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ACHIEVABLE RELATORS

David A. Jackson

Abstract. The principal result of this paper is a reduction of the word problem for
one relator semigroups. Crudely, a relator (w, w′) on the alphabet X is achievable
if the letters in the relator can actively participate in sequences of transitions for
the semigroup presentation 〈X ; (w, w′)〉. (A precise definition of achievable relators
is given in section 3.) Empirically, achievable relators are rare. We prove that the
word problem for a one relator semigroup presentation can be reduced to the word
problem for a presentation where the relator is achievable.

1 Background and Preliminaries

A directed planar map (or simply map) is a finite collection of vertices, edges,
and regions in the Euclidean plane, together with an orientation for the set of edges.
Here we will require that each edge has two distinct vertices for its endpoints. We
also make the usual requirements that vertices, edges, and regions are pairwise
disjoint, that regions are homeomorphic to the unit disk, and that each region has a
connected boundary which is a union of edges and their endpoints. The orientation
of the edges distinguishes an initial endpoint and a terminal endpoint for each edge.
Two maps are the same if one can be mapped onto the other by a homeomorphism
of the plane which induces a one-to-one function preserving vertices, edges, regions,
incidence, and orientation.

Let D be a region of any map or let M be a connected and simply connected
map. A boundary walk for D or for M is a closed walk of minimal length
which includes all of the edges on the topological boundary of D or of M. For
our purposes, we make the additional requirement that all boundary walks must be
oriented counterclockwise in the plane. It follows that if π is any boundary walk
for a fixed map or region, then all other boundary walks for this map or region
can be regarded as cyclic permutations of the edges of π. A map or region Q is
two-sided if it has a boundary walk of the form αQ(ωQ)−1 where αQ and ωQ are
positive walks, the respective bottom and top sides of Q.

We define W1 to be the map consisting of a single directed edge e1 together
with its initial vertex v0 and its terminal vertex v1. For k > 1, the map Wk is
defined inductively by Wk = Wk−1 ∪ {vk, ek} where vk is a vertex and ek is an
edges with initial vertex vk−1 and terminal vertex vk. It is easy to see that each
Wk is two-sided and a tree.

Let F0 = {Wk|k ≥ 1}. Assume, for induction, that a set Fj of two-sided maps
having two-sided regions has been defined and that each map in Fj has j regions.
Let Ij be an index set of triples (k,M, σ) where k is a natural number, M ∈ Fj ,
and σ is a nontrivial segment of the top side of M having initial endpoint u0 and
terminal endpoint ut. Given such a triple, we define a map F(k,M, σ) to be

M∪ {v1, v2, . . . , vk−1, e1, . . . , ek, Dj+1}
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where each vi is a vertex, each ei is an edge with initial vertex vi−1 and terminal
vertex vi, (Let v0 = u0 and vk = ut.) and Dj+1 is a region having bottom side
σ and top side e1e2 . . . ek. See the following illustration. Then F(k,M, σ) and its
j + 1 regions are two-sided. Let Fj+1 = {F(k,M, σ) | (k,M, σ) ∈ Ij} and let
F = ∪∞

j=0Fj . To facilitate a brief discussion in this paper, we will call a map in F
a feather or a feathery map .

M ∈ Fj

A vertex v in a map M is a source if for every other vertex w of M, there is a
positive walk in M from v to w. Dually, v is a sink if there is a positive walk from
every such w to v. A vertex is a transmitter is it has indegree 0 and a receiver
is it has outdegree 0. The set R of maps is defined by R = {M | M is two-sided,
each region of M is two-sided, and no interior vertex of M is a transmitter or a
receiver}. It can be shown that for maps in R, a vertex is a transmitter if and only
if it is a source and a vertex is a receiver if and only if it is a sink. John Remmers
introduced the set R in his thesis [10] where the maps of R were called monotone
maps. In a published part of Remmers’ thesis [11], the maps of R are called regular
maps. In both [10] and [11], Remmers proves the essential details of the following
theorem. For a more recent exposition of this and other properties of regular maps,
the reader should see Higgins’ book [2].

Theorem 1.1. R = F.  

Corollary 1.2. If M ∈ F and N is a two-sided submap of M, then N ∈ F.  

Hence the maps that we have called feathers above are the same as the maps
which have previously been called monotone maps [4,10] or regular maps [5,11].
Higgins [2] like Howie and Pride [3] bypasses the need to assign any name for these
maps by proceeding directly to the closely related notion of a diagram (See below.).
For the purposes of this paper, it is essential to discuss feathers or regular maps
as well as diagrams. The usefulness of these maps and the related diagrams has
also been discovered independently by Kasincev [6,7,8]. More recently, they have
also been discovered by Power [9] who calls them pasting schemes; unlike the other
authors who work with semigroups, Power uses these maps for a construction in
category theory.

Given that R = F, the next three lemmas are easily seen to be true for F and
hence for R also. As well as being useful observations, they are instrumental in the
proof that R ⊆ F. For proofs, see [10], [11,pp. 286,287] or [2,pp. 75,76]

Lemma 1.3 (Remmers). If M is a map in R, then there are no positive closed
walks in M.  

Lemma 1.4 (Remmers). Suppose that M is a map in R. If v is a vertex of M,
then there is a positive walk from the initial vertex of M to the terminal vertex of
M which contains v. If e is an edge of M, then there is a positive walk from the
initial vertex of M to the terminal vertex of M which contains e.  
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A region D of the map M is appended on the top side of M if ωD is a
segment of ωM and is appended on the bottom side of M if αD is a segment
of αM. A region D is an appended region of M if it is appended on either side
of M.

Lemma 1.5 (Remmers). If M ∈ R and has at least one region, then there are
regions B and T of M which are appended on the bottom and top sides of M,
respectively. If M has at least two regions, then we can choose regions B and T
which are distinct.  

Suppose that M is a feathery map and that D is an appended region on the
bottom side of M. Write αM = λ0αDλ1. We allow λ0 and/or λ1 to be empty.
We define M − D to be the feathery submap of M which has boundary walk
λ0ωDλ1ω

−1
M . Equivalently, M− D is the feathery submap of M which consists of

all of the regions of M except D, all of the edges of M except those on αD, and
all of the vertices of M except those which are interior vertices on αD.

Similarly, if D is appended on the top side of M, but is not appended on the
bottom side of M, write ωM = µ0ωDµ1. Then M− D is the feathery submap of
M which has boundary walk αM(µ0αDµ1)

−1. The reader should note that we have
made a rather arbitrary choice about which side of D to include as part of M−D
in the case where D is appended on both sides of M.

More generally, suppose that S = {D1, D2, . . . , Dq} is any set of appended re-
gions of M. Write αi and ωi for αDi and ωDi . We may renumber so that

(1) For 0 ≤ p ≤ q, D1, D2, . . . ,Dp are appended on the bottom side of M,
(2) Dp+1, . . . , Dq are appended on the top side of M, but not on the bottom

side of M,
(3) αM = λ0α1λ1α2 . . . αpλp, and
(4) ωM = µpωp+1µp+1 . . . ωqµq

where the λi and µi are positive or empty walks. Then we define M− S to be the
feathery submap of M which has boundary walk

(λ0ω1λ1ω2 . . . ωpλp)(µpαp+1µp+1 . . . αqµq)
−1.

Observe that when S = {D}, then M− S = M− D.
If M1,M2, . . . ,Mk are feathers, then we define M1M2 . . .Mk to be the feather

that is obtained by identifying the terminal vertex of Mi with the initial vertex of
Mi+1 for 1 ≤ i ≤ k − 1. We will also use the notation ∨k

i=1Mi for M1M2 . . .Mk,
and the notation M1∨M2 for M1M2. In some applications, we may have feathers
Mτ indexed by a set whose order is irrelevant and we will write

∨
τ Mτ and take

this to mean any one of several possible feathers depending upon the order chosen.
The vertex v in the feather M is a separating vertex in M if M − v is

disconnected. Every separating vertex in M must be on both the top and bottom
side of M. A feather is nonseparable if it has no separating vertices. A block of
a feather is a maximal nonseparable submap. A block of a feather is itself a feather.
For any feather M, we may write M = M1M2 . . .Mk where the Mi are all of the
blocks of M and their common vertices are all of the separating vertices of M.

For any map M, the set W+ of positive walks in M is a partial groupoid (i.e.
concatenation is a partially defined associative binary operation) generated by the
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edges of M. If S is any semigroup, a function φ from W+ to S is a labelling of
M with values in S when φ is a partial homomorphism from W+ to S. (I.e.
φ(πσ) = φ(π)φ(σ) whenever the concatenation πσ is defined.) Of course, φ is
determined once it is defined on the edges which generate W + and any choice of
labels for the edges will produce a well-defined labelling of M with values in S.
A diagram over the semigroup S is a pair (M, φ) where M is a map and φ
is a labelling with values in S. If N is a submap of M, it will not result in any
confusion if we also use the notation φ for the restriction, φ|N , of φ to N . For this
paper, S will always be the free semigroup FX on some set X, and we will refer
to (M, φ) as a diagram over X . Often the function φ is obvious from context
and we refer simply to a diagram M. Having suppressed φ, we then write σ for
the label φ(σ) on a positive walk σ. A vertex in a map M is superfluous if its
indegree and its outdegree are both 1. Throughout this paper, the maps used will
have enough superfluous vertices that we can label each edge by a letter of X rather
than a longer word of FX . We use |w| for the length of a word in the free semigroup
FX , and we use |σ| for the length of a positive walk in M. Since we label each edge
by a letter, we will always have |σ| = |σ|. This convention on superfluous vertices
is useful in this paper. In several of the other papers using derivation diagrams,
it is useful to assume instead that maps have no superfluous vertices and conclude
only that |σ| ≤ |σ|.

If Q is a two-sided diagram or if Q is a two-sided region in a diagram, then the
boundary label of Q is the ordered pair (αQ, ωQ) of labels of the sides of Q.

Suppose that 〈X; R〉 is a semigroup presentation, where X is an alphabet, FX

is the free semigroup on X , and R ⊆ FX × FX is a set of defining relators. Let the
feather M be a diagram over X. Then M is a derivation diagram over 〈X; R〉
for (αM, ωM) if at least one of (αD, ωD) or (ωD, αD) is in R for each region D of
M.

If M is a feather or (M, φ) is a diagram, we use the notation |M| for the
number of regions in M. Let 〈X; R〉 be some fixed semigroup presentation. A
derivation diagram (M, φ) over 〈X; R〉 is a minimal derivation diagram over 〈X; R〉
for (αM, ωM) if |M| ≤ |N | whenever (N , ξ) is also a derivation diagram over 〈X; R〉
for (αM, ωM).

Theorem 1.6 (Remmers). Suppose that (M, φ) is a minimal derivation diagram
over 〈X; R〉. If the submap N of M is in R, then (N , φ) is a minimal derivation
diagram over 〈X; R〉 for (φ(αN ), φ(ωN )).

Proof. If (N , φ) is not minimal, there is a derivation diagram (N ′, ξ) over 〈X; R〉
having the same boundary label as (N , φ). We could then replace the submap N
of M by N ′ and contradict the minimality of (M, φ).  

A directed walk in a map M is a walk which is either a positive walk or the
empty walk at some vertex of M.

If M is any map in R, Remmers has described the following natural partial
orders on the vertices of M and on the edges of M:

(1) For vertices u and v, u < v if there is a positive walk in M from u to v.
(2) For edges e and f , e < f if there is a directed walk from the terminal

endpoint of e to the initial endpoint of f .
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It is straightforward to verify, by induction on the number of regions, that any
two vertices u and v in a feather M have both a greatest lower bound, glbM(u, v),
and a least upper bound, lubM(u, v). We shall make use of these orders in the
following sections. For convenience of reference, we will refer to these orders on the
vertices and edges as Remmers’ orders.

A derivation diagram (M, φ) is quasiminimal if every block N of M is a
minimal derivation diagram for (φ(αN ), φ(ωN )). A derivation diagram (M, φ) is
strongly quasiminimal if (M, φ) is quasiminimal and for each block N of M,
every quasiminimal derivation diagram (N ′, φ′) for (φ(αN ), φ(ωN )) has only one
block. In the following theorem, the equivalence of i), ii), and iii) is due to Remmers.

