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ACHIEVABLE RELATORS

DAvID A. JACKSON

ABSTRACT. The principal result of this paper is a reduction of the word problem for
one relator semigroups. Crudely, a relator (w,w’) on the alphabet X is achievable
if the letters in the relator can actively participate in sequences of transitions for
the semigroup presentation (X; (w,w’)). (A precise definition of achievable relators
is given in section 3.) Empirically, achievable relators are rare. We prove that the
word problem for a one relator semigroup presentation can be reduced to the word
problem for a presentation where the relator is achievable.

1 BACKGROUND AND PRELIMINARIES

A directed planar map (or simply map) is a finite collection of vertices, edges,
and regions in the Euclidean plane, together with an orientation for the set of edges.
Here we will require that each edge has two distinct vertices for its endpoints. We
also make the usual requirements that vertices, edges, and regions are pairwise
disjoint, that regions are homeomorphic to the unit disk, and that each region has a
connected boundary which is a union of edges and their endpoints. The orientation
of the edges distinguishes an initial endpoint and a terminal endpoint for each edge.
Two maps are the same if one can be mapped onto the other by a homeomorphism
of the plane which induces a one-to-one function preserving vertices, edges, regions,
incidence, and orientation.

Let D be a region of any map or let M be a connected and simply connected
map. A boundary walk for D or for M is a closed walk of minimal length
which includes all of the edges on the topological boundary of D or of M. For
our purposes, we make the additional requirement that all boundary walks must be
oriented counterclockwise in the plane. It follows that if 7 is any boundary walk
for a fixed map or region, then all other boundary walks for this map or region
can be regarded as cyclic permutations of the edges of . A map or region @ is
two-sided if it has a boundary walk of the form ag(wg)™! where ag and wq are
positive walks, the respective bottom and top sides of Q.

We define W; to be the map consisting of a single directed edge e; together
with its initial vertex vg and its terminal vertex v;. For &k > 1, the map Wy is
defined inductively by Wy = Wig_1 U {vg, ex} where vy, is a vertex and ey is an
edges with initial vertex vy_; and terminal vertex vg. It is easy to see that each
W, is two-sided and a tree.

Let Fo = {Wyg|k > 1}. Assume, for induction, that a set F; of two-sided maps
having two-sided regions has been defined and that each map in F; has j regions.
Let I; be an index set of triples (k, M, o) where k is a natural number, M € F;,
and o is a nontrivial segment of the top side of M having initial endpoint ug and
terminal endpoint u;. Given such a triple, we define a map F(k, M, o) to be

M U {U17'U2,.. .,vk,l,el,...,ek,DjJrl}
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where each v; is a vertex, each e; is an edge with initial vertex v;_1 and terminal
vertex v;, (Let vo = up and vy = u;.) and Dj;q is a region having bottom side
o and top side ejes...ex. See the following illustration. Then F(k, M, o) and its
j + 1 regions are two-sided. Let F,; = {F(k,M,0) | (k,M,o) € I;} and let
F =U72F;. To facilitate a brief discussion in this paper, we will call a map in F
a feather or a feathery map .

A vertex v in a map M is a source if for every other vertex w of M, there is a
positive walk in M from v to w. Dually, v is a sink if there is a positive walk from
every such w to v. A vertex is a transmitter is it has indegree 0 and a receiver
is it has outdegree 0. The set R of maps is defined by R = {M | M is two-sided,
each region of M is two-sided, and no interior vertex of M is a transmitter or a
receiver}. It can be shown that for maps in R, a vertex is a transmitter if and only
if it is a source and a vertex is a receiver if and only if it is a sink. John Remmers
introduced the set R in his thesis [10] where the maps of R were called monotone
maps. In a published part of Remmers’ thesis [11], the maps of R are called regular
maps. In both [10] and [11], Remmers proves the essential details of the following
theorem. For a more recent exposition of this and other properties of regular maps,
the reader should see Higgins’ book [2].

Theorem 1.1. R=F.
Corollary 1.2. If M € F and N is a two-sided submap of M, then N € F.

Hence the maps that we have called feathers above are the same as the maps
which have previously been called monotone maps [4,10] or regular maps [5,11].
Higgins [2] like Howie and Pride [3] bypasses the need to assign any name for these
maps by proceeding directly to the closely related notion of a diagram (See below.).
For the purposes of this paper, it is essential to discuss feathers or regular maps
as well as diagrams. The usefulness of these maps and the related diagrams has
also been discovered independently by Kasincev [6,7,8]. More recently, they have
also been discovered by Power [9] who calls them pasting schemes; unlike the other
authors who work with semigroups, Power uses these maps for a construction in
category theory.

Given that R = F, the next three lemmas are easily seen to be true for F and
hence for R also. As well as being useful observations, they are instrumental in the
proof that R C F. For proofs, see [10], [11,pp. 286,287] or [2,pp. 75,76]

Lemma 1.3 (Remmers). If M is a map in R, then there are no positive closed
walks in M.

Lemma 1.4 (Remmers). Suppose that M is a map in R. If v is a vertex of M,
then there is a positive walk from the initial vertex of M to the terminal vertex of
M which contains v. If e is an edge of M, then there is a positive walk from the
initial vertex of M to the terminal vertex of M which contains e.
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A region D of the map M is appended on the top side of M if wp is a
segment of wy and is appended on the bottom side of M if ap is a segment
of apq. A region D is an appended region of M if it is appended on either side
of M.

Lemma 1.5 (Remmers). If M € R and has at least one region, then there are
regions B and T of M which are appended on the bottom and top sides of M,
respectively. If M has at least two regions, then we can choose regions B and T
which are distinct.

Suppose that M is a feathery map and that D is an appended region on the
bottom side of M. Write axy = AgapA;. We allow Ao and/or A\; to be empty.
We define M — D to be the feathery submap of M which has boundary walk
Aow D)\lewl. Equivalently, M — D is the feathery submap of M which consists of
all of the regions of M except D, all of the edges of M except those on ap, and
all of the vertices of M except those which are interior vertices on ap.

Similarly, if D is appended on the top side of M, but is not appended on the
bottom side of M, write wyq = powppr. Then M — D is the feathery submap of
M which has boundary walk aa(uoap ul)’l. The reader should note that we have
made a rather arbitrary choice about which side of D to include as part of M — D
in the case where D is appended on both sides of M.

More generally, suppose that S = {D1, Da,...,D,} is any set of appended re-
gions of M. Write a;; and w; for ap, and wp,. We may renumber so that

(1) For 0<p<gq, D1,Ds,...,D, are appended on the bottom side of M,
(2) Dp1,...,Dq are appended on the top side of M, but not on the bottom
side of M,
(3) AN = )\00(1A10[2 e Oép)\p, and
(4) WM = ppWp+1Hp+1 - - - Wallq
where the A; and p; are positive or empty walks. Then we define M — S to be the
feathery submap of M which has boundary walk

(AowiAiws .. wpAp) (HpQp+1Hp+1 - - - qhq)

Observe that when S = {D}, then M — S = M — D.

If M1, Ma, ..., My, are feathers, then we define M1 Msj ... M, to be the feather
that is obtained by identifying the terminal vertex of M; with the initial vertex of
My for 1 <i < k—1. We will also use the notation V¥_, M; for My My ... My,
and the notation M7V Ms for M1 M. In some applications, we may have feathers
M. indexed by a set whose order is irrelevant and we will write \/T M. and take
this to mean any one of several possible feathers depending upon the order chosen.

The vertex v in the feather M is a separating vertex in M if M — v is
disconnected. Every separating vertex in M must be on both the top and bottom
side of M. A feather is nonseparable if it has no separating vertices. A block of
a feather is a maximal nonseparable submap. A block of a feather is itself a feather.
For any feather M, we may write M = M1 My ... M}, where the M; are all of the
blocks of M and their common vertices are all of the separating vertices of M.

For any map M, the set W of positive walks in M is a partial groupoid (i.e.
concatenation is a partially defined associative binary operation) generated by the
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edges of M. If S is any semigroup, a function ¢ from W to S is a labelling of
M with values in S when ¢ is a partial homomorphism from W to S. (Le.
¢(mo) = ¢(m)¢p(o) whenever the concatenation mo is defined.) Of course, ¢ is
determined once it is defined on the edges which generate W+ and any choice of
labels for the edges will produce a well-defined labelling of M with values in S.
A diagram over the semigroup S is a pair (M, ¢) where M is a map and ¢
is a labelling with values in S. If N is a submap of M, it will not result in any
confusion if we also use the notation ¢ for the restriction, ¢|xr, of ¢ to N. For this
paper, S will always be the free semigroup Fx on some set X, and we will refer
to (M, ¢) as a diagram over X. Often the function ¢ is obvious from context
and we refer simply to a diagram M. Having suppressed ¢, we then write & for
the label ¢(o) on a positive walk 0. A vertex in a map M is superfluous if its
indegree and its outdegree are both 1. Throughout this paper, the maps used will
have enough superfluous vertices that we can label each edge by a letter of X rather
than a longer word of F'x. We use |w| for the length of a word in the free semigroup
Fx, and we use |o| for the length of a positive walk in M. Since we label each edge
by a letter, we will always have |o| = |7|. This convention on superfluous vertices
is useful in this paper. In several of the other papers using derivation diagrams,
it is useful to assume instead that maps have no superfluous vertices and conclude
only that |o| < |7].

If Q is a two-sided diagram or if ) is a two-sided region in a diagram, then the
boundary label of @ is the ordered pair (ag,wg) of labels of the sides of Q.

Suppose that (X; R) is a semigroup presentation, where X is an alphabet, Fx
is the free semigroup on X, and R C F'x x Flx is a set of defining relators. Let the
feather M be a diagram over X. Then M is a derivation diagram over (X; R)
for (@, wam) if at least one of (@p,wp) or (Wp,@p) is in R for each region D of
M.

If M is a feather or (M,¢) is a diagram, we use the notation |M| for the
number of regions in M. Let (X;R) be some fixed semigroup presentation. A
derivation diagram (M, ¢) over (X; R) is a minimal derivation diagram over (X; R)
for (@, W) if [M] < |[N] whenever (N, §) is also a derivation diagram over (X; R)
for (aM@M).

Theorem 1.6 (Remmers). Suppose that (M, ¢) is a minimal derivation diagram
over (X; R). If the submap N of M is in R, then (N, ) is a minimal derivation

diagram over (X; R) for (¢p(anr), dp(war)).

Proof. Tf (N, ¢) is not minimal, there is a derivation diagram (N, &) over (X; R)
having the same boundary label as (N, ¢). We could then replace the submap N
of M by N’ and contradict the minimality of (M, ¢).

A directed walk in a map M is a walk which is either a positive walk or the
empty walk at some vertex of M.

