1 also.  

Lemma 4.3. Assume that n ≥ 3 and that a and b are basic commutators of weight
n − 1. Then [b, a] ∈ Nn:n−2.

Proof. Since [a, b] = [b, a]−1, this lemma is symmetric in a and b. Write a = [a2, a1]
and b = [b2, b1] where a1, a2, b1, and b2 are basic commutators. By symmetry, we
may assume that a1 ≥ b1. Then [b, a1] and [b, a2] are both basic commutators and
these have weight at least n and at most 2n − 3, so b commutes with both a1 and
a2 modulo Nn:n−2. Hence b commutes with a = [a2, a1] modulo Nn:n−2.  

Proposition 4.4. For n ≥ 3, γn(F ) = Nn:n−2.

Proof. By Proposition 4.2, it will suffice to prove that Nn:n−1 ⊆ Nn:n−2. Suppose
that c = [b, a] is a basic commutator with n ≤ wt(c) ≤ 2n− 2. If wt(c) ≤ 2n− 3 or
if wt(b) ≥ n, then it is immediate that c ∈ Nn:n−2. Since wt(a) ≤ wt(b), this leaves
only the possibility that wt(a) = wt(b) = n − 1 and this case was covered by the
previous lemma.  

To prove that γn(F ) = Nn:n−3 for n ≥ 4, we will prove that Nn:n−2 ⊆ Nn:n−3.
The following two lemmas will be useful.

Lemma 4.5. Assume that n ≥ 4, that c is a simple basic commutator of weight
n−3, that x, y, and z are letters with x ≤ y ≤ z and that [c, x] is a basic commutator
of weight n − 2. Then [c, x, z, y] ∈ Nn:n−3.

Proof. If n = 4, we already know that γ4(F ) = N4 = N4:1, so [c, x, z, y] ∈ N4:1. For
the rest of this proof, we assume that n ≥ 5, so that c is a basic commutator with
weight at least 2. Since the conclusion is clear when y = z, we will also assume
that y < z.
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Suppose first that y = x. We use part (iii) of Groves’ Lemma with C = [c, x],B =
z and A = x. Then [B,A, C]−1, [C, B, B], [C, A,A] and [C,A, B] are all basic com-
mutators of weight n. Since [C, A] = [c, x, x], we see that [C, A, c] is a basic com-
mutator of weight 2n − 4 and that [C, A, x] is a basic commutator of weight n.
Thus, [C, A] commutes with both c and x modulo Nn:n−3, so [C, A] commutes with
C = [c, x] modulo Nn:n−3.

Now suppose that y > x. We use part (iii) of Groves’ Lemma with C = [c, x],B =
z and A = y. Then [B, A,C ]−1, [C, B, B], [C, A,A] and [C, A,B] are all basic com-
mutators of weight n. Since [C, A] = [c, x, y] is a simple basic commutator and
wt(c) ≥ 2, [C, A, c] is a basic commutator of weight 2n − 4 and [C, A] commutes
with c modulo Nn:n−3. The previous paragraph applies to [c, x, y, x], so [C, A] also
commutes with x and hence with C = [c, x] modulo Nn:n−3.  

Lemma 4.6. Assume that n ≥ 4, that c1 and c2 are simple basic commutators of
weight n − 3, that x, y, and z are letters with x < y ≤ z and that [c1, x] and [c2, y]
are basic commutators of weight n − 2. Then [[c2, y, z], [c1, x]] ∈ Nn:n−3.

Proof. If n = 4, we already know that [[c2, y, z], [c1, x]] ∈ γ4(F ) = N4 = N4:1.
For the rest of this proof, we assume that n ≥ 5, so c1 and c2 are simple basic
commutators with weight n− 3 ≥ 2.

We use part (iv) of Groves’ Lemma with C = [c1, x], B = [c2, y] and A = z
to prove that [B, A, C] is trivial modulo Nn:n−3. Since [C, B] has weight 2n − 4
and either [C, B] or [C,B]−1 is a basic commutator, we know that [C, B] is trivial
modulo Nn:n−3. We observe that [C,A, A] is a simple basic commutator of weight
n. To show that [C, A, B] is also trivial modulo Nn:n−3, it will suffice to show
that [C, A, c2] and [C, A, y] are trivial modulo Nn:n−3. The latter follows from the
previous lemma. Since wt(c2) ≥ 2, [C, A, c2] is a basic commutator of weight 2n−4.
Since n ≥ 5, this weight is at least n+1 and [C, A, c2] is also trivial modulo Nn:n−3.
 

Theorem 4.7. For n ≥ 4, γn(F ) = Nn:n−3.

Proof. This is known when n = 4, so we may assume that n ≥ 5.
By Proposition 4.4. it will suffice to show that Nn:n−2 ⊆ Nn:n−3. Suppose that

c = [b, a] is a basic commutator with n ≤ wt(c) ≤ 2n − 3. If wt(c) ≤ 2n − 4 or
if wt(b) ≥ n, then it is immediate that c ∈ Nn:n−3. Since wt(b) ≥ wt(a), it will
suffice to prove that [b, a] ∈ Nn:n−3 when a and b are basic commutators with
wt(a) = n − 2 and wt(b) = n − 1.

Next, we want to reduce to the case where a and b are simple basic commutators.
Write a = [a2, a1] and b = [b2, b1] where a1, a2, b1 and b2 are basic commutators.
Suppose first that wt(a1) ≥ 2 and that a1 ≥ b1. Then both [b, a1] and [b, a2] are
basic commutators and these have weight at least n+ 1 and at most 2n− 5. Hence,
in this case, b commutes with a1, a2 and a modulo Nn:n−3. Similarly, suppose that
wt(b1) ≥ 2 and that b1 ≥ a1. Then both [a, b1] and [a, b2] are basic commutators
and these have weight at least n and at most 2n−5. Hence, in this case, a commutes
with b1, b2 and b modulo Nn:n−3. If, in the case where wt(a1) ≥ 2, we have b1 > a1,
then b1 also has weight at least two: if, in the case where wt(b1) ≥ 2, we have
a1 > b1, then a1 also has weight at least two. Thus, for the rest of this proof, we
may assume that a and b are both simple basic commutators.
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Write a as a = [c1, x] where c1 is a simple basic commutator with weight n − 3
and x is a letter. Also write b = [c2, y, z] where y and z are letters with y ≤ z,
c2 is a simple basic commutator with weight n − 3 and [c2, y] is a simple basic
commutator with weight n − 2. If x ≥ z, then [b, x] is a simple basic commutator
with weight n and [b, c1] is a basic commutator with weight 2n − 4. We see that
b commutes with c1, x and a = [c1, x] modulo Nn:n−3. If y ≤ x < z, then [b, x] is
trivial modulo Nn:n−3 by Lemma 4.5 and [b, c1] is a basic commutator of weight
with weight 2n−4. We again see that b commutes with c1, x and a modulo Nn:n−3.
Finally, if x < y ≤ z, then [b, a] ∈ Nn:n−3 by Lemma 4.6.  
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