Theorem 1.7. Suppose that 〈X ;R〉 presents a semigroup S and that w and w′ are
words on the alphabet X. Then the following are equivalent:

i) The words w and w′ represent the same element of S.
ii) There is a derivation diagram over 〈X; R〉 for (w,w′).
iii) There is a minimal derivation diagram over 〈X;R〉 for (w, w′).
iv) There is a quasiminimal derivation diagram over 〈X; R〉 for (w, w′).
v) There is a strongly quasiminimal derivation diagram over 〈X; R〉 for (w, w′).

Proof. i) ⇒ ii) If w and w′ represent the same element of S, we may use any
sequence of elementary transitions from w to w′ to construct a map in the set F
labelled as a derivation diagram over 〈X ;R〉 for (w,w′).

ii) ⇒ iii) If the derivation diagram (M, φ) is not minimal, then there is a deriva-
tion diagram (N , ξ) for (w, w′) with |N | < |M|. If (N , ξ) is not minimal, we repeat
this: since M has only a finite number of regions, we must eventually reach a
minimal diagram.

iii) ⇒ iv) By Theorem 1.6, the blocks of a minimal derivation diagram are
minimal.

iv) ⇒ v) Let k be the smaller of |w| and |w′|. Then no derivation diagram over
〈X ;R〉 for (w, w′) can have more than k blocks. Suppose (M, φ) is a quasiminimal
derivation diagram over 〈X; R〉 for (w,w′). If (M, φ) is not strongly quasiminimal,
then for some block N of M, there is a quasiminimal derivation diagram (N ′, φ′)
over 〈X; R〉 for (φ(αN ), φ(ωN )), where the map N ′ has more than one block. We
may replace the submap N of M by N ′ to obtain a quasiminimal derivation diagram
(M′, ξ) for (w, w′) where M′ has more blocks than M. If (M′, ξ) is not strongly
quasiminimal, we repeat this process, but we must eventually reach a strongly
quasiminimal diagram since k is a bound for the number of blocks in M′.

ii), iii), iv), or v) ⇒ i) We may use any derivation diagram for (w, w′) to construct
a sequence of elementary transitions from w to w′.  

Example 1.8. Let 〈X; R〉 be the semigroup presentation

〈a, b, c; abb = cbb, bba = bbc, aba = cbc〉.

Then the diagram M below is a strongly quasiminimal derivation diagram. It is not
a minimal derivation diagram since the diagram M′ is also a derivation diagram
over 〈X; R〉 for (bbababb, bbcbcbb).
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M

M′

Example 1.9. Let 〈X; R〉 be the semigroup presentation

〈a, b, c, d, e; ae = bcd, ea = bcd, ab = dc, cd = ba〉.

Then in following figure both M1 and M2 are minimal (and quasiminimal) deriva-
tion diagrams for abcd = dcba, but only M2 is strongly quasiminimal.

M1

M2

Lemma 1.10. If M ∈ R and N is a submap of M which is also in R and which
contains every appended region of M, then N contains every region of M.

Proof. Observe first that it will suffice to prove the lemma in the case where M
has only one block. We assume that we are in this case. Let δ1 be a positive or
empty path from the initial vertex of M to the initial vertex of N and let δ2 be
a positive or empty path from the terminal vertex of N to the terminal vertex of
M. Then the closed walk δ1ωN δ2(ωM)−1 is the closed two-sided boundary for a
two-sided submap T of M. It follows from Corollary 1.2 that T ∈ R. If there are
regions in T , then by Lemma 1.5, there is a region D of T which is appended on
the top side of T . The region D is then also an appended region on the top side of
M. By hypothesis, D is then a region of N , but this is impossible because ωN is
the bottom side of T . We conclude that T is regionless and that δ1ωN δ2 = ωM. A
similar argument shows that δ1αN δ2 = αM. Since M has only one block and δ1

and δ2 are on both the bottom and top sides of M, the paths δ1 and δ2 are empty.
Then ωN = ωM and αN = αM. We conclude that N = M in the case where M
has only one block.  

We introduce the notion of coherent pairs of regions in a feathery map. These
will be useful later. Since our inductive construction of feathery maps starts at the
bottom (rather than at the top) our terminology for coherent pairs will also reflect
a “start-at-the-bottom”bias.

An ordered pair (D1,D2) of regions in a feathery map M is a left-right coher-
ent pair if there are positive walks ω1, µ, and α2 in M such that ωD1 = ω1µ and
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αD2 = µα2. Dually, an ordered pair (D1, D2) is a right-left coherent pair if there
are positive walks ω1, µ, and α2 in M such that ωD1 = µω1 and αD2 = α2µ. For
brevity, we will say that a left-right coherent pair is an lr pair and that a right-left
coherent pair is an rl pair.

The ordered pair (D1, D2) of regions in a feathery map M is a matched coher-
ent pair if ωD1 = αD2 , an expansive coherent pair if ωD1 is a proper segment
of αD2 , and a contractive coherent pair if αD2 is a proper segment of ωD1 .

Example 1.11. The pair of regions on the left is an lr coherent pair and the pair
of regions on the right is an rl coherent pair.

The pair on the left is matched, the pair in the middle is expansive, and the pair
on the right is contractive.

In the next three maps, the regions D1 and D2 do not form a coherent pair.

A coherent pair of regions is an ordered pair of regions that is left-right, right-
left, matched, expansive, or contractive coherent. We note that if (D1,D2) is a
coherent pair of regions in a feathery map M then (1) there is a feathery submap
N of M which consists of just D1,D2 and the edges and vertices on the boundaries
of these two regions, and (2) there is at least one edge e which is in both ωD1

and αD2 .
Conversely, if (1) and (2) hold, then by considering the provenance of the initial

and terminal endpoints of N , we see that (D1, D2) must be a coherent pair.

Lemma 1.12. Suppose that M is a feathery map and that D0 is any region of M.

(1) Either D0 is appended on the bottom side of M or else there is a region D−
of M such that (D−, D0) is a coherent pair.

(2) Either D0 is appended on the top side of M or else there is a region D+ of
M such that (D0,D+) is a coherent pair.

Proof.. We prove (1) by induction on |M| : the proof of (2) is dual. If M has only
one region that region is necessarily appended on the bottom side of M. Assume
that M > 1. If D0 is appended on the bottom side of M we are done, so assume
that D0 is not an appended region on the bottom side of M. By Lemma 1.5, there
is a region D of M which is appended on the bottom side of M. By induction,
the lemma is true for D0 as a region of M− D. If (D−,D0) is a coherent pair in
M − D then this is also a coherent pair in M. If D0 is appended on the bottom
side of M− D, then (D,D0) is a coherent pair in M.  
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2 Alphabetically Constructed Relators

For natural numbers s < `, an (s, `) map is a map in R in which each region
has a short side with s edges and a long side with ` edges. Given an alphabet X
and words ws and w` on X having respective lengths s and `, the relator ws = w`

is an (s, `) relator and the semigroup presentation 〈X; ws = w`〉 is an (s, `)
presentation .

Assume that X is a finite or countable, ordered alphabet: X = {x1, x2, . . . },
with x1 < x2 . . . . A word w on X is said to be alphabetically constructed
if whenever xj occurs in w and i < j, then at least one occurrence of xi in w
precedes the first occurrence of xj . An (s, `) relator ws = w` is alphabetically
constructed if the concatenated word wsw` is.

Example 2.1. On the ordered alphabet {a, b, c, d, e}, the words abac, ab2aba3cacb,
and a2babacbadb are alphabetically constructed, but acab, bcd, and acad are not.

Proposition 2.2. If Y is any finite alphabet and w is any word on Y , then there
is an order on Y for which w is alphabetically constructed. For the letters of Y
which occur in w, this order is unique.

Proof. For letters x and y which occur in w, let x < y if the first occurrence of x in
w precedes the first occurrence of y in w. All letters that do not occur in w follow
those that do occur.  

Corollary 2.3. If a semigroup has an (s, `) presentation 〈Y ; ws = w`〉, then there
is an order on Y for which ws = w` is alphabetically constructed.  

Let x1 < x2 < x3 . . . be a given order for the alphabet X . Then any other order
xσ1 < xσ2 < xσ3 . . . corresponds to a permutation σ of X. The permutatuion
σ in turn induces an automorphism, which we will also denote by σ, of the free
semigroup FX via (xi1xi2 . . . xin)σ = xσi1xσi2 . . . xσin .

Proposition 2.4. If w is a word on X which is alphabetically constructed for the
order xσ1 < xσ2 < xσ3 . . . , then wσ−1 is alphabetically constructed for the order
x1 < x2 < x3 . . . . If w is also alphabetically constructed for the order xτ1 < xτ2 <
xτ3 . . . , then wτ−1 = wσ−1.

Proof. Write wσ−1 = xi1xi2 . . . xi . . . xj . . . xin . Then

w = (wσ−1)σ = xσi1xσi2 . . . xσi . . . xσj . . . xσin ,

hence xi precedes xj in wσ−1 if and only if xσi precedes xσj in w. If r distinct
letters occur in w, then σi ∈ {σ1, σ2, . . . , σr}, so 1 ≤ i ≤ r. By Proposition 2.2,
σi = τi for 1 ≤ i ≤ r, hence

w = (wσ−1)σ = xσi1xσi2 . . . xσin = xτi1xτi2 . . . xτin = (wσ−1)τ,

and wτ−1 = wσ−1.  

For a fixed order x1 < x2 < x3 . . . of X , define a function A on the set FX ×FX

by A(w,w′) = (wσ,w′σ) for any permutation σ of X such that the word (ww′)σ is
alphabetically constructed for the given order on X.
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Corollary 2.5. For any (s, `) presentation 〈X; (ws, w`)〉 on an ordered alphabet
X, the presentation 〈X;A(ws, w`)〉 has an alphabetically constructed (s, `) relator,
presents the same semigroup as 〈X; (ws, w`)〉, and is effectively obtained from the
presentation 〈X; (ws, w`)〉.  

The following combinatorial observation is mostly peripheral to the main results
of this paper, but it will help illustrate some later remarks.

Proposition 2.6. If Sn,r is the number of alphabetically constructed words of
length n on r distinct letters, then Sn,r is the Stirling number of the second kind.

Proof. Define a partition of the n positions in the word by assigning two positions
to the same subset if and only if the same letter occurs in both positions. Stirling
numbers of the second kind count the number of partitions that are possible.[1]
 

An obvious consequence of Proposition 2.6 is that for n = s + `, the number of
alphabetically constructed (s, `) relators is the Bell number

∑n
r=1 Sn,r. [1]

If S is any set and ρ is an equivalence relation on S, then for elements s and
t of S, we use the notations sρt and (s, t) ∈ ρ interchangeably. We use the usual
notation [s]ρ = {t | sρt} and S/ρ = {[s]ρ | s ∈ S}. We write [s] for [s]ρ whenever
context renders this unambiguous.

When S is a finite ordered set and ρ is an equivalence relation on S, we define
an induced order on S/ρ by [x] < [y] if the first element in [x] is less than the
first element in [y]. Now fix natural numbers s and ` with s < ` and let Z =
{z1, z2, . . . , zs+`} be an auxiliary ordered set. We regard Z as a set of positions
available for letters in (s, `) relator. Given a relation ρ on Z, we regard Z/ρ as
an initial segment of an ordered alphabet X. In more detail, suppose that r =
(ws, w`) is an (s, `) relator on X in which m distinct letters of X occur. Write
ws = y1y2 . . . ys and w` = ys+1ys+2 . . . ys+` where each yi is a letter of X. Define
a relation ρr on Z by ρr = {(zj, zk) | yj and yk in r are the same letter of X}.
Then ρr is an equivalence relation on Z having m distinct equivalence classes.
Conversely, given an equivalence relation ρ on Z, define words ws and w` on the
ordered alphabet Z/ρ by ws = [z1][z2] . . . [zs], and w` = [zs+1][zs+2] . . . [zs+`]. Then
the relator r(ρ) = (ws, w`) is an alphabetically constructed relator for the induced
order on the alphabet Z/ρ and the distinct letters of r(ρ) correspond to the ρ-
equivalence classes. Partly for notational convenience, we regard Z/ρ as an initial
segment of the ordered alphabet X and write xi for the ith letter in the induced
order on Z/ρ.