If M is any map in R, Remmers has described the following natural partial
orders on the vertices of M and on the edges of M:

(1) For vertices w and v, u < v if there is a positive walk in M from u to v.
(2) For edges e and f, e < f if there is a directed walk from the terminal
endpoint of e to the initial endpoint of f.
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It is straightforward to verify, by induction on the number of regions, that any
two vertices u and v in a feather M have both a greatest lower bound, glb »,(u,v),
and a least upper bound, luba(u,v). We shall make use of these orders in the
following sections. For convenience of reference, we will refer to these orders on the
vertices and edges as Remmers’ orders.

A derivation diagram (M, ¢) is quasiminimal if every block N' of M is a
minimal derivation diagram for (¢(anr), ¢(war)). A derivation diagram (M, ¢) is
strongly quasiminimal if (M, ¢) is quasiminimal and for each block N of M,
every quasiminimal derivation diagram (N, ¢') for (¢(an), ¢(war)) has only one
block. In the following theorem, the equivalence of 1), ii), and iii) is due to Remmers.

Theorem 1.7. Suppose that (X; R) presents a semigroup S and that w and w’ are
words on the alphabet X. Then the following are equivalent:

The words w and w' represent the same element of S.

There is a derivation diagram over (X; Ry for (w,w’).

There is a minimal derivation diagram over (X;R) for (w,w’).

There is a quasiminimal derivation diagram over (X; R for (w,w’).
There is a strongly quasiminimal derivation diagram over (X; R) for (w,w’).

i
ii
ii
iv

. e

N

— — —

Proof. 1) = ii) If w and w’ represent the same element of S, we may use any
sequence of elementary transitions from w to w’ to construct a map in the set F
labelled as a derivation diagram over (X; R) for (w,w’).

ii) = iii) If the derivation diagram (M, ¢) is not minimal, then there is a deriva-
tion diagram (N, €) for (w,w’) with |N| < |[M|. If (N, €) is not minimal, we repeat
this: since M has only a finite number of regions, we must eventually reach a
minimal diagram.

iii) = iv) By Theorem 1.6, the blocks of a minimal derivation diagram are
minimal.

iv) = v) Let k be the smaller of |w| and |w’|. Then no derivation diagram over
(X; R) for (w,w’) can have more than k blocks. Suppose (M, ¢) is a quasiminimal
derivation diagram over (X; R) for (w,w’). If (M, ¢) is not strongly quasiminimal,
then for some block N of M, there is a quasiminimal derivation diagram (N”, ¢’)
over (X; R) for (¢(an), d(wpr)), where the map N’ has more than one block. We
may replace the submap N of M by N to obtain a quasiminimal derivation diagram
(M',€) for (w,w’") where M’ has more blocks than M. If (M’ €) is not strongly
quasiminimal, we repeat this process, but we must eventually reach a strongly
quasiminimal diagram since k is a bound for the number of blocks in M’.

i), iii), iv), or v) = i) We may use any derivation diagram for (w, w’) to construct
a sequence of elementary transitions from w to w’.

Example 1.8. Let (X; R) be the semigroup presentation
(a, b, c; abb = cbb, bba = bbe, aba = cbe).

Then the diagram M below is a strongly quasiminimal derivation diagram. It is not
a minimal derivation diagram since the diagram M’ is also a derivation diagram
over (X; R) for (bbababb, bbcbcbb).
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b c R b
S o
a a
b b b b
C b C
b b b b
M
a b a

Example 1.9. Let (X; R) be the semigroup presentation
(a,b,c,d,e; ae =bed, ea = bed, ab = dc, cd = ba).

Then in following figure both M; and My are minimal (and quasiminimal) deriva-
tion diagrams for abed = dcba, but only M is strongly quasiminimal.

b ¢ d
—t e,
Ml d C b a
a b C d
Mo — e
d c b a

Lemma 1.10. If M € R and N is a submap of M which is also in R and which
contains every appended region of M, then N contains every region of M.

Proof. Observe first that it will suffice to prove the lemma in the case where M
has only one block. We assume that we are in this case. Let §; be a positive or
empty path from the initial vertex of M to the initial vertex of A/ and let 5 be
a positive or empty path from the terminal vertex of A to the terminal vertex of
M. Then the closed walk d;warda(wpq) ! is the closed two-sided boundary for a
two-sided submap 7 of M. It follows from Corollary 1.2 that 7 € R. If there are
regions in 7, then by Lemma 1.5, there is a region D of 7 which is appended on
the top side of 7. The region D is then also an appended region on the top side of
M. By hypothesis, D is then a region of N, but this is impossible because wys is
the bottom side of 7. We conclude that 7 is regionless and that d;warde = war. A
similar argument shows that d1aad2 = aag. Since M has only one block and §;
and J, are on both the bottom and top sides of M, the paths §; and d are empty.
Then wy = waq and ay = apg. We conclude that AV = M in the case where M
has only one block.

We introduce the notion of coherent pairs of regions in a feathery map. These
will be useful later. Since our inductive construction of feathery maps starts at the
bottom (rather than at the top) our terminology for coherent pairs will also reflect
a “start-at-the-bottom” bias.

An ordered pair (D1, Ds) of regions in a feathery map M is a left-right coher-
ent pair if there are positive walks w1, i, and a9 in M such that wp, = wip and
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ap, = pag. Dually, an ordered pair (Dq, Ds) is a right-left coherent pair if there
are positive walks wq, pt, and ag in M such that wp, = pw; and ap, = asp. For
brevity, we will say that a left-right coherent pair is an Ir pair and that a right-left
coherent pair is an rl pair.

The ordered pair (D1, D2) of regions in a feathery map M is a matched coher-
ent pair if wp, = ap,, an expansive coherent pair if wp, is a proper segment
of ap,, and a contractive coherent pair if ap, is a proper segment of wp,.

Example 1.11. The pair of regions on the left is an Ir coherent pair and the pair
of regions on the right is an rl coherent pair.

The pair on the left is matched, the pair in the middle is expansive, and the pair
on the right is contractive.

D, D

D D
! 1

A coherent pair of regions is an ordered pair of regions that is left-right, right-
left, matched, expansive, or contractive coherent. We note that if (D1, Ds) is a
coherent pair of regions in a feathery map M then (1) there is a feathery submap
N of M which consists of just D1, Dy and the edges and vertices on the boundaries
of these two regions, and  (2) there is at least one edge e which is in both wp,
and ap,.

Conversely, if (1) and (2) hold, then by considering the provenance of the initial
and terminal endpoints of A/, we see that (D1, D2) must be a coherent pair.

Lemma 1.12. Suppose that M is a feathery map and that Dy is any region of M.

(1) FEither Dq is appended on the bottom side of M or else there is a region D_
of M such that (D_, Dy) is a coherent pair.

(2) Fither Dq is appended on the top side of M or else there is a region Dy of
M such that (Do, D) is a coherent pair.

Proof.. We prove (1) by induction on |M]| : the proof of (2) is dual. If M has only
one region that region is necessarily appended on the bottom side of M. Assume
that M > 1. If Dy is appended on the bottom side of M we are done, so assume
that Dg is not an appended region on the bottom side of M. By Lemma 1.5, there
is a region D of M which is appended on the bottom side of M. By induction,
the lemma is true for Dy as a region of M — D. If (D_, Dy) is a coherent pair in
M — D then this is also a coherent pair in M. If Dy is appended on the bottom
side of M — D, then (D, Dy) is a coherent pair in M.
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2 ALPHABETICALLY CONSTRUCTED RELATORS

For natural numbers s < ¢, an (s,¢) map is a map in R in which each region
has a short side with s edges and a long side with ¢ edges. Given an alphabet X
and words w, and wy on X having respective lengths s and ¢, the relator w; = wy
is an (s,¢) relator and the semigroup presentation (X; ws, = wy) is an (s,?)
presentation .

Assume that X is a finite or countable, ordered alphabet: X = {z1,z2,...},
with 1 < x2.... A word w on X is said to be alphabetically constructed
if whenever z; occurs in w and ¢ < j, then at least one occurrence of z; in w
precedes the first occurrence of ;. An (s,¢) relator ws = wy is alphabetically
constructed if the concatenated word wswy is.

Example 2.1. On the ordered alphabet {a,b, ¢, d, e}, the words abac, ab*aba®cach,
and a2babacbadb are alphabetically constructed, but acab, bed, and acad are not.

Proposition 2.2. IfY is any finite alphabet and w is any word on Y, then there
is an order on Y for which w is alphabetically constructed. For the letters of Y
which occur in w, this order is unique.

Proof. For letters x and y which occur in w, let x < y if the first occurrence of  in
w precedes the first occurrence of y in w. All letters that do not occur in w follow
those that do occur.

Corollary 2.3. If a semigroup has an (s,£) presentation (Y; ws = wy), then there
is an order on'Y for which ws = wy is alphabetically constructed.

Let 1 < x9 < x3... be a given order for the alphabet X. Then any other order
To1 < Tyo < Tgz... corresponds to a permutation o of X. The permutatuion
o in turn induces an automorphism, which we will also denote by o, of the free
semigroup Fy via (2, Tiy - - Ti, )0 = Toiy Taig - - - Ty, -

Proposition 2.4. If w is a word on X which is alphabetically constructed for the
order To1 < Toa < To3z..., then wo™t is alphabetically constructed for the order
1 < X3 < 3.... If w is also alphabetically constructed for the order x1 < T2 <

Zr3..., thenwr—! =wo~1.

i -1 _ . . . .
Proof. Write wo™ =z, 4, ... %;...T;...2;,. Then
_ -1 _
w= (W0 )0 =Tei,Toiy - Toi--Loj---Loin s

hence z; precedes x; in wo L if and only if z4; precedes Zoj in w. If r distinct
letters occur in w, then oi € {01,02,...,0r}, so 1 < i < r. By Proposition 2.2,
ot =71 for 1 < i <r, hence

w = (wcr_l)a = ZoiyToiy -+ Loi, = Taiy Lrig « - Ty, = (wa_l)T,

and wr ! = wo L.

For a fixed order z1 < x2 < x3... of X, define a function A on the set Fx x Fx
by A(w,w’) = (wo,w's) for any permutation o of X such that the word (ww')o is
alphabetically constructed for the given order on X.
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Corollary 2.5. For any (s,) presentation (X;(ws,ws)) on an ordered alphabet
X, the presentation (X; A(ws,w¢)) has an alphabetically constructed (s,£) relator,
presents the same semigroup as (X; (ws,wy)), and is effectively obtained from the
presentation (X; (ws,wy)).

The following combinatorial observation is mostly peripheral to the main results
of this paper, but it will help illustrate some later remarks.

Proposition 2.6. If S, , is the number of alphabetically constructed words of
length n on r distinct letters, then S, . is the Stirling number of the second kind.