Proposition 2.7. If ρ is an equivalence relation on Z, then ρ = ρr(ρ). If r is
an (s, `) relator on X, then the number of distinct letters of X that occur in r is
the same as the number of letters in Z/ρr. If we use the induced order on Z/ρr

to identify Z/ρr with the initial segment of X, then r(ρr) = A(r). Thus there is
a bijection between alphabetically constructed (s, `) relators on X and equivalence
relations on Z .

Proof. For the first statement, (zi, zj) ∈ ρr(ρ) if and only if [zi] and [zj ] in the
relator r(ρ) are the same letter of the alphabet Z/ρ: the latter occurs if and only
if (zi, zj) ∈ ρ. For the second statement, each ρr-equivalence class corresponds to
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some letter of X which occurs in r. For the third statement, suppose first that r
is alphabetically constructed. Then the letter xi of X is the ith distinct letter to
occur in r, hence the equivalence class [z] of positions in which xi occurs will be the
ith class in the induced order on Z/ρr. Since we have hypothesized that we identify
this ith class with xi, we have r = r(ρr) for an alphabetically constructed relator
r. For a permutation σ of X, and a (s, `) relator r = (ws, w`), write rσ for the
(s, `) relator (wsσ, w`σ). Then for any such σ and any r, ρr = ρrσ, since ρr records
only the positions at which the same letters occur. In particular, ρr = ρA(r), so
r(ρr) = r(ρA(r)) = A(r).  

Suppose that r is an alphabetically constructed (s, `) relator, that ρ is the equiv-
alence relation on Z which corresponds to r, and that x is a letter of X which occurs
in r. Using reasonably standard notation, we define the restriction of ρ to x by

ρ|x = { (zi, zj) | [zi]ρ = [zj ]ρ = x } ∪ { (zk, zk) }

Then it is easy to see that ρ|x is an equivalence relation on Z, that ρ|x ⊆ ρ, and that
ρ = ∪x∈X ρ|x. We will also find it useful to define J(x, r) to be the set of indices
for letters of r which have value x. That is, J(x, r) = { i | yi = x} = { i | [zi]ρ = x}.
J = J(x, r) is the index set of x in r.

Example 2.8. For the (2, 5) relator a2 = bcabc, we have J(a, r) = {1, 2, 5},
J(b, r) = {3,6}, and J(c, r) = {4,7}. Also,

ρ|b = {(z3, z6), (z6, z3)}∪{(zk, zk)}1≤k≤7, ρ|c = {(z4, z7), (z7, z4)}∪{(zk, zk)}1≤k≤7

and ρ|a = { (zi, zj) }i,j∈J(a,r) ∪ { (zk, zk) }1≤k≤7

The set of equivalence relations on Z has a standard lattice structure given by
ρ1 ≤ ρ2 if ρ1 ⊆ ρ2, ρ1∧ ρ2 = ρ1∩ρ2, and ρ1∨ρ2 is the smallest equivalence relation
that contains the set ρ1 ∪ ρ2. Since we have a bijection between the equivalence
relations on Z and the set of alphabetically constructed (s, `) relators, we may
regard the latter set as a lattice which is isomorphic to the lattice of equivalence
relations.

Proposition 2.9. For i = 1, 2, let ri be an alphabetically constructed (s, `) relator,
let Xi be the initial segment of X consisting of letters that occur in ri, let ρi be
the equivalence relation on Z that corresponds to ri, and let Si be the semigroup
presented by 〈Xi; ri〉. Identify Xi with Z/ρi. Then r1 ≤ r2 if and only if the rule
([zj ]ρ1)f = [zj ]ρ2 determines a well-defined homomorphism from S1 onto S2.

Proof. Observe that r1 ≤ r2 ⇔ ρ1 ⊆ ρ2 ⇔ f is a well-defined function on the
alphabet Z/ρ1. Once f is well-defined on Z/ρ1, it is clear that r1f = r2 and that
f is onto.  

Example 2.10. If S1 is presented by 〈a, b, c ; ab = abcab〉, and S2 is presented
by 〈a, b, c ; a2 = a2ba2〉, then r1 ≤ r2 and setting af = a, bf = a, and cf = b
determines a well-defined homomorphism from S1 onto S2.
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3 Achievable Relators

We wish to define, for each (s, `) map M, a naturally occurring alphabetically
constructed (s, `) relator induced by M. This relator will be called the relator
achieved by M. Basically, we regard the map as a template to which we fit the
most intricate relator possible.

An edge of a feathery map M is an interior edge of M if it is on the boundary
of two regions of M. Write I or when necessary, IM, for the set of interior edges
of the feathery map M.

Suppose that M is an (s, `) map, that D is a region in M, and that e is an edge
of D. Using Remmers’ ordering of the edges of M, we define the index of e with
respect to D to be i if e is the ith edge on the short side of D and to be s + i if e
is the ith edge on the long side of D. This merely mirrors our order for the set Z
of positions for letters in (s, `) relators.

Let E be any subset of I. We define a relation RE on Z by RE = {(zi, zj) | There
are regions D and D′ of M having a common edge e ∈ E such that the index of e
with respect to D is i and the index of e with respect to D′ is j}. Let ρE be the
equivalence relation on Z that is generated by RE . Then the (s, `) relator r(ρE)
is the relator that is achieved by the subset E of interior edges of M. We will
abbreviate r(ρE ) by rE . Generally, we will be interested in the case where E = I . In
this case, we will use the notation RM, ρM, and rM. The relator that is achieved
by M is defined to be rM. When the (s, `) map M is clear from context, we may
further abbreviate to R, ρ, and r. If the (s, `) relator r is the relator that is achieved
by some (s, `) map, then we say that r is an achievable relator.

Example 3.1. A routine calculation shows that the relator a2 = a2b is the relator
achieved by the following (2, 3) map.

Let M be a map in R = F. An edge is constrained if it is on the boundary of
at least one region. An edge of M is unconstrained if it is not on the boundary
of any region of M. Every unconstrained edge in M is a block of M and a block
of M that contains a region of M can contain no unconstrained edges of M.

Let UM be the set of unconstrained edges of M, and let C = {(D, e) |D is a
region of M and e is on the boundary of D}. A bilabelling of M with values in
the semigroup S is a function φ from U ∪ C to S. In this paper, S will always be
the free semigroup on a finite ordered alphabet X. A bilabelling is consistent if
φ(D1, e) = φ(D2, e) whenever e is an interior edge on the boundary of two regions
D1 and D2. It is clear that every labelling of M induces a consistent bilabelling,
and that every consistent bilabelling of M induces a labelling.

Let M be an (s, `) map. Let r = (ws, w`) be an (s, `) relator on an ordered
alphabet X. Write ws = y1y2 . . . ys and w` = ys+1ys+2 . . . ys+`. We say that
a bilabelling φ corresponds to r if φ(D,e) = yi whenever the index of e with
respect to D is i. (On U , φ may have arbitrary values in X.) Since the consistency
of bilabelling depends only on the interior edges, if one bilabelling that corresponds
to r is consistent, then every bilabelling that corresponds to r is consistent.
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Proposition 3.2. Suppose that M is an (s, `) map, that rM is the relator that is
achieved by M, and that r is an alphabetically constructed relator which is equal to
or greater than rM in the lattice of alphabetically constructed relators. Then any
bilabelling of M which corresponds to r is consistent. Conversely, suppose that r
is the least alphabetically constructed relator such that every bilabelling of M which
corresponds to r is consistent. Then r is the relator that is achieved by M.

Proof. Throughout the proof we write ρ for ρr and ρM for ρrM . We also write
r = (ws, w`) where ws = y1y2 . . . ys and w` = ys+1ys+2 . . . ys+`.

Suppose that rM ≤ r. Let e be any interior edge of M and suppose that e has
index i with respect to some region D and has index j with respect to some region
D′. Then (zi, zj) ∈ ρM. Since rM ≤ r by hypothesis, we have ρM ⊆ ρ. It follows
that (zi, zj) ∈ ρ, so that yi = yj as required.

Recall that RM = {(zi, zj) | There are regions D and D′ of M having a common
edge e such that the index of e with respect to D is i and the index of e with respect
to D′ is j}. Observe that RM ⊆ ρ whenever r is an alphabetically constructed
relator for which the corresponding bilabellings are consistent. If r is the least
alphabetically constructed relator for which the corresponding bilabellings of M
are consistent, then ρ is the least equivalence relation on Z containing RM. Hence
ρ is ρM.  

Example 3.3. The relator a2 = b2a is not achievable. If it were achieved by some
map M, it would induce a consistent bilabelling on M. Since there are just the
two occurrences of the letter b in the relator, there would be some edge e in M
which has index three with respect to a region D1 and index four with respect to
a region D2. Consider the rightmost such edge e and let f and g be the edges of
D1 and D2, respectively, which follow e. The edge f must also have label b. Since
f and g have a common initial vertex, it follows from the geometric properties of
(s, `) maps that f must be the initial edge on the side of some region D3 of M.
Since f has label b, it must be the initial edge on the long side of D3. Then f has
index four with respect to D1 and index three with respect to D3; this contradicts
our assumption that e is the rightmost such edge.

Example 3.4. There are 52 alphabetically constructed (2,3) relators. We list and
number these and illustrate the lattice of alphabetically constructed (2, 3) relators.
Only 26 of these relators are achievable. The achievable relators are marked by
stars. The verification that the starred relators are achievable follows as in Example
3.1 using (2, 3) maps having 2,3, or 4 regions. The verification that the remaining
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(2, 3) relators are not achievable is generally less complicated than Example 3.3.

F 1 aa = aaa F 14 ab = bab 27 ab = acc 40 ab = ccb

F 2 aa = aab F 15 ab = bba 28 ab = bac F 41 ab = ccc

F 3 aa = aba F 16 ab = bbb 29 ab = bbc F 42 aa = bcd

4 aa = abb F 17 aa = abc F 30 ab = bca 43 ab = acd

F 5 aa = baa 18 aa = bac F 31 ab = bcb F 44 ab = bcd

F 6 aa = bab 19 aa = bbc 32 ab = bcc 45 ab = cad

7 aa = bba F 20 aa = bca 33 ab = caa 46 ab = cbd

F 8 aa = bbb F 21 aa = bcb F 34 ab = cab 47 ab = ccd

F 9 ab = aaa 22 aa = bcc 35 ab = cac F 48 ab = cda

10 ab = aab 23 ab = aac 36 ab = cba 49 ab = cdb

F 11 ab = aba F 24 ab = abc 37 ab = cbb F 50 ab = cdc

12 ab = abb F 25 ab = aca 38 ab = cbc 51 ab = cdd

F 13 ab = baa 26 ab = acb 39 ab = cca F 52 ab = cde.

The lattice of alphabetically constructed (2, 3) relators

Lemma 3.5. Suppose that M and M′ are (s, `) maps and that M ⊆ M′. Then
rM ≤ rM′ . Conversely, suppose that r and r′ are achievable (s, `) relators with
r ≤ r′ and that r = rM. Then there is an (s, `) map M′ with r′ = rM′ and
M ⊆ M′.
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Proof. We use again the definition RM = {(zi, zj) | There are regions D and D′

of M having a common edge e such that the index of e with respect to D is i and
the index of e with respect to D′ is j}. Since M ⊆ M′, we have RM ⊆ RM′ ,
and ρM ⊆ ρM′ . Conversely if r = rM and r′ is achievable with r ≤ r′, then there
is an (s, `) map N with r′ = rN . Let M′ be MN , the (s, `) map constructed by
identifying the initial vertex of N with the terminal vertex of M. Since r ≤ r′, we
will have that RM ⊆ ρM = ρr ⊆ ρr′ = ρN . It follows that RM ∪ RN is contained
in ρN , hence ρM′ = ρN , and rM′ = r′.  

Example 3.6. Given r ≤ r′ where r and r′ are achievable (s, `) relators and an
(s, `) map M′ with r′ = rM′, we cannot, in general, find a submap M of M′ with
r = rM. With r = (ab, cdc2dc) and r′ = (a2, bcb2cb), it is easy to see that r and
r′ are achieved by the following maps M and M′, that r ≤ r′, but that r is not
achieved by any submap of M′.

M

M′

Proposition 3.7. If r and r′ are achievable (s, `) relators, then their join, r ∨ r′

is also achievable.

Proof. Suppose that r is achieved by M and that r′ is achieved by M′. Then ρr∨r′

is the smallest equivalence relation on Z which contains ρM∪ρM′ , and hence is the
smallest equivalence relation on Z which contains RM ∪RM′ . Let M∨ be MM′,
the (s, `) map constructed by identifying the initial vertex of M′ with the terminal
vertex of M. Then RM∨ is RM ∪ RM′ , so r ∨ r′ is achieved by M∨.  

Example 3.8. While the join of two achievable relators is achievable, their meet
is not in general an achievable relator. If r is the (1, 7) relator (a, abcabca) and r′

is the (1, 7) relator (a, bcbcabc), then r and r′ are achieved by the respective maps
M and M′ below. A straightforward calculation of ρr, ρr′ , and ρr ∩ ρr′ shows that

ρr ∩ ρr′ = { (z4, z7), (z7, z4), (z5, z8), (z8, z5)} ∪ { (zi, zi) }

so that r ∧ r′ is a = bcdefde which is easily shown to be not achievable.

M

M′

If r is an alphabetically constructed (s, `) relator, let Lr be the set of achievable
(s, `) relators which are equal to or less than r. We define the paradigm of r, P(r)
to be the join of the finite set Lr. Since the relators of Lr are achievable, P(r) is
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an achievable relator. Since r itself is clearly an upper bound for Lr, we also have
that P(r) ≤ r. Every achievable relator is its own paradigm.

For further illustrations of the paradigm for a relator, we return to the (2, 3)
relators of Example 3.4. There, we claimed that r4 : aa = abb is not achievable.
Inspecting the lattice, we see that Lr4 = {r17, r42, r44, r52}, so that P(r4) is r17 :
aa = abc. Similarly, for r43 : ab = acd, we have L(r43) = {r52} so that P(r43) is
r52 : ab = cde.

Theorem 3.9. Suppose that r is an alphabetically constructed (s, `) relator and
that P(r) is the paradigm of r. If M is an (s, `) map and some bilabelling of M
which corresponds to r is consistent, than any bilabelling of M which corresponds
to P(r) is consistent.

Proof. Let rM be the (s, `) relator which is achieved by M. Since a bilabelling of
M which corresponds to r is consistent, rM ≤ r, by Proposition 3.2. Therefore,
the achievable relator rM is in the set Lr of achievable relators which are equal
to or less than r. It follows that rM ≤ P(r), since P(r) is the join of Lr. Using
Proposition 3.2 again, bilabellings of M which correspond to P(r) are consistent.
 

Theorem 3.10. Suppose that r and r′ are alphabetically constructed (s, `) relators
with r′ ≤ r. Suppose that M is an (s, `) map having no unconstrained edges and
that φ and φ′ are labels on M such that (M, φ) is a derivation diagram over 〈X ; r〉
for the pair (u, v) of words on X and (M, φ′) is a derivation diagram over 〈X; r′〉
for the pair (u′, v′). If (M, φ) is a minimal derivation diagram, then (M, φ′) is a
minimal derivation diagram also.

Proof. We use proof by contradiction. Suppose that (M, φ′) is not minimal. Then
there is a derivation diagram (N , ζ′) over 〈X; r′〉 for (u′, v′) with |N | < |M|. It will
suffice to show that we can define a label ζ on N such that (N , ζ) is a derivation
diagram over 〈X; r〉 for (u, v), since this will contradict the minimality of (M, φ).

Since (N , ζ ′) is a diagram over 〈X; r′〉, ζ ′ is induced by a consistent bilabelling
which corresponds to r′. By Proposition 3.5, r′ ≥ rN . Since r ≥ r′, every bilabelling
of N which corresponds to r will be consistent also. Suppose first that N has no
unconstrained edges. Then there is only one bilabelling of N which corresponds
to r and it induces a label ζ on N . We need to show that (N , ζ) is a derivation
diagram for (u, v). By symmetry, it will suffice to show that ζ(αN ) = u. Because
φ′(αM) = u′ = ζ′(αN ), αM and αN are paths of the same length, and we only need
to show that ζ(f) = φ(e) if f is the kth edge on αN and e is the kth edge on αM.
Suppose that the edge e has index i with respect to some region D1 of M and that f
has index j with respect to some region D2 of N . Because φ′(αM) = u′ = ζ ′(αN ),
we have that φ′(e) and ζ′(f) are the same letter. Both (M, φ′) and (N , ζ ′) are
derivation diagrams over 〈X; r′〉, hence (zi, zj) ∈ ρr′ . Since r′ ≤ r, ρr′ ⊆ ρr, and
(zi, zj) ∈ ρr. This insures that the labels of φ(e) and ζ(f) are the same letter of X .

When N has unconstrained edges, we still induce ζ from a consistent bilabelling
which corresponds to r, but we must specify how ζ is defined on the unconstrained
edges of N . If f is an unconstrained edge of N , then f occurs on both the bottom
side, αN , and the top side, ωN , of N . Suppose f is the jth edge which occurs
on αN , and is the kth edge which occurs on ωN . Let eb be the jth edge on the
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bottom side αM of M, and let et be the kth edge on the top side ωM of M. Then
φ′(eb) = ζ′(f) since φ′(αM) = u′ = ζ′(αN ), and similarly, φ′(et) = ζ ′(f) since
φ′(ωM) = v′ = ζ′(ωN ). Using φ′(eb) = φ′(et) and r′ ≤ r, we argue as above that
φ(eb) = φ(et). We may then define ζ(f) = φ(eb) = φ(et), and it will follow that
ζ(αN ) = u and ζ(ωN ) = v.  

Corollary 3.11. Let r and r′ be alphabetically constructed (s, `) relators with r′ ≤
r. Suppose that (M, φ) is a derivation diagram over 〈X ; r〉 for the pair (u, v) of
words on X and (M, φ′) is a derivation diagram over 〈X; r′〉 for the pair (u′, v′).
If (M, φ) is a quasiminimal derivation diagram, then (M, φ′) is a quasiminimal
derivation diagram also.

Proof. We may write M = M1M2 . . .Mk, where each Mi is a block of M. Each
Mi is either a single unconstrained edge of M, or else Mi contains no unconstrained
edges and (Mi, φ) is a minimal derivation diagram over 〈X; r〉. When Mi is a single
edge, clearly (Mi, φ

′) is a minimal derivation diagram over 〈X; r′〉. By Theorem
3.10, (Mi, φ

′) is also minimal over 〈X; r′〉 when (Mi, φ) is minimal over 〈X ; r〉 and
Mi contains no unconstrained edges.  

Theorem 3.12. Let r be an alphabetically constructed (s, `) relator on an ordered
alphabet X. If we know the paradigm P(r) for r and we have an algorithm which
solves the word problem for the semigroup presentation 〈X ; P(r)〉 then the word
problem for the semigroup presentation 〈X ; r〉 is also solvable.

Proof. Suppose that u and v are words on the alphabet X. Write S for the semi-
group presented by 〈X ; r〉 and write P for the semigroup presented by 〈X ; P(r)〉.
By Theorem 1.7, it will suffice to exhibit an algorithm which determines whether
or not there is a quasiminimal derivation diagram over 〈X ; r〉 for (u, v).

We may assume here that the alphabet X is finite. We list all pairs of words
(u′, v′) on X such that |u′| = |u| and |v′| = |v|. The number of such pairs is finite.
For each such pair, we may use the algorithm which solves the word problem for
〈X ; P(r)〉 to determine whether or not u′ and v′ represent the same element of
P. If u′ and v′ do represent the same element of P, we may use the algorithm
for 〈X ; P(r)〉 to find all possible quasiminimal derivation diagrams (M, φ′) over
〈X ; P(r)〉 for (u′, v′). For any such (M, φ′), we have rM ≤ P(r) ≤ r, so by
Proposition 3.2, every bilabelling of M which corresponds to r will be consistent.
For each (M, φ′) we obtain derivation diagrams over 〈X ; r〉 using the bilabelling
of M which corresponds to r and using all possible labels on any unconstrained
edges of M.

We claim that there is a quasiminimal derivation diagram over 〈X ; r〉 for (u, v)
if and only if some diagram in the list of the preceding paragraph is a derivation
diagram for (u, v). Clearly if one of the preceding diagrams is a derivation diagram
for (u, v) then there are quasiminimal derivation diagrams for (u, v) and we may
effectively find one. Conversely, suppose that there is a quasiminimal derivation
diagram M over 〈X ; r〉 for (u, v). Then by Theorem 3.9, the bilabelling of M which
corresponds to P(r) is consistent and we will obtain a derivation diagram (M, φ′)
over 〈X ; P(r)〉 for some pair of words (u′, v′) with |u′| = |u| and |v′| = |v|. By
Corollary 3.11, this is a quasiminimal derivation diagram, hence the quasiminimal
derivation diagram for (u, v) will occur in the list of the previous paragraph.
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We wish to improve upon Theorem 3.12 by showing that we always can effectively
compute the paradigm P(r) of an alphabetically constructed (s, `) relator r.

4. Local Computations: The Base Case

If r is an achievable (s, `) relator, let ρ = ρr be the corresponding equivalence
relation on the auxiliary alphabet Z. Let x represent some fixed ρ-equivalence class.
Then the (s, `) map M is an x-section for r if

(‡) ρ|x ⊆ ρM ⊆ ρ

Example 4.1. The relator r : a2 = bcb is an achievable (2, 3) relator where b =
[z3]ρ = [z5]ρ and J(b, r) = {3,5}. The following (2, 3) map is a b-section for r.

Remarks. (1) The inclusion ρ|x ⊆ ρM in (‡) requires that [zi]ρM = [zj ]ρM

whenever x = [zi]ρ = [zj ]ρ. In this sense, an x-section for r “achieves the x-part of
r. ” Note however, that if [zi]ρ = x, the equivalence class [zi]ρM will, in general,
be represented by some element of the ordered alphabet X which follows x, rather
than by x itself. In the example above, rM is ab = cdc and [z3]ρM = [z5]ρM = c.

(2) The inclusion ρM ⊆ ρ is equivalent to rM ≤ r. By Proposition 3.2, this is
equivalent to requiring that M, with the natural labelling induced by r, is always
a derivation diagram over the presentation 〈X; r〉. Thus an x-section for r is a
derivation diagram over 〈X; r〉 which achieves the x-part of r.

An x-section M for r is x-inceptive for r if |M| ≤ |N| whenever N is also an
x-section for r.

If an x-inceptive map M, with M > 0, has unconstrained edges, then we can
concatenate those blocks of M which do contain interior edges to construct a map
which is x-inceptive for r and which has no unconstrained edges. In the case where
|J(x, r)| = 1, all x-inceptive maps for r are regionless, and any walk Wk ∈ F0 is
x-inceptive for r.

In this section we show (Theorem 4.20) that if |J(x, r)| = 2 and M is an x-
inceptive map for r, then |M| ≤ `. This is the base case for an induction on
|J(x, r)|. In the next section, we show that if |J(x, r)| = j and M is an x-inceptive
map for r, then |M| ≤ (j − 1)`.

Lemma 4.2. Suppose that r is an achievable (s, `) relator and let X2 = {x ∈
X : |J(x, r) ≥ 2}. For each x ∈ X2, let Mx be an x-section for r. Then the
concatenation ∨x∈X2 Mx is an (s, `) map which achieves r.

Proof. It will suffice to show that ρ = ∪x∈X2 ρMx . Since each Mx is an x-section
for r, we have ρMx ⊆ ρ for each x ∈ X2, and ∪x∈X2 ρMx ⊆ ρ. Earlier (at the
end of section 2), it was remarked that ρ = ∪x∈Xρ|x. Since ρ|x is the identity
relation on Z when |J(x, r)| = 1, we can strengthen this to ρ = ∪x∈X2ρ|x. Then
ρ = ∪x∈X2ρ|x ⊆ ∪x∈X2 ρMx .  
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Lemma 4.3. If r is an achievable (s, `) relator, x occurs in r, and M is an x-
inceptive (s, `) map for r, then M is an inceptive (s, `) map for rM.

Proof. Let N be any (s, `) map that achieves rM. We need to show that |M| < |N |.
Since rN = rM, we have ρN = ρM and ρ|x ⊆ ρN ⊆ ρ because ρ|x ⊆ ρM ⊆ ρ. Thus
N is an x-section for r and the conclusion follows.  

Example 4.4. By Lemma 4.3, every (s, `) map M which is x-inceptive (for some
x and some r) is inceptive for the relator which it achieves. Being x-inceptive is
more restrictive than being inceptive. The following map is an inceptive (3, 5) map
for the relator abc = cabca, but it is not x-inceptive for x = a, b, or c.