Proof. Define a partition of the n positions in the word by assigning two positions
to the same subset if and only if the same letter occurs in both positions. Stirling
numbers of the second kind count the number of partitions that are possible.[1]

An obvious consequence of Proposition 2.6 is that for n = s + ¢, the number of
alphabetically constructed (s, ¢) relators is the Bell number ", S, . [1]

If S is any set and p is an equivalence relation on S, then for elements s and
t of S, we use the notations spt and (s,t) € p interchangeably. We use the usual
notation [s], = {t | spt} and S/p = {[s], | s € S}. We write [s] for [s], whenever
context renders this unambiguous.

When S is a finite ordered set and p is an equivalence relation on S, we define
an induced order on S/p by [x] < [y] if the first element in [z] is less than the
first element in [y]. Now fix natural numbers s and ¢ with s < ¢ and let Z =
{#z1,22,...,2s+¢} be an auxiliary ordered set. We regard Z as a set of positions
available for letters in (s,¢) relator. Given a relation p on Z, we regard Z/p as
an initial segment of an ordered alphabet X. In more detail, suppose that r =
(ws,wp) is an (s,f) relator on X in which m distinct letters of X occur. Write
Ws = Y1Y2 ... Ys and Wy = Ys41Yst2 - - - Ys+¢ Where each y; is a letter of X. Define
a relation pr, on Z by pr = {(z;,2x) | y; and yi in r are the same letter of X}.
Then p, is an equivalence relation on Z having m distinct equivalence classes.
Conversely, given an equivalence relation p on Z, define words ws and wy on the
ordered alphabet Z/p by ws = [z1][22] .. . [2s], and wp = [z541][2s+2] - - - [#s+¢]. Then
the relator r(p) = (ws, wy) is an alphabetically constructed relator for the induced
order on the alphabet Z/p and the distinct letters of r(p) correspond to the p-
equivalence classes. Partly for notational convenience, we regard Z/p as an initial
segment of the ordered alphabet X and write x; for the i*" letter in the induced
order on Z/p.

Proposition 2.7. If p is an equivalence relation on Z, then p = py,y. If v is
an (s, ) relator on X, then the number of distinct letters of X that occur in r is
the same as the number of letters in Z/py. If we use the induced order on Z/py
to identify Z/py with the initial segment of X, then r(py) = A(r). Thus there is
a bijection between alphabetically constructed (s,l) relators on X and equivalence
relations on Z.

Proof. For the first statement, (z;,2;) € py(y) if and only if [z;] and [z;] in the
relator r(p) are the same letter of the alphabet Z/p: the latter occurs if and only
if (z;,2;) € p. For the second statement, each p.-equivalence class corresponds to
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some letter of X which occurs in r. For the third statement, suppose first that r
is alphabetically constructed. Then the letter z; of X is the i*" distinct letter to
occur in r, hence the equivalence class [z] of positions in which z; occurs will be the
it" class in the induced order on Z/p;,. Since we have hypothesized that we identify
this i*" class with z;, we have r = r(p,) for an alphabetically constructed relator
r. For a permutation ¢ of X, and a (s,{) relator r = (ws,wy), write ro for the
(s,£) relator (wso,weo). Then for any such o and any r, p, = pys, since p, records
only the positions at which the same letters occur. In particular, pr = p.a(r), s0

r(pr) = r(paw) = Alr).

Suppose that r is an alphabetically constructed (s, ¢) relator, that p is the equiv-
alence relation on Z which corresponds to r, and that x is a letter of X which occurs
in r. Using reasonably standard notation, we define the restriction of p to = by

plz = { (21, 25) | [2i]p = [25]p = 2} U { (2, 2x) }

Then it is easy to see that p, is an equivalence relation on Z, that p|, C p, and that
p = Uzex pjo- We will also find it useful to define J(z,r) to be the set of indices
for letters of r which have value x. That is, J(z,r) = {i|y; = 2} = {i|[z], = =}
J = J(x,r) is the index set of z in r.

Example 2.8. For the (2,5) relator a®> = bcabe, we have J(a,r) = {1,2,5},
J(b,r) ={3,6}, and J(c,r) = {4,7}. Also,

P = {(23, 26), (26, 23) I{ (2ks 26) h<u<r, pe = {(24, 27), (27, 22) U{ (2, 26) hr<k<7
and Pla = { (2, 25) }i,jeJ(a,r) U { (2, 2k) hi<n<r

The set of equivalence relations on Z has a standard lattice structure given by
p1 < paif p1 € pa, pr A p2 = p1Np2, and p1 V ps is the smallest equivalence relation
that contains the set p; U pa. Since we have a bijection between the equivalence
relations on Z and the set of alphabetically constructed (s,¢) relators, we may
regard the latter set as a lattice which is isomorphic to the lattice of equivalence
relations.

Proposition 2.9. Fori=1,2, let r; be an alphabetically constructed (s,£) relator,
let X; be the initial segment of X consisting of letters that occur in r;, let p; be
the equivalence relation on Z that corresponds to r;, and let S; be the semigroup
presented by (X;;r;). Identify X; with Z/p;. Then r1 < ro if and only if the rule
([2i]p1 ) f = [2]p, determines a well-defined homomorphism from Si onto Ss.

Proof. Observe that r1 <ry < p; C po < fis a well-defined function on the
alphabet Z/p;. Once f is well-defined on Z/p1, it is clear that r1f = ry and that
f is onto.

Example 2.10. If S is presented by (a,b,c; ab = abcab), and Sy is presented
by (a,b,c; a® = a?ba?), then r; < ry and setting af = a,bf = a, and cf = b
determines a well-defined homomorphism from S; onto Ss.
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3 ACHIEVABLE RELATORS

We wish to define, for each (s,f) map M, a naturally occurring alphabetically
constructed (s,¢) relator induced by M. This relator will be called the relator
achieved by M. Basically, we regard the map as a template to which we fit the
most intricate relator possible.

An edge of a feathery map M is an interior edge of M if it is on the boundary
of two regions of M. Write Z or when necessary, Zpq, for the set of interior edges
of the feathery map M.

Suppose that M is an (s, £) map, that D is a region in M, and that e is an edge
of D. Using Remmers’ ordering of the edges of M, we define the index of e with
respect to D to be i if e is the i** edge on the short side of D and to be s+ if e
is the i*" edge on the long side of D. This merely mirrors our order for the set Z
of positions for letters in (s, ¢) relators.

Let £ be any subset of Z. We define a relation R¢ on Z by Re = {(i, ;) | There
are regions D and D’ of M having a common edge e € £ such that the index of e
with respect to D is ¢ and the index of e with respect to D’ is j}. Let pg be the
equivalence relation on Z that is generated by Re. Then the (s, £) relator r(pg)
is the relator that is achieved by the subset £ of interior edges of M. We will
abbreviate r(pg) by re. Generally, we will be interested in the case where £ =Z. In
this case, we will use the notation R, paq, and ra. The relator that is achieved
by M is defined to be rps. When the (s,¢) map M is clear from context, we may
further abbreviate to R, p, and r. If the (s, ¢) relator r is the relator that is achieved
by some (s,¢) map, then we say that r is an achievable relator.

Example 3.1. A routine calculation shows that the relator a? = a?b is the relator
achieved by the following (2, 3) map.

Let M be a map in R = F. An edge is constrained if it is on the boundary of
at least one region. An edge of M is unconstrained if it is not on the boundary
of any region of M. Every unconstrained edge in M is a block of M and a block
of M that contains a region of M can contain no unconstrained edges of M.

Let Up be the set of unconstrained edges of M, and let C = {(D,e) |D is a
region of M and e is on the boundary of D}. A bilabelling of M with values in
the semigroup S is a function ¢ from U/ UC to S. In this paper, S will always be
the free semigroup on a finite ordered alphabet X. A bilabelling is consistent if
¢(D1,e) = ¢(Da,e) whenever e is an interior edge on the boundary of two regions
D; and Ds. 1t is clear that every labelling of M induces a consistent bilabelling,
and that every consistent bilabelling of M induces a labelling.

Let M be an (s,f) map. Let r = (ws,w¢) be an (s,£) relator on an ordered
alphabet X. Write ws = y1y2...ys and wy = Ys41Ys+2--.Ys+e. We say that
a bilabelling ¢ corresponds to r if ¢(D,e) = y; whenever the index of e with
respect to D is i. (On U, ¢ may have arbitrary values in X.) Since the consistency
of bilabelling depends only on the interior edges, if one bilabelling that corresponds
to r is consistent, then every bilabelling that corresponds to r is consistent.
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Proposition 3.2. Suppose that M is an (s,£) map, that rpq is the relator that is
achieved by M, and that r is an alphabetically constructed relator which is equal to
or greater than raq in the lattice of alphabetically constructed relators. Then any
bilabelling of M which corresponds to r is consistent. Conversely, suppose that r
1s the least alphabetically constructed relator such that every bilabelling of M which
corresponds to r is consistent. Then r is the relator that is achieved by M.

Proof. Throughout the proof we write p for p, and paq for p.,,. We also write
r = (ws, wg) where ws = y1y2 ... Ys and wWg = Ys41Ys42 - - - Ys+4-

Suppose that ryy < r. Let e be any interior edge of M and suppose that e has
index ¢ with respect to some region D and has index j with respect to some region
D’. Then (z;,z;) € pam. Since rpg <r by hypothesis, we have pps C p. It follows
that (z;,z;) € p, so that y; = y; as required.

Recall that Ry = {(2;, zj) | There are regions D and D’ of M having a common
edge e such that the index of e with respect to D is ¢ and the index of e with respect
to D’ is j}. Observe that Raq C p whenever r is an alphabetically constructed
relator for which the corresponding bilabellings are consistent. If r is the least
alphabetically constructed relator for which the corresponding bilabellings of M
are consistent, then p is the least equivalence relation on Z containing R (. Hence

pis pm-

Example 3.3. The relator a? = ba is not achievable. If it were achieved by some
map M, it would induce a consistent bilabelling on M. Since there are just the
two occurrences of the letter b in the relator, there would be some edge e in M
which has index three with respect to a region D; and index four with respect to
a region Dy. Consider the rightmost such edge e and let f and g be the edges of
Dy and Ds, respectively, which follow e. The edge f must also have label b. Since
f and g have a common initial vertex, it follows from the geometric properties of
(s,¢) maps that f must be the initial edge on the side of some region D3 of M.
Since f has label b, it must be the initial edge on the long side of D3. Then f has
index four with respect to D; and index three with respect to Ds; this contradicts
our assumption that e is the rightmost such edge.

Example 3.4. There are 52 alphabetically constructed (2, 3) relators. We list and
number these and illustrate the lattice of alphabetically constructed (2, 3) relators.
Only 26 of these relators are achievable. The achievable relators are marked by
stars. The verification that the starred relators are achievable follows as in Example
3.1 using (2,3) maps having 2,3, or 4 regions. The verification that the remaining
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(2, 3) relators are not achievable is generally less complicated than Example 3.3.