Lemma 4.5. Suppose that r is an achievable (s, `) relator, that x occurs in r and
that M is x-inceptive for r. Let i ∈ J(x, r) and x̄ = [zi]ρM . Then M is also x̄-
inceptive for rM.

Proof. Let N be any x̄-section for rM. It will suffice to show that N is also an
x-section for r. Since M is an x-section for r, we have that ρM ⊆ ρ. A routine
argument shows that ρr|x = ρrM |x̄. Since N is an x̄-section for rM, we have

ρr|x = ρrM |x̄ ⊆ ρN ⊆ ρM ⊆ ρ.  

Example 4.6. The following map is an a-section for the achievable (1, 6)-relator
a = (aba)2 and it is a-inceptive for rM : a = abaaca, but it is not inceptive or
a-inceptive for a = (aba)2 which can be achieved by (1, 6) maps with only four
regions.

Example 4.7. The following three (1, 9) maps M1,M2, and M3 are all a-inceptive
for the (1, 9) relator a = baccdbbac. Since rM1 is a = bacdefgah, rM2 is a =
baccdebac, and rM3 is a = bacdebbac, we see that different x-inceptive maps may
achieve the x-part of r in distinctly different ways.

M1

M2

M3
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Let M be an (s, `) map and e an interior edge of M. The edge e is an {i, j}-edge
if e has index i with respect to D1 and has index j with respect to D2, where e
is on the common boundary of regions D1 and D2. We allow the possibility that
i = j. If e is an {i, i}-edge for some i, we will say that e is reflective. (In a slightly
different context, Remmers [10], see [11, p.293] or [2], defines such an edge to be
an interface.) If r is an achievable (s, `) relator and i ∈ J(x, r), we will say that an
{i, i}-edge e is x-reflective.

Lemma 4.8. Suppose that r is an achievable (s, `) relator, that the letter x occurs
in r, that J(x, r) = {i1, i2}, where i1 6= i2, and that M is an x-inceptive (s, `) map
for r. Then

(1) M has exactly two appended regions and every {i1, i2}-edge of M is on their
common boundary, and

(2) there is exactly one interior edge of M which is an {i1, i2}-edge.

Proof. By the definition of an x-section, M must have at least one edge which is
an {i1, i2}-edge. Since this edge is an interior edge, we must have |M| ≥ 2, and
hence by Lemma 1.5, M has at least two appended regions. Suppose that T is any
region which is appended on the top side of M. If (zi1 , zi2) ∈ ρM−T , then M−T is
also an x-section for r : this would contradict our hypothesis that M is x-inceptive
for r. Thus every {i1, i2}-edge of M must occur on the bottom side of every region
which is appended on the top side of M. This is impossible if there is more than
one region that is appended on the top side of M. Similarly, there is exactly one
appended region on the bottom of M and every {i1, i2}-edge of M occurs on the
top side of this region. Thus the first claim of the lemma is verified.

Suppose then that e and f are distinct {i1, i2}-edges in M. We show that i1 < i2
and i2 < i1, a contradiction. Let T be appended on the top side of M and let B
be appended on the bottom side of M, so that both e and f occur on both αT

and ωB. Assume, without loss of generality, that e precedes f on αT and hence on
ωB as well. Choose notation for the indices so that e has index i1 with respect to
B. Then f, by default, must have index i2 with respect to B. Since e precedes f
on ωB, we have i1 < i2. Since e and f are both {i1, i2}-edges, e has index i2 with
respect to T and f has index i1 with respect to T. Since e precedes f on αT , we
have i2 < i1.  

Several of the next lemmas will consider the size and structure of an x-inceptive
(s, `) map, M, for r when |J(x, r)| = 2. We find bounds for |M| depending upon
the values of i1 and i2. It will be efficient to use the conclusion of Lemma 4.8 and to
extend the notation in its proof as a common starting point for all of these lemmas.
Let r be an achievable (s, `) relator and x a letter that occurs exactly twice in r.
Let J(x, r)| = { i1, i2 }, where i1 < i2. Let M be an x-inceptive (s, `) map for r.
By Lemma 4.8, let e be the unique {i1, i2}-edge in M and let B and T be the
regions of M which are appended on the bottom and top sides, respectively. Write
αT = µ1γ1eγ2µ2 and ωB = ν1γ1eγ2ν2, where γ1eγ2 is the largest common walk
on the boundary of B and T containing e. Let v be the terminal vertex of γ1eγ2.
Express αM as α1αBα2 and express ωM as ω1ωT ω2. We allow the possibility that,
for i = 1,2, any of αi, ωi, µi, νi, or γi might be an empty walk. Let Mr (for Mright)
be the feathery submap of M which is bounded by ν2α2(µ2ω2)

−1. Note that v
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is the initial vertex of Mr. Let Mleft be the feathery submap of M bounded by
α1ν1(ω1µ1)

−1. All of our arguments will treat Mr. The corresponding arguments
for Mleft are dual.

Mleft Mr

Observe that if µ2 is empty, then Mr can have no regions. Otherwise, some
region of Mr that is appended on the top side of Mr would also be appended
on the top side of M, contradicting Lemma 4.8. Similarly, if ν2 is empty, then
|Mr| = 0, and if either µ1 or ν1 is empty, then |Mleft| = 0.

Lemma 4.9. Suppose that r is an achievable (s, `) relator, that the letter x occurs
in r, that J(x, r) = { i1, i2 }, where i1 < i2, and that M is an x-inceptive (s, `) map
for r.

(1) If i2 ≤ s, then |M| = 2.
(2) If i1 > s, and i2 − i1 ≤ s, then |M| = 2.

Proof. Assume without loss of generality that e has index i1 with respect to B and
has index i2 with respect to T. We show that µ2 is empty and hence |Mr| = 0. A
dual argument shows that ν1 is empty also. If e has index i2 with respect to B,
then the same line of reasoning shows that both µ1 and ν2 are empty.

Let f be the edge on the top side of B which has index i2 with respect to B.
Since e has index i2 with respect to T (and |J(x, r)| = 2), f cannot be an edge of
γ2. Write ν2 = ν′fν′′. In case (1), both e and f are on the short side of B, and ν′

is a segment of ωB containing neither e nor f , hence |ν′| ≤ s − 2. In case (2), we
have |ν′| ≤ |γ2ν

′| ≤ i2 − i1 − 1 < s.
Suppose first that the edge f is on the top side of M. Let ω′ be the segment

of ωM from the terminal vertex of T to the initial vertex of f. Then both ν′ and
µ2ω

′ are directed walks from v to the initial vertex of f. Hence ν′(µ2ω
′)−1 bounds

a feathery submap of M.

Since |ν′| < s, this submap cannot contain any regions, hence ν′ = µ2ω
′. By our

choice of γ2 (γ1eγ2 is a maximal walk common to ωB and αT containing e), any
initial edges of µ2 and ν2 = ν′fν′′ must be distinct. We conclude that µ2 is empty.

Now suppose that f is an interior edge of M. We show that this must lead to
a contradiction. If f is an interior edge of M, then f occurs on the bottom side
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of some region D of M. Because e is the unique {i1, i2}-edge of M, f must be an
{i2, i2}-edge. Write αD = α′gα′′fα′′′ where the edge g has index i1 with respect to
D. Since e and f occur on ωB and |J(x, r)| = 2, g cannot be an edge of ν′ which is
a segment of ωB .

By Lemma 1.4, we can find a directed walk, τ in the map Mr from the initial
vertex v of Mr to the initial vertex of D. Then ν′(τα′gα′′)−1 bounds a feathery
submap of Mr. Since |ν′| < s, this submap is regionless and g is an edge of ν′. This
contradiction shows that f cannot be an interior edge of M.  

Example 4.10. Case (2) in the preceding lemma was included because it required
little more than the argument for case (1). We will consider below the general case
of an x-inceptive map M for r when J(x, r) = {i1, i2} and s < i1 < i2. For now, we
give a fairly simple example which shows that M can have more than two regions if
we omit the hypothesis that i2−i1 < s. The (1, 5) relator a = bcacb is an achievable
relator on the alphabet {a, b, c}. The map below is c-inceptive and is inceptive for
this relator. Several generalizations of this example are possible.

Lemma 4.11. Suppose that r is an achievable (s, `) relator, that the letter x occurs
in r, that J(x, r) = { i1, i2 }, where i1 ≤ s < i2, and that M is an x-inceptive
(s, `) map for r. Then no edge of M is x-reflective.

Proof. We may assume without loss of generality that e has index i1 with respect
to B and has index i2 with respect to T, so that e is on the short side of B (since
i1 ≤ s) and is on the long side of T (since s < i2). Here, an x-reflective edge can be
only an {i1, i1}-edge or an {i2, i2}-edge. No edge on B can be x-reflective: e is an
{i1, i2}-edge and the edge which has index i2 with respect to B is on the bottom
side of M and is not an interior edge. Similarly, no edge on T can be x-reflective.
Since interior edges of M are either interior edges of Mr or interior edges of Mleft,
or else occur on αT or ωB, by symmetry, it will suffice to show that no interior edge
of Mr is x-reflective. (In the next lemma, using the current hypotheses, we will
show that Mr has no interior edges.)

We want to regard the edges of M as partially ordered using the order from
section 1 where g < f if there is a directed walk in M from the terminal vertex of g
to the initial vertex of f. Say that an x-reflective edge, f , of Mr is left-primitive if
there is no x-reflective edge g of Mr which precedes f in Mr. If Mr contains any
x-reflective edge f , then we can always obtain a left-primitive edge by repeatedly
replacing f by such a predecessor g until we obtain an x-reflective edge which is
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left-primitive. We will assume that there is at least one x-reflective edge in Mr

and we will contradict our hypothesis that Mr is x-inceptive.

For a (momentarily indeterminant) natural number i, let fi be a left-primitive
edge in Mr which occurs on the top side of a region Di−1 of Mr and on the bottom
side of a region Di of Mr. Inductively, for j < i, let fj be the edge on the bottom
side of Dj+1 which has index in J(x, r). At some point, the edge fj must occur
on the bottom side of M : when this occurs, we determine i so that j = 0 and f0

occurs on the bottom side of M. When fj is not on the bottom side of M, fj is
on the top side of some region Dj of Mr and we choose fj−1 to be the edge on the
bottom side of Dj which has index in J(x, r). Similarly, for j ≥ i, let fj+1 be the
edge on the top side of Dj which has index in J(x, r). If fj+1 is not on the top side
of Mr (and of M), then fj+1 is on the bottom side of some region Dj+1 of M.
Eventually, we must arrive at an edge fn which is on the top side of Mr. We have
edges fj for 0 ≤ j ≤ n, and for some i with 0 < i < n, the edge fi is left-primitive.
Write the bottom side, αDj , of Dj as α′

jfj−1α
′′
j , and write the top side, ωDj , of Dj

as ω′
jfjω

′′
j . For 1 ≤ j ≤ n, let τj be a directed walk in Mr from the initial vertex v

of Mr to the initial vertex of Dj . Observe that we can do this is such a way that
(τjω

′
j)(τj+1α

′
j+1)

−1 is a counterclockwise walk in Mr. (That is, if necessary, we

can exchange segments of τj with segments of τj+1 so that (τjω
′
j)(τj+1α

′
j+1)

−1 is a
counterclockwise walk in Mr, and we can start this with τ0 and τ1 and work our
way up.) Similarly, for 1 ≤ j ≤ n, let σj be a directed walk in Mr from the terminal
vertex of Dj to the terminal vertex of Mr, chosen so that (ω′′

j σj)(α
′′
j+1σ

′′
j+1)

−1 is
a counterclockwise walk. Let σ̂1 denote the terminal segment of αM whose initial
vertex is the terminal vertex of f0. then σ̂1 = α′′

1σ1: otherwise σ̂1(α
′′
1σ1)

−1 would
contain a region of M appended on the bottom side of M. Similarly, σn must be a
terminal segment of ωM.

We show concurrently, by induction on j for i ≤ j < n, that α′
j+1 = ω′

j and that
fj is left-primitive. A similar induction, from i backwards to j = 0, shows that
α′

j+1 = ω′
j and that fj is left-primitive for 0 < j ≤ i.