*1 aa=aaa %14 ab = bad 27 ab=acc 40 ab=ccdb
*2 aa=aab %15 ab = bba 28 ab = bac *41 ab=ccc
*3 aa=aba %16 ab = bbb 29 ab = bbc %42 aa = bed
4 aa = abb 17 aa = abc %30 ab = bca 43  ab = acd
%5 aa=baa 18 aa = bac %31 ab=bcd %44 ab = bed
%6 aa = bab 19 aa = bbe 32 ab=bcc 45 ab = cad
7 aa = bba %20 aa = bca 33 ab=caa 46 ab = cbd
*8 aa = bbb %21 aa = bchb %34 ab=cab 47  ab = ccd
*9 ab=aaa 22 aa = bce 35 ab=cac %48 ab = cda
10 ab= aab 23 ab = aac 36 ab= cba 49 ab = cdb
%11 ab=aba %24 ab = abc 37 ab=cbb %50 ab=cdc
12 ab= abb %25 ab=aca 38 ab= cbc 51 ab=cdd
%13 ab=baa 26 ab = acd 39 ab=cca %52 ab= cde.

The lattice of alphabetically constructed (2, 3) relators

Lemma 3.5. Suppose that M and M’ are (s,£) maps and that M C M’. Then
rypm < rap. Conversely, suppose that v and v’ are achievable (s,f) relators with
r < 1 and that v = rpq. Then there is an (s,£) map M’ with ¥ = v and
MC M.
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Proof. We use again the definition Raq = {(2, 2;) | There are regions D and D’
of M having a common edge e such that the index of e with respect to D is ¢ and
the index of e with respect to D’ is j}. Since M C M’, we have Ry C Ry,
and pag € par. Conversely if r = rpq and v’ is achievable with r < r/; then there
is an (s,¢) map N with r' = ry. Let M’ be MN, the (s,£) map constructed by
identifying the initial vertex of N' with the terminal vertex of M. Since r < r’, we
will have that Raq C pa = pr C pr = par. It follows that R U R is contained
in par, hence pay = par, and rap =1,

Example 3.6. Given r < r’ where r and r’ are achievable (s, ¢) relators and an
(s,¢) map M’ with v’ = r -, we cannot, in general, find a submap M of M’ with
r = ry. With r = (ab, cdc?de) and v’ = (a?,bcb?ch), it is easy to see that r and
r’ are achieved by the following maps M and M’, that r < r/, but that r is not
achieved by any submap of M’.

Y =
M’W

Proposition 3.7. Ifr and v’ are achievable (s,£) relators, then their join, r VvV r’
is also achievable.

Proof. Suppose that r is achieved by M and that r’ is achieved by M’. Then ppy
is the smallest equivalence relation on Z which contains paqUpaq, and hence is the
smallest equivalence relation on Z which contains R U Raq. Let My be MM/,
the (s,¢) map constructed by identifying the initial vertex of M’ with the terminal
vertex of M. Then R, is Ry U R, so r V' is achieved by M., .

Example 3.8. While the join of two achievable relators is achievable, their meet
is not in general an achievable relator. If r is the (1,7) relator (a,abcabca) and r/
is the (1,7) relator (a,bcbcabe), then r and r’ are achieved by the respective maps
M and M’ below. A straightforward calculation of p., pr, and py N ppr shows that

Pr () prr = { (24,27), (27, 24), (25, 28), (28, 25)} U { (zi, 2i) }

so that r A1’ is a = bede fde which is easily shown to be not achievable.

P e S
M'éﬁ#ﬁ;

If r is an alphabetically constructed (s, ¢) relator, let L, be the set of achievable
(s,£) relators which are equal to or less than r. We define the paradigm of r, P(r)
to be the join of the finite set L,. Since the relators of L, are achievable, P(r) is
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an achievable relator. Since r itself is clearly an upper bound for L,, we also have
that P(r) < r. Every achievable relator is its own paradigm.

For further illustrations of the paradigm for a relator, we return to the (2,3)
relators of Example 3.4. There, we claimed that ry : aa = abb is not achievable.
Inspecting the lattice, we see that L,, = {ri7,r42,r44,rs2}, so that P(ry) is rq7 :
aa = abe. Similarly, for rug : ab = acd, we have L(r43) = {rs2} so that P(rss3) is
rso : ab = cde.

Theorem 3.9. Suppose that r is an alphabetically constructed (s,f) relator and
that P(r) is the paradigm of r. If M is an (s,£) map and some bilabelling of M
which corresponds to r is consistent, than any bilabelling of M which corresponds
to P(r) is consistent.

Proof. Let rpq be the (s, £) relator which is achieved by M. Since a bilabelling of
M which corresponds to r is consistent, ryy < r, by Proposition 3.2. Therefore,
the achievable relator raq is in the set L, of achievable relators which are equal
to or less than r. It follows that rps < P(r), since P(r) is the join of L,. Using
Proposition 3.2 again, bilabellings of M which correspond to P(r) are consistent.

Theorem 3.10. Suppose that r and v’ are alphabetically constructed (s,£) relators
with v < r. Suppose that M is an (s,£) map having no unconstrained edges and
that ¢ and ¢’ are labels on M such that (M, ¢) is a derivation diagram over (X;r)
for the pair (u,v) of words on X and (M, ') is a derivation diagram over (X;r')
for the pair (u',v"). If (M, @) is a minimal derivation diagram, then (M, ¢') is a
minimal derivation diagram also.

Proof. We use proof by contradiction. Suppose that (M, ¢') is not minimal. Then
there is a derivation diagram (N, ¢’") over (X;r’) for (v/,v") with |N| < |M]. Tt will
suffice to show that we can define a label ¢ on N such that (N, () is a derivation
diagram over (X;r) for (u,v), since this will contradict the minimality of (M, ¢).

Since (N, (') is a diagram over (X;r’), ¢’ is induced by a consistent bilabelling
which corresponds to r’. By Proposition 3.5, r’ > rs. Sincer > r’, every bilabelling
of N which corresponds to r will be consistent also. Suppose first that A" has no
unconstrained edges. Then there is only one bilabelling of A/ which corresponds
to r and it induces a label ¢ on /. We need to show that (N, () is a derivation
diagram for (u,v). By symmetry, it will suffice to show that {(ax’) = u. Because
¢ (apm) = v = ' (an), apm and aps are paths of the same length, and we only need
to show that (f) = ¢(e) if f is the k' edge on ax and e is the k" edge on apg.
Suppose that the edge e has index ¢ with respect to some region D; of M and that f
has index j with respect to some region Dy of N. Because ¢'(ar) = v’ = (' (an),
we have that ¢/(e) and ¢/(f) are the same letter. Both (M, ¢’) and (N,(’) are
derivation diagrams over (X;r’), hence (z;,2;) € pyr. Since v’ < r, pr C py, and
(i, 25) € pr. This insures that the labels of ¢(e) and ((f) are the same letter of X.

When N has unconstrained edges, we still induce ¢ from a consistent bilabelling
which corresponds to r, but we must specify how ( is defined on the unconstrained
edges of N. If f is an unconstrained edge of N, then f occurs on both the bottom
side, s, and the top side, war, of N. Suppose f is the j edge which occurs
on ay, and is the k" edge which occurs on wy. Let e be the j** edge on the



16 DAVID A. JACKSON

bottom side axq of M, and let e; be the k*" edge on the top side wpq of M. Then
@' (ep) = C'(f) since ¢'(anp) = v = '(an), and similarly, ¢'(e;) = '(f) since
¢ (wm) =0 = ((wpr). Using ¢'(ep) = ¢'(er) and r’ < r, we argue as above that
d(ep) = P(er). We may then define ((f) = ¢(ep) = P(er), and it will follow that
((an) = uand ((wy) = v.

Corollary 3.11. Letr andr’ be alphabetically constructed (s, ) relators with v’ <
r. Suppose that (M, @) is a derivation diagram over (X;r) for the pair (u,v) of
words on X and (M, ¢') is a derivation diagram over (X;r') for the pair (u/,v").
If (M, @) is a quasiminimal derivation diagram, then (M,q@’) is a quasiminimal
derivation diagram also.

Proof. We may write M = MM, ... M, where each M, is a block of M. Each
M is either a single unconstrained edge of M, or else M, contains no unconstrained
edges and (M;, ¢) is a minimal derivation diagram over (X;r). When M, is a single
edge, clearly (M;, ¢') is a minimal derivation diagram over (X;r'). By Theorem
3.10, (M;, ¢') is also minimal over (X;r') when (M;, ¢) is minimal over (X;r) and
M contains no unconstrained edges.

Theorem 3.12. Let r be an alphabetically constructed (s,l) relator on an ordered
alphabet X. If we know the paradigm P(r) for r and we have an algorithm which
solves the word problem for the semigroup presentation (X ; P(r)) then the word
problem for the semigroup presentation (X ;r) is also solvable.

Proof. Suppose that v and v are words on the alphabet X. Write .S for the semi-
group presented by (X ;r) and write P for the semigroup presented by (X ; P(r)).
By Theorem 1.7, it will suffice to exhibit an algorithm which determines whether
or not there is a quasiminimal derivation diagram over (X ;r) for (u,v).

We may assume here that the alphabet X is finite. We list all pairs of words
(u’,v") on X such that |«/| = |u| and |[v'| = |v|. The number of such pairs is finite.
For each such pair, we may use the algorithm which solves the word problem for
(X ; P(r)) to determine whether or not u’ and v’ represent the same element of
P. If v/ and v' do represent the same element of P, we may use the algorithm
for (X ; P(r)) to find all possible quasiminimal derivation diagrams (M, ¢') over
(X ; P(r)) for (v/,v"). For any such (M, ¢’), we have rpq < P(r) < r, so by
Proposition 3.2, every bilabelling of M which corresponds to r will be consistent.
For each (M, ¢’) we obtain derivation diagrams over (X ;r) using the bilabelling
of M which corresponds to r and using all possible labels on any unconstrained
edges of M.

We claim that there is a quasiminimal derivation diagram over (X ;r) for (u,v)
if and only if some diagram in the list of the preceding paragraph is a derivation
diagram for (u,v). Clearly if one of the preceding diagrams is a derivation diagram
for (u,v) then there are quasiminimal derivation diagrams for (u,v) and we may
effectively find one. Conversely, suppose that there is a quasiminimal derivation
diagram M over (X ;r) for (u,v). Then by Theorem 3.9, the bilabelling of M which
corresponds to P(r) is consistent and we will obtain a derivation diagram (M, ¢')
over (X ; P(r)) for some pair of words (u/,v") with |«/| = |u| and |[v| = |v|]. By
Corollary 3.11, this is a quasiminimal derivation diagram, hence the quasiminimal
derivation diagram for (u,v) will occur in the list of the previous paragraph.
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We wish to improve upon Theorem 3.12 by showing that we always can effectively
compute the paradigm P(r) of an alphabetically constructed (s, ¢) relator r.

4. LocAL COMPUTATIONS: THE BASE CASE

If r is an achievable (s, ¢) relator, let p = p, be the corresponding equivalence
relation on the auxiliary alphabet Z. Let x represent some fixed p-equivalence class.
Then the (s,¢) map M is an z-section for r if

(1) Ple CSPmCp

Example 4.1. The relator r : a®> = bcb is an achievable (2, 3) relator where b =
(23], = [25), and J(b,r) = {3,5}. The following (2,3) map is a b-section for r.

— =

Remarks. (1) The inclusion p, C paq in () requires that [z],,, = [2j]p0
whenever z = [z;], = [2;],. In this sense, an z-section for r “achieves the z-part of
r. 7 Note however, that if [z;], = z, the equivalence class [z;],,, will, in general,
be represented by some element of the ordered alphabet X which follows x, rather
than by z itself. In the example above, rq is ab = cdc and [23],,, = [25]p. =

(2) The inclusion paq C p is equivalent to ry < r. By Proposition 3.2, this is
equivalent to requiring that M, with the natural labelling induced by r, is always
a derivation diagram over the presentation (X;r). Thus an z-section for r is a
derivation diagram over (X;r) which achieves the a-part of r.

An z-section M for r is z-inceptive for r if | M| < |N| whenever N is also an
x-section for r.

If an z-inceptive map M, with M > 0, has unconstrained edges, then we can
concatenate those blocks of M which do contain interior edges to construct a map
which is z-inceptive for r and which has no unconstrained edges. In the case where
|J(z,r)| = 1, all z-inceptive maps for r are regionless, and any walk Wy € Fy is
z-inceptive for r.

In this section we show (Theorem 4.20) that if |J(x,r)] = 2 and M is an a-
inceptive map for r, then |[M| < ¢ This is the base case for an induction on
|J(x,r)|. In the next section, we show that if |J(z,r)| = j and M is an z-inceptive
map for r, then |M| < (j — 1)4.

Lemma 4.2. Suppose that r is an achievable (s,f) relator and let Xy = {x €
X : |J(xz,r) > 2}. For each x € Xs, let M, be an x-section for r. Then the
concatenation Vyex, My is an (s, €) map which achieves r.

Proof. It will suffice to show that p = Uzex, pam, - Since each M, is an x-section
for r, we have ppq, C p for each @ € Xs, and Uzex, pm, C p. Earlier (at the
end of section 2), it was remarked that p = Uzexp,. Since p), is the identity
relation on Z when |J(z,r)| = 1, we can strengthen this to p = Uzex,p|z- Then
P = U$€X2p|w c UxEXg PM,-
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Lemma 4.3. If r is an achievable (s,{) relator, x occurs in r, and M is an x-
inceptive (s,£) map forr, then M is an inceptive (s,£) map for r .

Proof. Let N be any (s, £) map that achieves r . We need to show that |[M| < |N].
Since ryr = ra, we have pn = pap and pj, € par € p because p, € pag € p. Thus
N is an z-section for r and the conclusion follows.

Example 4.4. By Lemma 4.3, every (s,f) map M which is a-inceptive (for some
x and some r) is inceptive for the relator which it achieves. Being z-inceptive is
more restrictive than being inceptive. The following map is an inceptive (3,5) map
for the relator abc = cabca, but it is not z-inceptive for x = a, b, or c.

e e

Lemma 4.5. Suppose that r is an achievable (s,£) relator, that x occurs in r and
that M is x-inceptive for r. Let i € J(z,r) and T = [2;],,,. Then M is also Z-
inceptive for r .

Proof. Let N be any Z-section for rq. It will suffice to show that A is also an
x-section for r. Since M is an z-section for r, we have that pyr C p. A routine
argument shows that pr|, = pr,,|z. Since N is an Z-section for raq, we have

Priz = Prmlz & PN S P C P

Example 4.6. The following map is an a-section for the achievable (1, 6)-relator
a = (aba)? and it is a-inceptive for rpq : a = abaaca, but it is not inceptive or
a-inceptive for a = (aba)? which can be achieved by (1,6) maps with only four
regions.

Example 4.7. The following three (1,9) maps Mj, M3, and M3 are all a-inceptive
for the (1,9) relator a = baccdbbac. Since raq, is a = bacdefgah, ra, is a =
baccdebac, and raq, is a = bacdebbac, we see that different z-inceptive maps may
achieve the z-part of r in distinctly different ways.

i T T
. e D

P i
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Let M be an (s,£) map and e an interior edge of M. The edge e is an {i, j}-edge
if e has index ¢ with respect to D; and has index j with respect to Ds, where e
is on the common boundary of regions D; and Ds. We allow the possibility that
i =j. If eis an {i,7}-edge for some ¢, we will say that e is reflective. (In a slightly
different context, Remmers [10], see [11, p.293] or [2], defines such an edge to be
an interface.) If r is an achievable (s, £) relator and ¢ € J(x,r), we will say that an
{i,i}-edge e is z-reflective.

Lemma 4.8. Suppose that r is an achievable (s, ) relator, that the letter x occurs
inr, that J(x,r) = {i1,i2}, where iy # ia, and that M is an x-inceptive (s,£) map
forr. Then
(1) M has ezxactly two appended regions and every {i1,is}-edge of M is on their
common boundary, and
(2) there is exactly one interior edge of M which is an {i1,12}-edge.

Proof. By the definition of an x-section, M must have at least one edge which is
an {i1,i2}-edge. Since this edge is an interior edge, we must have |[M| > 2, and
hence by Lemma 1.5, M has at least two appended regions. Suppose that T is any
region which is appended on the top side of M. If (z;,, 2i,) € pam—71, then M —T is
also an z-section for r : this would contradict our hypothesis that M is z-inceptive
for r. Thus every {i1,i2}-edge of M must occur on the bottom side of every region
which is appended on the top side of M. This is impossible if there is more than
one region that is appended on the top side of M. Similarly, there is exactly one
appended region on the bottom of M and every {iy,is}-edge of M occurs on the
top side of this region. Thus the first claim of the lemma is verified.

Suppose then that e and f are distinct {i1, i3 }-edges in M. We show that iy < ig
and i5 < i1, a contradiction. Let T be appended on the top side of M and let B
be appended on the bottom side of M, so that both e and f occur on both arp
and wp. Assume, without loss of generality, that e precedes f on a7 and hence on
wp as well. Choose notation for the indices so that e has index i; with respect to
B. Then f, by default, must have index iy with respect to B. Since e precedes f
on wpg, we have i1 < is. Since e and f are both {i1,is}-edges, e has index iy with
respect to 7" and f has index i; with respect to T Since e precedes f on arp, we
have iy < iy.

Several of the next lemmas will consider the size and structure of an z-inceptive
(s,£) map, M, for r when |J(z,r)| = 2. We find bounds for | M| depending upon
the values of 71 and i5. It will be efficient to use the conclusion of Lemma 4.8 and to
extend the notation in its proof as a common starting point for all of these lemmas.
Let r be an achievable (s, ¢) relator and z a letter that occurs exactly twice in r.
Let J(z,r)| = {41,492 }, where 41 < i3. Let M be an z-inceptive (s, ¥) map for r.
By Lemma 4.8, let e be the unique {i1,i2}-edge in M and let B and T be the
regions of M which are appended on the bottom and top sides, respectively. Write
ar = pryi€yzpe and wp = viy eysvs, where yieys is the largest common walk
on the boundary of B and T containing e. Let v be the terminal vertex of ~yievs.
Express aag as ajapas and express way as wiwrws. We allow the possibility that,
for i = 1,2, any of v, w;, f1i, 4, or ; might be an empty walk. Let M, (for Myigns)
be the feathery submap of M which is bounded by voas(u2ws)™t. Note that v
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is the initial vertex of M,.. Let Mg be the feathery submap of M bounded by
avy (wr ,ul)_l. All of our arguments will treat M,. The corresponding arguments
for M are dual.

{ﬂl (R3] y

Observe that if pe is empty, then M, can have no regions. Otherwise, some
region of M, that is appended on the top side of M, would also be appended
on the top side of M, contradicting Lemma 4.8. Similarly, if v5 is empty, then
M| =0, and if either u1 or v is empty, then |Mjeg| = 0.

Lemma 4.9. Suppose that r is an achievable (s, L) relator, that the letter x occurs
inr, that J(x,r) = {i1,i2 }, where i1 < iz, and that M is an x-inceptive (s,£) map
forr.

(1) Ifiz <s, then IM|=2.

(2) Ifiy > s, andig — i1 < s, then M| = 2.

Proof. Assume without loss of generality that e has index i; with respect to B and
has index iy with respect to T. We show that ug is empty and hence |M,| = 0. A
dual argument shows that 14 is empty also. If e has index iy with respect to B,
then the same line of reasoning shows that both p; and v, are empty.

Let f be the edge on the top side of B which has index i, with respect to B.
Since e has index io with respect to T (and |J(z,r)| = 2), f cannot be an edge of
2. Write 1o = v/ fv”". In case (1), both e and f are on the short side of B, and v/
is a segment of wp containing neither e nor f, hence [/| < s — 2. In case (2), we
have |V/| < |yt/| <ig—i1 —1 < s.

Suppose first that the edge f is on the top side of M. Let w’ be the segment
of waq from the terminal vertex of T' to the initial vertex of f. Then both ¢/ and
pow’ are directed walks from v to the initial vertex of f. Hence v/(uow’)~! bounds

a feathery submap of M.
e

i

Since |V/| < s, this submap cannot contain any regions, hence v/ = psw’. By our
choice of v (7172 is a maximal walk common to wp and ap containing e), any
initial edges of ps and vy = v/ f1/”/ must be distinct. We conclude that ps is empty.

Now suppose that f is an interior edge of M. We show that this must lead to
a contradiction. If f is an interior edge of M, then f occurs on the bottom side
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of some region D of M. Because e is the unique {i1,i2}-edge of M, f must be an
{i2,12}-edge. Write ap = o/ga’’ fo'” where the edge g has index i, with respect to
D. Since e and f occur on wp and |J(z,r)| = 2, g cannot be an edge of v’ which is
a segment of wg.

By Lemma 1.4, we can find a directed walk, 7 in the map M, from the initial
vertex v of M, to the initial vertex of D. Then v/(7a/ga”)~! bounds a feathery
submap of M,.. Since || < s, this submap is regionless and g is an edge of /. This
contradiction shows that f cannot be an interior edge of M.