For the base step of the induction, we are given that fi is left-primitive. We
show that:
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(a) given that fj is left-primitive, we have α′
j+1 = ω′

j and τj = τj+1, and

(b) given that fj is left-primitive and α′
j+1 = ω′

j , then fj+1 is left-primitive.

For (a), let Nj be the feathery submap of Mr bounded by (τjω
′
j)(τj+1α

′
j+1)

−1.
It will suffice to show that |Nj | = 0 since this guarantees that τjω

′
j = τj+1α

′
j+1.

Because fj+1 has the same index with respect to both Dj and Dj+1, |ω′
j | = |α′

j+1|.
It thus follows from |Nj | = 0, that ω′

j = α′
j+1 and τj = τj+1. We will assume that

|Nj | > 0 and find a region E of Mr which is appended to M on the top side of M,
contradicting Lemma 4.8.

If |Nj | > 0, let D be a region of Nj which is appended on the top side of Nj . Let
g be the edge on the top side of D whose index with respect to D is in J(x, r). The
edge g must occur as an edge of τj+1 rather than in α′

j+1: the edge fj is the edge
on the bottom side of Dj+1 whose index with respect to Dj+1 is in J(x, r). Further,
g cannot be an {i1, i2}-edge by the uniquenes of e, and g cannot be x-reflective
because fj is left-primitive and g precedes fj in the positive walk τj+1α

′
j+1fj . Since

g cannot be an interior edge of M, it must occur on the to side of M. Let λ be the
terminal segment of ωM whose initial vertex is the terminal vertex of g. Let τ ′ be
the terminal segment of τj+1 whose initial vertex is the terminal vertex of g. Let
Pj be the feathery submap of Mr bounded by τ ′αDj+1σj+1λ

−1. Then |Pj| > 0,
because Dj+1 is appended to Pj on its bottom side. Then any region E which is
appended on the top side of Pj is also appended on the top side of M, producing
the expected contradiction.

For (b), we assume by induction that fj is left-primitive and that α′
j+1 = ω′

j .
We need to show that fj+1 is left-primitive. We show that if we suppose that fj+1

is not left-primitive, then we can contradict Lemma 4.8 by finding a region E2 of
Mr which is appended on the bottom side of M.

Suppose that g is an x-reflective edge of Mr which precedes fj+1. Let ξ1 be a
directed walk in Mr from the initial vertex v of Mr to the initial vertex of g and
let ξ2 be a directed walk in Mr from the terminal vertex of g to the initial vertex of
fj+1. Because fj+1 is left-primitive, the walk ξ2 cannot intersect τj+1ω

′
j+1. We can

choose the walk ξ1 so that τj+1ω
′
j+1(ξ1gξ2)

−1 is a counterclockwise walk in Mr. Let
Qj be the feathery submap of Mr that is bounded by this walk. Then |Qj | > 0,
because g occurs on its topside but cannot occur on its bottom side. Let D be a
region of Qj which is appended to the bottom side of Qj and let g2 be the edge on
the bottom side of D whose index with respect to D is in J(x, r). Then g2 can be
neither an {i1, i2}-edge nor an x-reflective edge, so g2 must occur on the bottom
side of M. Arguing as in part (a), let τ ′′ be the terminal segment of τj+1 whose
initial endpoint is the terminal endpoint of g2, and let λ2 be the terminal segment
of αM whose initial endpoint is the terminal endpoint of g. Then the submap of Mr

bounded by λ2(τ
′′ωDj+1σj+1)

−1 must contain a region E2 of Mr which is appended
to M on the bottom side of M. This completes the inductive proof of (a) and (b).

We have shown that if there were x-reflective edges in Mr, then we would have,
for some n ≥ 2, left-primitive edges fj , for 0 < j < n. Structurally, these edges
occur vertically between an edge f0 on the bottom side of M and an edge fn on the
top side of M. Further, each left-primitive fj would be on the top side of a region Dj

and on the bottom side of a region Dj+1, where all of these regions have a common
initial vertex. Let N ′ be the submap of Mr bounded by α′

1f0α
′′
1σ1(ω

′
nfnω′′

nσn)−1.
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Mleft

If n is odd, then ω′
n is an initial segment of the long side of Dn when α′

1 is an
initial segment of the short side of D1 and ω′

n is an initial segment of the short side
of Dn when α′

1 is an initial segment of the long side of D1. Suppose without loss
of generality that α′

1 is an initial segment on the long side of D1. We replace the
submap N ′ (having at least three regions D1,D2, D3) in M by a single region D′.
We identify the initial segment of length |α′

1| on the long side of D′ with α′
1 and

we identify the initial segment of length |ω′
1 on the short side of D′ with ω′

1. Let
M′ be the result of thus replacing N ′ in M with D′. The indices of edges on α′

1

and ω′
1 are not changed by this substitution, so ρM′ ⊆ ρM ⊆ ρr. Since the edge e

also occurs in M′, M′ is an x-section for r. This contradicts our choice of M as
x-inceptive.

If N is even, then ω′
n is an initial segment of the long side of Dn when α′

1 is an
initial segment of the long side of D1, and ω′

n is an initial segment of the short side
of Dn when α′

1 is an initial segment of the short side of D1. We obtain a map M′

by deleting N ′ and identifying α′
1 with ω′

1. Suppose that e1 is an edge on α′
1 which

is identified with an edge en on ω′
n in M′. If the index of e1 with respect to D1 in

M is j0, then j0 is also the index of en with respect to Dn in M. If e1 and en are
both interior edges of M, then e1 has index j1 with respect to some region and en

has index jn with respect to some region. Since (zj0 , zj1) and (zj0 , zjn) are in the
equivalence relation ρM, (zj1 , zjn) is in ρM also. If either e1 or en is a boundary
edge in M, then their identification contributes nothing to ρM′. We again have
ρM′ ⊆ ρM ⊆ ρr and that M′ is also an x-section for r, contradicting our choice of
M.

 

Lemma 4.12. Suppose that r is an achievable (s, `) relator, that the letter x occurs
in r, that J(x, r) = { i1, i2 }, where i1 ≤ s < i2, and that M is an x-inceptive
(s, `) map for r. Then |M| ≤ 4.

It will suffice to prove that Mr (and dually, Mleft) has at most one region. For
this draft, we provide two different proofs.

First Proof. Assume that |Mr| ≥ 2 and that Br and Tr are distinct regions of Mr

which are appended on the bottom and top sides of Mr, respectively. Let f be
the edge on the top side of Br whose index with respect to Br is in J(x, r). Let g
be the edge on the bottom side of Tr whose index with respect to Tr is in J(x, r).
By Lemma 4.8, the edges f and g cannot be {i1, i2}-edges. By Lemma 4.11, they
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cannot be x-reflective. Hence f must occur on the top side of M and g must occur
on the bottom side of M. If f precedes ωTr on ωMr , then Tr is appended to the
top side of M, contradicting Lemma 4.8. Similarly αBr must precede g on αMr .
Let θ1 be a directed walk on αMr from the terminal vertex of αBr to the initial
vertex of g and let θ2 be a directed walk on ωMr from the terminal vertex of ωTr

to the initial vertex of f. Write αTr = α′gα′′ and ωBr = ω′fω′′. Then α′′θ2fω′′θ1g
is a positive closed walk in M which is impossible by Lemma 1.3.  

Second Proof. Let D be any region of Mr whose initial vertex is the initial vertex
v of Mr. (By our choice of maximality of γ1eγ2, there must be such a region D if
|Mr| > 0.) Let f0 and f1 be the edges on the bottom and top sides of D whose
indices with respect to D are in J(x, r). Write αD = α′f0α

′′ and ωD = ω′f1ω
′′.

By Lemmas 4.8 and 4.11, f0 must occur on the bottom side of M as an edge of
α2 in αM = α1αBα2 and f1 must occur on the top side of M as an edge of ω2

in ωM = ω1ωT ω2. Write α2 = α3f0α4 and ω2 = ω3f1ω4. Let σ be any directed
walk from the terminal vertex of D to the terminal vertex of Mr. Recall that
Mr is bounded by ν2α2(µ2ω2)

−1, where ν2 and µ2 are terminal segments of ωB

and αT , respectively. Let Mbm,Mtp,Nbm, and Ntp be the feathery submaps of
Mr bounded by ν2α3(α

′)−1, ω′(µ2ω3)
−1, α4(α

′′σ)−1, and ω′′σ(ω4)
−1, respectively.

Then any region of Mr, other than D, must be in one of these four submaps. We
show that they are all regionless.

Mleft

Mtp

Mbt

Ntp

Nbt

If |Mbt| > 0, then some region of Mbt is appended to Mbt on the top side of
Mbt. Some edge on the top side of this appended region will have its index with
respect to the appended region in J(x, r). But f0 is the only edge on the bottom
side of D whose index with respect to D is in J(x, r). We conclude that |Mbt| = 0,
and similarly that |Mtp| = 0.

If |Nbt| > 0, then some region of Nbt would be appended to Nbt on the bottom
side of Nbt and appended to M on the bottom side of M. This contradicts Lemma
4.8, so |Nbt| = 0. Similarly, |Ntp| = 0.  

We define ‘up’-words,
j
i u, on the ordered alphabet X = {x1, x2, . . . , xn}. For

0 ≤ i < j ≤ n, let j
i u = xi+1xi+2 . . . xj . If j ≤ i, then j

i u is the empty word.

Observe that |jiu| = j − i if i ≤ j and that (j
i u)(k

j u) = k
i u if i ≤ j ≤ k.

Example 4.13. The following (3, 5) map is both inceptive and b-inceptive for the
(3, 5) relator aba = cdbcd. If D is either of the appended regions of M, then M−D
is not inceptive. Since |M| = 4, we cannot, in general, improve on the bound
given in the lemma above. If we replace a, b, c, and d with upwords on an ordered
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alphabet X, we obtain similar (s, `) maps with ` − s an even number and |s| ≥ 3,
where M is xi-inceptive for every letter xi that occurs in the word b.

For an alphabetically contructed (s, `) relator r and a letter x that occurs in r,
say that x is restricted to the long side of r if i ∈ J(x, r) ⇒ i > s, and that
x is restricted to the short side of r if i ∈ J(x, r) ⇒ i ≤ s. Typically, a letter
might occur in both sides of a relator rather than being restricted to one side or
the other.

Lemma 4.14. Suppose that r is an alphabetically constructed (s, `) relator, that
the letter x occurs in r, and that x is retricted to either the short side or the long
side of r. Let i1, i2 ∈ J(x, r) with i1 6= i2 and let N be a derivation diagram over
〈X ; r〉 which contains no {i, j}-edges for i, j ∈ J(x, r) except possibly x-reflective
ones.

Let e1 be an {i1, i1}-edge in N which occurs on the bottom side of a region D1

of N and on the top side of a region D2 of N . Then the edge on the bottom side
of D1 which has index i2 with respect to D1 is also the edge on the top side of D2

which has index i2 with respect to D2.

Proof. We may assume without loss of generality that i1 < i2. We use induction on
|N |. When |N | = 1, there are no {i1, i1}-edges and the lemma is vacuously true.
When |N | = 2, either there are no {i1, i1}-edges or else we must have αD1 = ωD2

in order that N is two-sided.

Assume then that |N | > 2. If N has an appended region D which is neither D1

nor D2, then the lemma is true by induction for N − D and is true then also for
N . By this, we may assume that D1 is the only appended region on the top side
of N and that D2 is the only appended region on the bottom side of N . Let f1

be the edge of D1 which has index i2 with respect to D1 and let f2 be the edge
of D2 which has index i2 with respect to D2. We need to show that f1 is f2. A
consequence is that this edge is an interior edge. As a step in the proof, we next
show that at least one of f1 or f2 must be an interior edge.

Assume, without loss of generality, that f1 is not an interior edge. Then f1 must
occur on the bottom side of N . An easy argument shows that f1 must occur after
αD2 on αN . (Otherwise, we will have a directed walk from f1 to e1 as well as a
directed walk from e1 to f1). Write αN = λ1αD2λ2f1λ3, αD1 = φ1e1φ2f1φ3 and
ωD2 = θ1e1θ2f2θ3.
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Let S be the feathery submap of N bounded by θ2f2θ3λ2φ
−1
2 . Since N is a

derivation diagram over 〈X; r〉 and no edges of φ2 are labelled by x, the edge f2

cannot occur on the top side of S. Hence, f2, occurs on the bottom side of some
region of S and is an interior edge of N , as required.