Example 4.10. Case (2) in the preceding lemma was included because it required
little more than the argument for case (1). We will consider below the general case
of an z-inceptive map M for r when J(x,r) = {i1,i2} and s < i1 < i2. For now, we
give a fairly simple example which shows that M can have more than two regions if
we omit the hypothesis that io —i1 < s. The (1, 5) relator a = beach is an achievable
relator on the alphabet {a,b,c}. The map below is c-inceptive and is inceptive for
this relator. Several generalizations of this example are possible.

Lemma 4.11. Suppose that r is an achievable (s, ) relator, that the letter x occurs
in r, that J(xz,v) = {i1,i2}, where i1 < s < iy, and that M is an x-inceptive
(s,€) map forr. Then no edge of M is x-reflective.

Proof. We may assume without loss of generality that e has index ¢; with respect
to B and has index is with respect to T, so that e is on the short side of B (since
i1 < s) and is on the long side of T (since s < i2). Here, an z-reflective edge can be
only an {i1,i1 }-edge or an {is,is}-edge. No edge on B can be z-reflective: e is an
{i1,12}-edge and the edge which has index io with respect to B is on the bottom
side of M and is not an interior edge. Similarly, no edge on T' can be z-reflective.
Since interior edges of M are either interior edges of M,. or interior edges of Mg,
or else occur on ar or wg, by symmetry, it will suffice to show that no interior edge
of M, is x-reflective. (In the next lemma, using the current hypotheses, we will
show that M, has no interior edges.)

We want to regard the edges of M as partially ordered using the order from
section 1 where g < f if there is a directed walk in M from the terminal vertex of g
to the initial vertex of f. Say that an x-reflective edge, f, of M, is left-primitive if
there is no z-reflective edge g of M, which precedes f in M,.. If M,. contains any
z-reflective edge f, then we can always obtain a left-primitive edge by repeatedly
replacing f by such a predecessor g until we obtain an z-reflective edge which is
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left-primitive. We will assume that there is at least one x-reflective edge in M,
and we will contradict our hypothesis that M, is z-inceptive.

For a (momentarily indeterminant) natural number ¢, let f; be a left-primitive
edge in M. which occurs on the top side of a region D;_; of M,. and on the bottom
side of a region D; of M,.. Inductively, for j < i, let f; be the edge on the bottom
side of D41 which has index in J(x,r). At some point, the edge f; must occur
on the bottom side of M : when this occurs, we determine ¢ so that 7 = 0 and fy
occurs on the bottom side of M. When f; is not on the bottom side of M, f; is
on the top side of some region D; of M, and we choose f;_; to be the edge on the
bottom side of D; which has index in J(z,r). Similarly, for j > i, let f;41 be the
edge on the top side of D; which has index in J(x,r). If f;+1 is not on the top side
of M, (and of M), then f;41 is on the bottom side of some region D;;1 of M.
Eventually, we must arrive at an edge f,, which is on the top side of M,.. We have
edges f; for 0 < j < n, and for some ¢ with 0 < i < n, the edge f; is left-primitive.
Write the bottom side, ap,, of D; as o fj_1c//, and write the top side, wp,, of D
as w.;- fjw;’ .For 1 < j <mn, let 7; be a directed walk in M, from the initial vertex v
of M,. to the initial vertex of D;. Observe that we can do this is such a way that
(Tjw})(Tj4104,,1) " is a counterclockwise walk in M,. (That is, if necessary, we
can exchange segments of 7; with segments of 7;11 so that (7jw})(7j410],,) 7" is a
counterclockwise walk in M,., and we can start this with 75 and 7; and work our
way up.) Similarly, for 1 < j < n, let o, be a directed walk in M, from the terminal
vertex of D; to the terminal vertex of M, chosen so that (wj'o;)(a} 07, 1)7" is
a counterclockwise walk. Let &1 denote the terminal segment of anq whose initial
vertex is the terminal vertex of fy. then 61 = afoq: otherwise &1(afo1)~! would
contain a region of M appended on the bottom side of M. Similarly, o,, must be a
terminal segment of w .

We show concurrently, by induction on j for i < j < n, that o, = w} and that
f; is left-primitive. A similar induction, from ¢ backwards to j = 0, shows that
o1 = W and that f; is left-primitive for 0 < j <.

For the base step of the induction, we are given that f; is left-primitive. We
show that:
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(a) given that f; is left-primitive, we have o}, = w} and 7; = 75,1, and

b) given that f; is left-primitive and o/, ; = w’, then f;; is left-primitive.
J J+1 7 J+

For (a), let Aj be the feathery submap of M, bounded by (r;w})(rj11¢/,,) 7"
It will suffice to show that |[Nj| = 0 since this guarantees that 7w} = 7j 410/, ;.
Because fj11 has the same index with respect to both D; and Dji1, |} = |a/ 4]
It thus follows from [N;| = 0, that w} = o/, ; and 7; = 7;,1. We will assume that
|N;| > 0 and find a region E of M, which is appended to M on the top side of M,
contradicting Lemma 4.8.

If |N;| > 0, let D be a region of A; which is appended on the top side of Nj. Let
g be the edge on the top side of D whose index with respect to D is in J(z,r). The
edge g must occur as an edge of 711 rather than in a;-H: the edge f; is the edge
on the bottom side of D;; whose index with respect to D; 4 is in J(z,r). Further,
g cannot be an {i1,i2}-edge by the uniquenes of e, and g cannot be z-reflective
because f; is left-primitive and g precedes f; in the positive walk 7,410/, f;. Since
g cannot be an interior edge of M, it must occur on the to side of M. Let A be the
terminal segment of waq whose initial vertex is the terminal vertex of g. Let 7/ be
the terminal segment of 7;41 whose initial vertex is the terminal vertex of g. Let
P; be the feathery submap of M, bounded by 7'ap,, 0;+1A~ . Then |P;| > 0,
because D;; is appended to P; on its bottom side. Then any region E which is
appended on the top side of P; is also appended on the top side of M, producing
the expected contradiction.

For (b), we assume by induction that f; is left-primitive and that o/, ; = w’.
We need to show that f;4 is left-primitive. We show that if we suppose that f;41
is not left-primitive, then we can contradict Lemma 4.8 by finding a region FEs of
M, which is appended on the bottom side of M.

Suppose that g is an z-reflective edge of M, which precedes f;y1. Let £ be a
directed walk in M,. from the initial vertex v of M,. to the initial vertex of g and
let &5 be a directed walk in M. from the terminal vertex of g to the initial vertex of
fij+1. Because fj41 is left-primitive, the walk & cannot intersect Tij; 41+ We can
choose the walk &; so that Tj+1w9+1(§1g§2)_1 is a counterclockwise walk in M,.. Let
Q; be the feathery submap of M, that is bounded by this walk. Then |Q;| > 0,
because g occurs on its topside but cannot occur on its bottom side. Let D be a
region of Q; which is appended to the bottom side of Q; and let go be the edge on
the bottom side of D whose index with respect to D is in J(x,r). Then go can be
neither an {i1,is}-edge nor an z-reflective edge, so go must occur on the bottom
side of M. Arguing as in part (a), let 7" be the terminal segment of 7;4; whose
initial endpoint is the terminal endpoint of g5, and let Ay be the terminal segment
of a.pq whose initial endpoint is the terminal endpoint of g. Then the submap of M,
bounded by Ay (T//ij+10j+1)_1 must contain a region Fy of M, which is appended
to M on the bottom side of M. This completes the inductive proof of (a) and (b).

We have shown that if there were x-reflective edges in M,., then we would have,
for some n > 2, left-primitive edges f;, for 0 < j < n. Structurally, these edges
occur vertically between an edge fy on the bottom side of M and an edge f,, on the
top side of M. Further, each left-primitive f; would be on the top side of a region D;
and on the bottom side of a region D1, where all of these regions have a common
initial vertex. Let N’ be the submap of M, bounded by o} foal o1 (w), fowiton) L.
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If n is odd, then w), is an initial segment of the long side of D,, when o] is an
initial segment of the short side of Dy and w/, is an initial segment of the short side
of D,, when o} is an initial segment of the long side of D;. Suppose without loss
of generality that o} is an initial segment on the long side of D;. We replace the
submap A’ (having at least three regions D1, Dy, D3) in M by a single region D’.
We identify the initial segment of length || on the long side of D’ with o} and
we identify the initial segment of length |w] on the short side of D’ with w{. Let
M/’ be the result of thus replacing A/ in M with D’. The indices of edges on o
and w) are not changed by this substitution, so par C pas C pe. Since the edge e
also occurs in M’, M’ is an z-section for r. This contradicts our choice of M as
z-inceptive.

If NV is even, then w/, is an initial segment of the long side of D,, when o} is an
initial segment of the long side of Dy, and w/, is an initial segment of the short side
of D,, when o} is an initial segment of the short side of D;. We obtain a map M’
by deleting A/ and identifying o/} with w/. Suppose that e; is an edge on ] which
is identified with an edge e, on w}, in M’. If the index of e; with respect to D; in
M is jp, then jg is also the index of e,, with respect to D,, in M. If e; and e,, are
both interior edges of M, then e; has index j; with respect to some region and e,
has index j, with respect to some region. Since (zj,, z;,) and (zj,, 2;, ) are in the
equivalence relation pa, (zj,,2;,) is in paq also. If either eq or e, is a boundary
edge in M, then their identification contributes nothing to pM’. We again have
pmr C pam C pr and that M’ is also an z-section for r, contradicting our choice of

M.

Lemma 4.12. Suppose that r is an achievable (s, £) relator, that the letter x occurs
in v, that J(z,r) = {i1,i2}, where iy < s < i, and that M is an x-inceptive
(s,€) map forr. Then |M| < 4.

It will suffice to prove that M, (and dually, M. ) has at most one region. For
this draft, we provide two different proofs.

First Proof. Assume that |M,| > 2 and that B, and T, are distinct regions of M,
which are appended on the bottom and top sides of M,., respectively. Let f be
the edge on the top side of B, whose index with respect to B, is in J(z,r). Let g
be the edge on the bottom side of T, whose index with respect to T, is in J(z,r).
By Lemma 4.8, the edges f and g cannot be {i1,is}-edges. By Lemma 4.11, they
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cannot be x-reflective. Hence f must occur on the top side of M and g must occur
on the bottom side of M. If f precedes wr, on way,., then T, is appended to the
top side of M, contradicting Lemma 4.8. Similarly ap, must precede g on ap,..
Let 61 be a directed walk on aaq, from the terminal vertex of ap, to the initial
vertex of g and let 05 be a directed walk on way, from the terminal vertex of wr,
to the initial vertex of f. Write ar. = o’ga” and wp, = ' fw”. Then o0y fu' 619
is a positive closed walk in M which is impossible by Lemma 1.3.