Now, using that f2 is an interior edge of N , either f2 is also an interior edge of
N −D1 or else f2 is on the top side of N −D1. In the latter case, f2 must coincide
with some edge on the bottom side of D1 and the index requirements force f1 = f2.
If the former case were to occur, by induction we could apply the lemma to the edge
f2 as an {i2, i2}-edge of the derivation diagram N − D1. A contradiction occurs
since e1 must then occur on the bottom side of some region of N −D1.  

Lemma 4.15. Suppose that N is an (s, `) map, that n1 regions of N have their
long side on the top and that n2 regions of N have their long side on the bottom.
Then |ωN | = |αN | + n1(` − s) + n2(s − `).

Proof. This follows by a routine induction on |N |.  

Lemma 4.16. Suppose that r is an alphabetically constructed (s, `) relator, that
the letter x occurs in r, and that x is retricted to either the short side or the long
side of r. Let N be a derivation diagram over 〈X; r〉 such that N contains no
{i, j}-edges for i 6= j and such that x occurs in neither αN nor ωN . Then |N | is
even and |αN | = |ωN |.

Proof. Let n1 be the number of regions of N which have their long side on the top
and let n2 be the number of regions of N which have their long side on the bottom.
By Lemma 4.14, any interior x-edge of N determines a pair of regions such that
every x-edge which occurs on the boundary of either region must occur on the top
side of one of the regions and and the bottom side of the other region. If n1 > n2,
then some region with edges labelled x on the top side cannot be paired with a
region where the edges labelled x are on the bottom side: when this happens, x
must occur in ωN . Similarly, if n2 > n1, then x occurs in αN . Since by hypothesis,
neither αN nor ωN contains an occurrence of x, we must have n1 = n2. Then
|N | = n1 + n2 is even and |αN | = |ωN | by Lemma 4.15.  

Lemma 4.17. Suppose that r is an achievable (s, `) relator, that the letter x occurs
in r, and that J(x, r) = { i }, where s < i. Let N be a derivation diagram over 〈X ; r〉
such that x occurs in neither αN nor ωN . Then αN = ωN .
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Proof. We use induction on |N | for |N | ≥ 0. It is obvious that αN = ωN when
|N | = 0. If |N | = 1, the hypothesis that x occurs in neither αN nor ωN must fail, so
the conclusion follows vacuously. When |N | = 2, the only way that the hypothesis
on occurrences of x can be satisfied is if the two regions share a common long side;
in this case, the conclusion is again clear. Assume then that |N | > 2. The following
sublemma will be useful. A corollary to the sublemma is that we may assume that
N has only one block.

Sublemma 4.17.1. If N contains a feathery submap E with 0 < |E| < |N |
such that x occurs in neither αE nor ωE , then the lemma is verified for N .

Proof of the first sublemma. By the induction hypothesis, we have that αE =
ωE . Let τ1 be a directed walk from the initial vertex of N to the initial vertex
of E and let τ2 be a directed walk from the terminal vertex of E to the terminal
vertex of N .

τ1

Ntop

E

Nbtm

ωN

ωE

αE

αN

τ2

Let Nbtm be the feathery submap of N bounded by αN (τ1αEτ2)
−1 and let

Ntop be the feathery submap of N bounded by τ1ωEτ2ω
−1
N . The top side of

Nbtm has the same label as the bottom side of Ntop, so we obtain a derivation
diagram N ′ over 〈X; r〉 when we identify the top side of Nbtm with the bottom
side of Ntop. Because |E| > 0, we have |N ′| < |N |. By induction, the lemma
is true for N ′. Since αN ′ = αN and ωN ′ = ωN , the lemma is verified for N
also.  Sublemma 4.17.1

We will call a pair of regions in N which share an edge labelled by x an x-pair.
Every region of N is a member of exactly one x-pair. The top region of an x-pair
has the edge which is labelled by x on its bottom side; the bottom region of an
x-pair has the edge which is labelled by x on its top side. We will write x-pairs as
ordered pairs ÀD, E¿ where D is the bottom region of the pair and E is the top
region. An x-pair is coinitial if the two regions have the same initial vertex; when
this occurs, we will call the common initial vertex the coinitial vertex of the pair.
An x-pair is coterminal if the two regions have the same terminal vertex. By the
sublemma, we may assume that no x-pair in N is both coinitial and coterminal.

Sublemma 4.17.2. With the hypotheses of the lemma, if N contains an x-
pair, then N contains at least one coinitial x-pair and at least one coterminal
x-pair.

Proof of the second sublemma. If f is a leftmost x-reflective edge, the the
x-pair which contains f is coinitial. If f is a rightmost x-reflective edge, then
the x-pair which contains f is coterminal.  Sublemma 4.17.2
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If ÀD1, E1¿ and ÀD2, E2¿ are x-pairs in N , then the number of coherence
bonds between ÀD1, E1¿ and ÀD2,E2¿ is the number of coherence pairs in
N among the following:
(D1, D2), (D1, E2), (E1, D2), (E1, E2), (D2,D1), (E2, D1), (D2, E1), and (E2, E1).

Sublemma 4.17.3. If N contains no proper feathery submaps with x-free
boundary and ÀD1,E1 ¿ and ÀD2, E2 ¿ are x-pairs in N , then there
are at most three coherence bonds between ÀD1, E1 ¿ and ÀD2, E2 ¿ . If
there are three coherence bonds between ÀD1, E1 ¿ and ÀD2,E2 ¿ then
by duality and change of notation, we may assume that one of the following
two cases occurs:

case (a) (D1, D2) is left-right coherent,

(D2, E1) is right-left coherent, and

(E1, E2) is left-right coherent, or

case (b) (D1, D2) is contractive,

(D2, E1) is right-left coherent, and

(E1, E2) is expansive.

Proof of the third sublemma. For any regions A and B, the definition for
the ordered pair (A, B) to be a coherent pair requires that A and B share
a common edge which is on the top side of A and the bottom side of B. It
follows that at most one of (A,B) and (B,A) can be a coherent pair. (For
a proof, consider the appended regions of the smallest feathery submap of N
containing both A and B.)

By the paragraph above, it is clear that there can be at most four coherence
bonds between ÀD1, E1 ¿ and ÀD2, E2 ¿ . We need to show that when
we do have at least three coherence bonds that the fourth cannot occur. In
doing this the structural assertions in the case where there are exactly three
coherence bonds will be justified. Suppose then that we do have at least three
coherence bonds. At least one of the coherence bonds must come either from
one of (D1, E2) and (E2, D1) or else from (E1, D2) and (D2, E1). If only one
coherence bond comes from these, then a second of the three coherence bonds
must come from (D1, D2) or (D2, D1) and the third from (E1, E2) or (E2, E1).
By vertical duality, we may assume that one bond is contributed by (D1,D2)
or (D2, D1) and another is contributed by (D2, E1) or (E1,D2). If it were the
case that coherence bonds were formed both among (D1, E2) and (E2, D1) and
also among (D2, E1) and (E1, D2), then any third or fourth bond would be
between either (D1, D2) and (D2,D1) or else between (E1, E2) and (E2, E1).
Using vertical duality again, we can assume in this case also that one bond is
contributed by (D1, D2) or (D2, D1) and another is contributed by (D2, E1)
or (E1, D2): that is, using vertical duality we may assume that this happens
in any case when there are at least three coherence bonds.

Since we may re-index the x-pairs by switching subscripts, we may as-
sume that (D1, D2) rather than (D2,D1) is a coherent pair. Using horizontal
duality, we may assume either that

(a) (D1,D2) is a left-right coherent pair or else that
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(b) (D1, D2) is a contractive coherent pair in which the edges on
αD2 occur to the right of the edge on ωD1 that is labelled x. (In this case, it is
also clear that αD2 is the short side of D2.) We separate the further analysis
of cases (a) and (b).

case (a). We have used duality above to ensure that one of (D2, E1) or
(E1,D2) is a coherent pair in N . We want to next verify that, with our
choices, (D2, E1) is a right-left coherent pair. Since (D1,D2) is a left-right
coherent pair, we may write ωD1 = ωγ and αD2 = γα for some positive paths
γ and α. Since ÀD1,E1¿ is an x-pair, we may write ω = ω1ω2e1ω3ω4 where
e1 is the common edge of ωD1 and αE1 which has label x and ω2e1ω3 is the
longest common segment of ωD1 and αE1 which contains e1.

τ2

τ1

Let α1 be the initial segment of αE1 which has the same terminal vertex
as ω1 and let α2 be the terminal segment of αE1 which has the same initial
vertex as ω4. Let τ1 be any directed path in N from the terminal vertex of
D2 to the terminal vertex of N . Observe that there is at least one directed
path τ2 in N from the terminal vertex of E1 to the terminal vertex of N
and that we may choose one of these so that the path (ω4αD2τ1)(α2τ2)

−1 is
counter-clockwise and bounds a feathery submap N1 of N . Since αD2 is on
the bottom side of N1 and edges of αE1 occur on the top side of N1, we can
see that (D2, E1) rather than (E1, D2) must be a coherent pair.

Next we claim that no edges of ωD2 can be edges on α1: if an edge f
occurred on both α1 and on ωD2 , we could construct a positive closed path
in N from f to e1 along αE1 and from e1 to f along ωD1 and ωD2 . Thus,
the coherent pair (D2, E1) cannot be a left-right coherent pair. Since e1 is
on αE1 and is on ωD1 rather than ωD2 , the coherent pair (D2, E1) cannot be
matched or contractive. Since D2 is the bottom region of the ÀD2, E2¿ , the
side ωD2 has the same length as αE1 and (D2, E1) cannot be expansive. The
remaining possibility is that (D2, E1) is a right-left coherent pair as required.
Notice that this forces ω4 to be an empty path since N contains no feathery
submaps with x-free boundary.
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From the illustration above, it is clear that neither (D1, E2) nor (E2,D1)
can now be a coherent pair in N . For a slightly more formal argument, first
note that (E2, D1) cannot be a coherent pair in N . If that happened, edges of
ωE2 would then be on the bottom side of the feathery submap of N bounded
by (αD1α)(ω1ω2e1ω3ωD2)

−1 and the edge labelled by x on the bottom side of
E2 would occur on the top side of this same submap. (D1, E2) cannot be a
matched, expansive, or contractive coherent pair because ωD1 and αE2 have
the same length and share edges labelled by x with other regions. (D1, E2)
cannot be a left-right coherent pair because (D1,D2) is a left-right coherent
pair. Let e2 be the edge common to ωD2 and αE2 that is labelled by x. (D1, E2)
cannot be a right-left coherent pair because this would force a positive closed
path in N (along ωD1 and ωD2 from e1 to e2 and then along αE2 and ωD1

from e2 to e1.)

Next, we need to show that (E1, E2) rather than (E2, E1) is the third
coherent pair and that (E1, E2) is a left-right coherent pair.

To see that (E2,E1) cannot be a coherent pair, first observe that, except
for the edges on α1, the edges on αE1 are already shared with ωD1 or ωD2 . If
the terminal edge f of ωE2 were to occur on α1 then there would be a positive
closed path in N from e2 to the terminal vertex of f along αE2 and from the
terminal vertex of f to e2 along αE1 and ωD2 .

ν1

ν2

ν3
ν4

Write αE2 as ν1ν2e2ν3ν4 where ν2e2ν3 is the longest common segment of
ωD2 and αE2 which contains e2. Because e2 is on αE2 , (E1, E2) cannot be a
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matched coherent pair or a contractive coherent pair. If any edge f of ν4 was
also an edge on ωE1 , then there would be a positive closed path in N from
e2 to f along ν3 and ν4, and then from f to e2 along ωE1 and ωD2 . Hence
(E1,E2) can be neither a right-left coherent pair nor an expansive coherent
pair with ωE1 a segment of ν4. We will conclude case (a) by showing that
(E1,E2) can only be a left-right coherent pair because ν1 is too short for
(E1,E2) to be an expansive coherent pair with ωE1 a segment of ν1. We need
to show that |ωE1 | > |ν1|.

Because N contains no feathery submaps with x-free boundary, we can
make the following observation. If (E1, E2) is an expansive coherent pair
with ωE1 a segment of ν1, then ν1 = µωE1 for some directed path µ and the
terminal vertex of E1 is the initial vertex of ν2. Since the initial segments of
αE2 and ωD2 are then ν1ν2e2 and α2ν2e2 (where e2 has the same index with
respect to E2 and D2), we see that |ν1| = |α2|. A similar argument for e1ω3α2

and e1ω3γ shows that |α2| = |γ|. Since (D1, D2) is a left-right coherent pair,
with αD2 = γα, we have |αD2 | > |γ|. Both αD2 and ωE1 are short sides of
regions, so we have |ωE1 | = |αD2 | > |γ| = |α2| = |ν1|, as required

case (b). Assume now that αD2 is a segment of ωD1 that occurs to the
right of e1 on ωD1 and write ωD1 as ω1ω2e1ω3ω4αD2ω5 where ω2e1ω3 is the
longest common segment of ωD1 and αE1 which contains e1.

As in case (a), we have already used duality to assure that one of (D2, E1)
or (D2, E1) is a coherent pair in N . In the current case, it is easy to see that
the coherent pair must be (D2, E1) because αD2 is a segment of ωD1 . Since
ωD2 and αE1 have the same length and share edges labelled by x with other
regions, (D2, E1) cannot be an expansive, contractive, or matched coherent
pair. As in earlier argument, if (D2, E1) were a left-right coherent pair, we
would have a positive closed path in N . Thus (D2,E1) must be a right-left
coherent pair. Let e2 be the edge common to ωD2 and αE2 which has label x.
We may write αE1 as α1ω2e1ω3α2 and ωD2 as α2ν1ν2e2ν3ν4 where ν2e2ν3 is
the longest common segment of ωD2 and αE2 containing e2.
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µ1

ν1
ν2 ν3

ν4

µ2

As in case (a), we need to show that neither (E2, D1) nor (D1, E2) can be
a coherent pair. Since αD1(ω1ω2e1ω3ωD2ω5)

−1 bounds a feathery submap of
N and e2 occurs on the top side of this map, no edge of ωE2 can occur on
αD1 . Thus, (E2, D1) is not a coherent pair. Since ωD1 and αE2 have the same
length and share edges labelled by x with other regions, (D1,E2) cannot be
a contractive, expansive or matched coherent pair. If (D1, E2) were either a
right-left coherent pair or a left-right coherent pair, we would find positive
closed paths in N .

Next we need to show that (E1, E2) rather than (E2,E1) is a coherent pair
in N . We need only observe that if the terminal edge of ωE2 were an edge
on α1, then we would have a positive closed path in N . We are now reduced
to the case that (E1,E2) is a coherent pair in N . Write αE2 as µ1ν2E2ν3µ2.
To conclude the proof of this sublemma, we will show that ωE1 is a segment
of µ1. Because e2 occurs on αE2 , we cannot have that (E1, E2) is matched
or contractive. If the initial edge of ωE2 occurred on µ2, we would have a
positive closed path in N . The remaining possibilities are that (E1, E2) is
left-right coherent or that ωE1 is a segment of µ1. In either case, we can see
that (because N contains no proper feathery submaps with x-free boundary)
ν1 must be empty. We now need only show that |µ1| ≥ |ωE1 |. With arguments
like those in case (a), we can see that |µ1| = |α2| = |αD2ω5| ≥ |αD2 | = |ωe1 |.
 Sublemma 4.17.3

Sublemma 4.17.4. If ÀD1, E1 ¿ is a coinitial x-pair in N , ÀD2,E2¿
is an x-pair in N , and there are three coherence bonds between ÀD1, E1 ¿
and ÀD2, E2¿ , then the lemma is verified for N .

If ÀD1, E1¿ is a coterminal x-pair in N , ÀD2,E2¿ is an x-pair in N ,
and there are three coherence bonds between ÀD1, E1 ¿ and ÀD2, E2 ¿ ,
then the lemma is verified for N .

Proof of the fourth sublemma. The two assertions are dual, so we may assume
that we are in the case where ÀD1, E1¿ is coinitial and then that we are in
one of the two structural cases (a) and (b) in the conclusion of the previous
sublemma.

case (a) Let ei be the x-relective edge for ÀDi, Di¿ . Since ÀD1, E1¿
is coinitial, we can write ωD1 as µ1λ2 and αE1 as µ1λ3 for positive paths µ1, λ2

and λ3 where e1 occurs on µ1 and the initial edge of λ2 is distinct from the



34 DAVID A. JACKSON

initial edge of λ3. Since (D1, D2) is a left-right coherent pair, we can write αD2

as λ2α2 for some positive path α2. Since (D2, E1) is a right left-coherent pair
and ÀD2, E2¿ is an x-pair, we can write ωD2 as λ3µ2 ψ 1 where e2 occurs on
µ2 and µ2 is the longest common segment of ωD2 and αE2 containing e2. Since
(E1,E2) is a left-right coherent pair, write ωE1 as ω1λ4 and αE2 as λ4µ2 ψ 2.

ψ 2

ψ 1

In the previous sublemma, we saw, with different notation, that |λ2| =
|λ3| = |λ4| and that this common length is less than the length s for short
sides of regions. Hence, we may also write αD1 as α1λ1 and ωE2 as λ5ω2 for
positive walks λ1, α1, λ5 and ω2 where |λi| = |λj | for 1 ≤ i, j ≤ 5.

We next argue that λi = λj for 1 ≤ i, j ≤ 5. First, λ2 = λ3, since λ2 and λ3

have the same length and are terminal segments of the long sides of D1 and
E1, respectively. Next, λ3 = λ4 since λ3 and λ4 have the same length and are
initial segments on the long sides of D2 and E2, respectively. Then, λ2 = λ5,
since λ2 and λ5 are initial segments on the short sides of D2 and E2. Finally,
λ1 = λ4, since λ1 and λ4 are terminal segments on the short sides of D1 and
E1. It is similarly apparent that α1 = ω1 and α2 = ω2.

Choose any directed path τ0 from the initial endpoint of N to the ini-
tial endpoint of α1, µ1, and ω1. Let τ1 be a directed path from the terminal
endpoint of ψ 1 to the terminal endpoint of N and choose a directed path τ2

from the terminal endpoint of ψ 2 to the terminal endpoint of N such that
(ψ 1τ1)( ψ 2τ2)

−1 is counterclockwise. Let Nmedial be the feathery submap of
N that is bounded by (ψ 1τ1)( ψ 2τ2)

−1. Let Nbottom and Ntop be the feathery

submaps of N that are bounded by αN (τ0α1λ1α2τ1)
−1 and (τ0ω1λ5ω2τ2)ω

−1
N .
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τ0

Ntop

Nbottom

ψ 2

ψ 1

τ2

Nmedial

τ1

Append a region D′
2 to the top of Nbottom, identifying the short side of D′

2

with λ1α2 to obtain a feathery map N1. Write the top side of D′
2 as λ′

3µ
′
2 ψ

′
1

where λ3 = λ′
3, µ2 = µ′

2 and ψ 1 = ψ ′
1. Append the feathery submap Nmedial

to the tops side of N1 along ψ ′
1τ1 to obtain a feathery map N2. Append a

region E′
2 to the top side of N2 along λ′

3µ
′
2 ψ 2, to obtain a feathery map N3.

Here, ÀD′
2, E

′
2 ¿ is a coinitial x-pair. Write the top side of E′

2 as λ′
5ω

′
2

where λ5 = λ′
5 and ω2 = ω′

2. Since α1 = ω1 we can identify the bottom side of
Ntop with the top side of N3 to obtain a feathery map N4 which has |N | − 2
regions. Then αN4 = ωN4 , by induction on |N |, so αN = ωN .

case(b)
 Sublemma 4.17.4

Sublemma 4.17.5. If N contains at least two x-pairs and there are no proper
feathery submaps of N with x-free boundary, then there is a coinitial x-pair
ÀD1,E1 ¿ and an x-pair ÀD2, E2 ¿ with at least two coherence bonds
between ÀD1, E1¿ and ÀD2, E2¿ .

If N contains at least two x-pairs and there are no proper feathery submaps
of N with x-free boundary, then there is a coterminal x-pair ÀD1,E1¿ and
an x-pair ÀD2, E2¿ with at least two coherence bonds between ÀD1, E1¿
and ÀD2, E2¿ .

Proof of the fifth sublemma.
 Sublemma 4.17.5

Sublemma 4.17.6. If ÀD1, E1 ¿ is a coinitial x-pair in N , ÀD2,E2¿
is an x-pair in N , and there are two coherence bonds between ÀD1, E1 ¿
and ÀD2, E2¿ , then the lemma is verified for N .

If ÀD1, E1 ¿ is a coterminal x-pair in N , ÀD2, E2 ¿ is an x-pair in
N , and there are two coherence bonds between ÀD1, E1¿ and ÀD2,E2¿ ,
then the lemma is verified for N .

Proof of the sixth sublemma.
 Sublemma 4.17.6

TO BE COMPLETED
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Lemma 4.18. Suppose that r is an achievable (s, `) relator, that the letter x occurs
in r, and that J(x, r) = { i1, i2 }, where s < i1 < i2. Let N be a derivation diagram
over 〈X; r〉 which contains no {i1, i2}-edges. If neither αN nor ωN contains an
occurrence of x, then αN = ωN .

Proof. Since J(x, r) = { i1, i2 } and N contains no {i1, i2}-edges, [zi1 ]ρN 6= [zi2 ]ρN

and J([zi1 ]ρN , rN ) = { i1 }. Write φ for the labelling on N which corresponds to
r and write φ′ for the labelling on N which corresponds to rN . Since x occurs in
neither φ(αN ) nor φ(ωN ), [zi1 ]ρN cannot occur in φ′(αN ) or φ′(ωN ). By Lemma
4.17, we have φ′(αN ) = φ′(ωN ). By Lemma 3.2, rN ≤ r. Define a function f from
〈X ; rN 〉 to 〈X; R〉 by f([zj ]ρN ) = [zj]ρ. By Proposition 2.9, this is a well-defined
homomorphism. Since fφ′(e) = φ(e) for every edge e, we have φ(αN ) = φ(ωN ).
 

Lemma 4.19. Suppose that r is an achievable (s, `) relator, that the letter x occurs
in r, that J(x, r) = { i1, i2 }, where s < i1 < i2, and that M is an x-inceptive
(s, `) map for r. Then no edge of M is x-reflective.

Proof. We return to the notation for M that was introduced following Lemma 4.8.

Mleft Mr

By (horizontal) symmetry, it will suffice to prove that no edge on µ2 or ν2 is
x-reflective and that no interior edge of Mr is x-reflective. By (vertical) symmetry,
we may assume that e has index i1 with respect to T and has index i2 with respect
to B. Let f be the edge on the bottom side of T which has index i2 with respect
to T.

The only edges on the top side of B which can have label x are those which
have index i1 or i2 with respect to B. Since e has label i2 with respect to B and ν2

follows e on ωB, no edge of ν2 can be x-reflective or even have label x.
The edge f must occur on µ2 rather than on γ2: it has label x so it cannot follow

e on the top side of B. Suppose, for the sake of contradiction, that f is x-reflective
in M. Then Lemma 4.14 applies to f and e as edges of M−B and e must be an x-
reflective edge in M−B, also. This is impossible since e is the unique {i1, i2}-edge
of M.

We need finally to show that no interior edge of Mr can be x-reflective. We
show that every edge of Mr which has label x must occur on the bottom side of
Mr.

TO BE COMPLETED
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Lemma 4.20. Suppose that r is an achievable (s, `) relator, that the letter x occurs
in r, that J(x, r) = { i1, i2 }, where s < i1 < i2, and that M is an x-inceptive
(s, `) map for r. Then |M| ≤ `.

Theorem 4.21. Suppose that r is an achievable (s, `) relator, that the letter x
occurs in r, that |J(x, r)| = 2, and that M is an x-inceptive (s, `) map for r. Then
|M| ≤ `.

Proof. This summarizes Lemmas 4.9, 4.12, and 4.20.  

5. Local Computations: The Induction Step

Theorem 5.1. Suppose that r is an achievable (s, `) relator, that the letter x occurs
in r, that |J(x, r)| = j, and that M is an x-inceptive (s, `) map for r. Then |M| ≤
(j − 1)`.

Theorem 5.2. Suppose that r is an achievable (s, `) relator and that M is an
inceptive (s, `) map for r. Then |M| ≤ `(s + ` − 2).
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