Second Proof. Let D be any region of M, whose initial vertex is the initial vertex
v of M,.. (By our choice of maximality of ~;evys, there must be such a region D if
M| > 0.) Let fo and f; be the edges on the bottom and top sides of D whose
indices with respect to D are in J(z,r). Write ap = o/ fopa/' and wp = ' f1w"”.
By Lemmas 4.8 and 4.11, fy must occur on the bottom side of M as an edge of
a9 in ap = ajagas and f; must occur on the top side of M as an edge of ws
in wyp = wiwrws. Write s = a3 foay and we = w3 fiws. Let o be any directed
walk from the terminal vertex of D to the terminal vertex of M,. Recall that
M,. is bounded by veas(psws)™!, where vy and s are terminal segments of wp
and ar, respectively. Let My, Myp, Nom, and Ny, be the feathery submaps of
M, bounded by veas(a) ™, W (paws) ™!, au(a’/a) ™1, and w”o(wy) ™!, respectively.
Then any region of M,., other than D, must be in one of these four submaps. We
show that they are all regionless.

i

If [ M| > 0, then some region of My, is appended to My on the top side of
M. Some edge on the top side of this appended region will have its index with
respect to the appended region in J(z,r). But fy is the only edge on the bottom
side of D whose index with respect to D is in J(z,r). We conclude that [ M| = 0,
and similarly that |My,| = 0.

If |Nyt| > 0, then some region of Ny would be appended to Ny on the bottom
side of My and appended to M on the bottom side of M. This contradicts Lemma
4.8, 50 [Ny | = 0. Similarly, [N, = 0.

We define ‘up’-words, Ju, on the ordered alphabet X = {z1,z2,...,2,}. For
0<i<j<mnletlu=xip1@ipo...x;. If j < i, then Ju is the empty word.

Observe that |Ju| = j —i if i < j and that ({u)(?u) =kyifi<j<k.

Example 4.13. The following (3,5) map is both inceptive and b-inceptive for the
(3,5) relator aba = cdbed. If D is either of the appended regions of M, then M — D
is not inceptive. Since |[M| = 4, we cannot, in general, improve on the bound
given in the lemma above. If we replace a,b, ¢, and d with upwords on an ordered
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alphabet X, we obtain similar (s, ¢) maps with ¢ — s an even number and |s| > 3,
where M is x;-inceptive for every letter z; that occurs in the word b.

For an alphabetically contructed (s, ¢) relator r and a letter = that occurs in r,
say that x is restricted to the long side of r if i € J(x,r) = ¢ > s, and that
x is restricted to the short side of r if i € J(z,r) = i < s. Typically, a letter
might occur in both sides of a relator rather than being restricted to one side or
the other.

Lemma 4.14. Suppose that r is an alphabetically constructed (s,{) relator, that
the letter x© occurs in r, and that x is retricted to either the short side or the long
side of r. Let i1,ia € J(x,r) with iy # iy and let N be a derivation diagram over
(X;r) which contains no {i,j}-edges for i,j € J(x,r) except possibly x-reflective
ones.

Let ey be an {i1,i1}-edge in N which occurs on the bottom side of a region D
of N and on the top side of a region Dy of N. Then the edge on the bottom side
of D1 which has index io with respect to Dy is also the edge on the top side of Do
which has index iy with respect to Ds.

Proof. We may assume without loss of generality that i; < i5. We use induction on
|IN|. When |N] = 1, there are no {iy,% }-edges and the lemma is vacuously true.
When |N| = 2, either there are no {i1, i1 }-edges or else we must have ap, = wp,
in order that A is two-sided.

Assume then that |A| > 2. If N has an appended region D which is neither D
nor Doy, then the lemma is true by induction for N'— D and is true then also for
N. By this, we may assume that D; is the only appended region on the top side
of NV and that D5 is the only appended region on the bottom side of N. Let f;
be the edge of D; which has index iy with respect to Dy and let f; be the edge
of D5 which has index i with respect to Ds. We need to show that f; is fo. A
consequence is that this edge is an interior edge. As a step in the proof, we next
show that at least one of f; or fo must be an interior edge.

Assume, without loss of generality, that f; is not an interior edge. Then f; must
occur on the bottom side of A. An easy argument shows that f; must occur after
ap, on ay. (Otherwise, we will have a directed walk from f; to e; as well as a
directed walk from e; to f1). Write ax = Map,Aafids, ap, = ¢1e1¢2f1¢3 and
wp, = the16s f20s.
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Let S be the feathery submap of N bounded by 02f293)\2¢>2_1. Since N is a
derivation diagram over (X;r) and no edges of ¢ are labelled by z, the edge fo
cannot occur on the top side of §. Hence, fs, occurs on the bottom side of some
region of S and is an interior edge of A/, as required.

Now, using that f5 is an interior edge of A/, either f5 is also an interior edge of
N — Dj or else f5 is on the top side of A — Dy. In the latter case, fo must coincide
with some edge on the bottom side of D; and the index requirements force f; = fs.
If the former case were to occur, by induction we could apply the lemma to the edge
f2 as an {is,is}-edge of the derivation diagram A — Dj. A contradiction occurs
since e; must then occur on the bottom side of some region of N — D;.

Lemma 4.15. Suppose that N is an (s,£) map, that ny regions of N have their
long side on the top and that na Tegions of N have their long side on the bottom.
Then |war| = |anx| +n1(€ — 8) + na(s — £).

Proof. This follows by a routine induction on |A].

Lemma 4.16. Suppose that v is an alphabetically constructed (s,£) relator, that
the letter © occurs in r, and that x is retricted to either the short side or the long
side of r. Let N' be a derivation diagram over (X;r) such that N contains no
{i,7}-edges for i # j and such that x occurs in neither an nor War. Then |N| is
even and |an| = |warl-

Proof. Let ny be the number of regions of N which have their long side on the top
and let ns be the number of regions of A/ which have their long side on the bottom.
By Lemma 4.14, any interior x-edge of A/ determines a pair of regions such that
every z-edge which occurs on the boundary of either region must occur on the top
side of one of the regions and and the bottom side of the other region. If ny > no,
then some region with edges labelled x on the top side cannot be paired with a
region where the edges labelled x are on the bottom side: when this happens, x
must occur in was. Similarly, if ny > nq, then x occurs in @s. Since by hypothesis,
neither @ nor wys contains an occurrence of x, we must have ny = ns. Then
IN| = n1 + ns is even and |an| = |wpr| by Lemma 4.15.

Lemma 4.17. Suppose that r is an achievable (s, £) relator, that the letter x occurs
inr, and that J(z,v) = {i}, where s < i. Let N be a derivation diagram over (X;r)
such that x occurs in neither o nor War. Then Gy = Wy
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Proof. We use induction on |[N| for [N] > 0. It is obvious that Gy = @Wa when
|IN]=0.If IN] = 1, the hypothesis that & occurs in neither @y nor Wy must fail, so
the conclusion follows vacuously. When |N| = 2, the only way that the hypothesis
on occurrences of x can be satisfied is if the two regions share a common long side;
in this case, the conclusion is again clear. Assume then that |N| > 2. The following
sublemma will be useful. A corollary to the sublemma is that we may assume that
N has only one block.

Sublemma 4.17.1. If N contains a feathery submap & with 0 < |&] < |N|
such that x occurs in neither &g nor we, then the lemma is verified for N.

Proof of the first sublemma. By the induction hypothesis, we have that ag =
we. Let 71 be a directed walk from the initial vertex of A to the initial vertex
of £ and let 75 be a directed walk from the terminal vertex of £ to the terminal

vertex of N. o

Mop

N
SN

Let Mpim be the feathery submap of N bounded by an(Tiae72) ™! and let
Niop be the feathery submap of N bounded by le(gTQwX/-l. The top side of
Nbim has the same label as the bottom side of Mop, so we obtain a derivation
diagram N’ over (X;r) when we identify the top side of Mgy, with the bottom
side of Niop. Because |€] > 0, we have |N'| < |N]. By induction, the lemma
is true for N, Since aN’ = an and wp = wyr, the lemma is verified for N
also. Sublemma 4.17.1

We will call a pair of regions in AV which share an edge labelled by x an z-pair.
Every region of N is a member of exactly one z-pair. The top region of an z-pair
has the edge which is labelled by x on its bottom side; the bottom region of an
z-pair has the edge which is labelled by x on its top side. We will write z-pairs as
ordered pairs >D, E< where D is the bottom region of the pair and F is the top
region. An z-pair is coinitial if the two regions have the same initial vertex; when
this occurs, we will call the common initial vertex the coinitial vertex of the pair.
An z-pair is coterminal if the two regions have the same terminal vertex. By the
sublemma, we may assume that no z-pair in A is both coinitial and coterminal.

Sublemma 4.17.2. With the hypotheses of the lemma, if N contains an x-
pair, then N contains at least one coinitial x-pair and at least one coterminal
T-pair.

Proof of the second sublemma. If f is a leftmost z-reflective edge, the the
x-pair which contains f is coinitial. If f is a rightmost x-reflective edge, then
the x-pair which contains f is coterminal. Sublemma 4.17.2
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If >Dq, B1 < and >D,, F> < are z-pairs in A/, then the number of coherence
bonds between >Dq, F1 < and >Ds, Es < is the number of coherence pairs in
N among the following;:

(Dl’ D2)v (Dl’ E2)7 (Eh D2)7 (Eh EQ)? (DQv D1), (EQ’ Dl)v (D27 El)v and (E27 El)'

Sublemma 4.17.3. If N contains no proper feathery submaps with x-free
boundary and >D1,FE1 < and >Ds, E5 < are x-pairs in N, then there
are at most three coherence bonds between >Dq, F1 < and >Dsy, By <. If
there are three coherence bonds between >Dq, F1 < and >>Ds, Fy < then
by duality and change of notation, we may assume that one of the following
two cases occurs:

case (a) (D1,Ds) is left-right coherent,
Do, Ey) is right-left coherent, and
Ey, Es) is left-right coherent, or

Do, Ey) is right-left coherent, and

(
(
case (b) (Dq,Ds) is contractive,
(
(E1, E9) is expansive.

Proof of the third sublemma. For any regions A and B, the definition for
the ordered pair (A, B) to be a coherent pair requires that A and B share
a common edge which is on the top side of A and the bottom side of B. It
follows that at most one of (A, B) and (B, A) can be a coherent pair. (For
a proof, consider the appended regions of the smallest feathery submap of N
containing both A and B.)

By the paragraph above, it is clear that there can be at most four coherence
bonds between >Dq, F1 < and >Ds, F3 <. We need to show that when
we do have at least three coherence bonds that the fourth cannot occur. In
doing this the structural assertions in the case where there are exactly three
coherence bonds will be justified. Suppose then that we do have at least three
coherence bonds. At least one of the coherence bonds must come either from
one of (D1, Es) and (FEs, D1) or else from (Eq, D) and (Dg, E7). If only one
coherence bond comes from these, then a second of the three coherence bonds
must come from (D1, D) or (Do, D1) and the third from (E;, Es) or (Es, E1).
By vertical duality, we may assume that one bond is contributed by (D1, Ds)
or (Ds, D7) and another is contributed by (Do, E1) or (E7, Ds). If it were the
case that coherence bonds were formed both among (D1, Es) and (Es, D7) and
also among (D9, Eq) and (E7, D3), then any third or fourth bond would be
between either (D1, D3) and (D, D7) or else between (E7, Es) and (Es, E1).
Using vertical duality again, we can assume in this case also that one bond is
contributed by (D1, D3) or (Dg, D1) and another is contributed by (Ds, E7)
or (E1, Ds): that is, using vertical duality we may assume that this happens
in any case when there are at least three coherence bonds.

Since we may re-index the z-pairs by switching subscripts, we may as-
sume that (Dy, Dy) rather than (Dsg, D1) is a coherent pair. Using horizontal
duality, we may assume either that

(a) (D1,Ds9) is a left-right coherent pair or else that
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(b)  (D1,D2) is a contractive coherent pair in which the edges on
ap, occur to the right of the edge on wp, that is labelled x. (In this case, it is
also clear that ap, is the short side of Ds.) We separate the further analysis
of cases (a) and (b).

case (a). We have used duality above to ensure that one of (Ds, Ey) or
(E1,D9) is a coherent pair in N. We want to next verify that, with our
choices, (Ds, E1) is a right-left coherent pair. Since (Dj,Ds) is a left-right
coherent pair, we may write wp, = wy and ap, = ya for some positive paths
v and «. Since > D1, F1 < is an z-pair, we may write w = wjwsejwsw, where
ej is the common edge of wp, and a g, which has label z and waejws is the
longest common segment of wp, and ag, which contains e;.

Let a3 be the initial segment of oy, which has the same terminal vertex
as wy and let ag be the terminal segment of ap, which has the same initial
vertex as wy. Let 71 be any directed path in N from the terminal vertex of
D5 to the terminal vertex of N. Observe that there is at least one directed
path 7o in N from the terminal vertex of E; to the terminal vertex of N
and that we may choose one of these so that the path (wsap,m)(em) ™t is
counter-clockwise and bounds a feathery submap N of N. Since ap, is on
the bottom side of A7 and edges of ag, occur on the top side of N7, we can
see that (Dq, E7) rather than (Fj, D2) must be a coherent pair.

Next we claim that no edges of wp, can be edges on «;: if an edge f
occurred on both a; and on wp,, we could construct a positive closed path
in N from f to e; along ag, and from e; to f along wp, and wp,. Thus,
the coherent pair (D, E1) cannot be a left-right coherent pair. Since e; is
on ap, and is on wp, rather than wp,, the coherent pair (D, F1) cannot be
matched or contractive. Since D5 is the bottom region of the > Dy, Fs <, the
side wp, has the same length as ag, and (D, F1) cannot be expansive. The
remaining possibility is that (Dq, E1) is a right-left coherent pair as required.
Notice that this forces wy to be an empty path since N contains no feathery
submaps with z-free boundary.



ACHIEVABLE RELATORS

From the illustration above, it is clear that neither (Di, F5) nor (Eq, D1)
can now be a coherent pair in N. For a slightly more formal argument, first
note that (Fs, D1) cannot be a coherent pair in A. If that happened, edges of
wg, would then be on the bottom side of the feathery submap of N' bounded
by (ap,a)(wiwseiwswp,) ! and the edge labelled by = on the bottom side of
E5 would occur on the top side of this same submap. (D1, E3) cannot be a
matched, expansive, or contractive coherent pair because wp, and ap, have
the same length and share edges labelled by x with other regions. (D1, Es)
cannot be a left-right coherent pair because (D1, D2) is a left-right coherent
pair. Let eo be the edge common to wp, and ag, that is labelled by x. (D1, E2)
cannot be a right-left coherent pair because this would force a positive closed
path in A/ (along wp, and wp, from e; to ey and then along ag, and wp,
from e to e7.)

Next, we need to show that (Ep, Es) rather than (Es, Ey) is the third
coherent pair and that (Ej, E2) is a left-right coherent pair.

To see that (F3, E1) cannot be a coherent pair, first observe that, except
for the edges on «aq, the edges on a g, are already shared with wp, or wp,. If
the terminal edge f of wg, were to occur on o then there would be a positive
closed path in NV from ez to the terminal vertex of f along a g, and from the
terminal vertex of f to ey along ap, and wp,.

Write ap, as v1vseav3v4 where voesvs is the longest common segment of
wp, and ag, which contains e;. Because es is on ag,, (E1, E3) cannot be a

31



32

DAVID A. JACKSON

matched coherent pair or a contractive coherent pair. If any edge f of v, was
also an edge on wg,, then there would be a positive closed path in A from
ez to f along v3 and vy, and then from f to ez along wg, and wp,. Hence
(E1, E3) can be neither a right-left coherent pair nor an expansive coherent
pair with wg, a segment of vy. We will conclude case (a) by showing that
(E1, Es) can only be a left-right coherent pair because vq is too short for
(E1, E2) to be an expansive coherent pair with wg, a segment of v;. We need
to show that |wg,| > |v1].

Because A contains no feathery submaps with x-free boundary, we can
make the following observation. If (Fj, Es) is an expansive coherent pair
with wg, a segment of vy, then v; = pwg, for some directed path p and the
terminal vertex of Fj is the initial vertex of v5. Since the initial segments of
ap, and wp, are then v1vzes and agrses (where e; has the same index with
respect to E5 and Ds), we see that || = |as|. A similar argument for e;wzas
and ejwsy shows that |as| = |y|. Since (D1, Ds) is a left-right coherent pair,
with ap, = ya, we have |ap,| > |y|. Both ap, and wg, are short sides of
regions, so we have |wg, | = |ap,| > |y| = |az| = |v1], as required

case (b). Assume now that ap, is a segment of wp, that occurs to the
right of e; on wp, and write wp, as wjwseiwswiap,ws where waoejws is the
longest common segment of wp, and ag, which contains e;.

As in case (a), we have already used duality to assure that one of (Da, E7)
or (Dq, E7) is a coherent pair in N. In the current case, it is easy to see that
the coherent pair must be (D, E1) because ap, is a segment of wp,. Since
wp, and ag, have the same length and share edges labelled by x with other
regions, (Dq, Eq) cannot be an expansive, contractive, or matched coherent
pair. As in earlier argument, if (Da, F1) were a left-right coherent pair, we
would have a positive closed path in N. Thus (Ds, F1) must be a right-left
coherent pair. Let ey be the edge common to wp, and ag, which has label .
We may write ap, as ajwseijwsas and wp, as agviveeavsyy where voearvs is
the longest common segment of wp, and ag, containing es.
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As in case (a), we need to show that neither (Es, D1) nor (D1, Es) can be
a coherent pair. Since ap, (wjwseiwswp,ws)~ ! bounds a feathery submap of
N and ey occurs on the top side of this map, no edge of wg, can occur on
ap,. Thus, (F2, D7) is not a coherent pair. Since wp, and ag, have the same
length and share edges labelled by = with other regions, (D1, F2) cannot be
a contractive, expansive or matched coherent pair. If (Dq, Ey) were either a
right-left coherent pair or a left-right coherent pair, we would find positive
closed paths in .

Next we need to show that (Eq, Es) rather than (Fs, E1) is a coherent pair
in N. We need only observe that if the terminal edge of wg, were an edge
on o, then we would have a positive closed path in A'. We are now reduced
to the case that (Ep, E;) is a coherent pair in N. Write ap, as p1va€a2v3us.
To conclude the proof of this sublemma, we will show that wg, is a segment
of p1. Because ey occurs on ap,, we cannot have that (E7, Es) is matched
or contractive. If the initial edge of wg, occurred on ps, we would have a
positive closed path in N. The remaining possibilities are that (Fi, F3) is
left-right coherent or that wg, is a segment of p;. In either case, we can see
that (because N contains no proper feathery submaps with z-free boundary)
v1 must be empty. We now need only show that |u1| > |wg, |- With arguments
like those in case (a), we can see that |u1| = |az| = |ap,ws| > |ap,| = |we, |-

Sublemma 4.17.3

Sublemma 4.17.4. If >D, E; < is a coinitial z-pair in N, >Dg, By K
is an x-pair in N, and there are three coherence bonds between >>D1, B3 <
and >Ds, E» < , then the lemma is verified for N.

If >D1, E1< is a coterminal x-pair in N', >Do, B> < is an x-pair in N,
and there are three coherence bonds between >Di, F1 < and >Ds, Ey <,
then the lemma is verified for N.

Proof of the fourth sublemma. The two assertions are dual, so we may assume
that we are in the case where >D;, F4 < is coinitial and then that we are in
one of the two structural cases (a) and (b) in the conclusion of the previous
sublemma.

case (a) Let e; be the z-relective edge for >D;, D; <. Since >D1, B1 <
is coinitial, we can write wp, as p1 A2 and ag, as Az for positive paths g1, A
and A3 where e; occurs on pp and the initial edge of Ag is distinct from the
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initial edge of A3. Since (D1, D2) is a left-right coherent pair, we can write ap,
as Aaae for some positive path as. Since (Da, E1) is a right left-coherent pair
and >D,, Fr < is an x-pair, we can write wp, as Azpuat; where es occurs on
o and po is the longest common segment of wp, and a g, containing es. Since
(E1, Es) is a left-right coherent pair, write wg, as w1y and a g, as Agpatds.

In the previous sublemma, we saw, with different notation, that |A\s| =
|[As| = |A\4] and that this common length is less than the length s for short
sides of regions. Hence, we may also write ap, as a1 A1 and wg, as Aswy for
positive walks A1, a1, A5 and wy where |\;| = |);| for 1 <4,5 <5.

We next argue that \; = /\_j for 1 < i,j < 5. First, Ay = A3, since Ay and A3
have the same length and are terminal segments of the long sides of D; and
E1, respectively. Next, A3 = A4 since A3 and \; have the same length and are
initial segments on the long sides of Dy and Ejy, respectively. Then, Ay = As,
since Ao and A5 are initial segments on the short sides of Dy and FEs. Finally,
A = A4, since A\; and A4 are terminal segments on the short sides of D; and
FE4. Tt is similarly apparent that @7 = w7 and a3 = ws.

Choose any directed path 7y from the initial endpoint of N to the ini-
tial endpoint of aq, p1, and w;. Let 7; be a directed path from the terminal
endpoint of 11 to the terminal endpoint of A/ and choose a directed path 7o
from the terminal endpoint of 1o to the terminal endpoint of A/ such that
(¢171)(ha2) ™1 is counterclockwise. Let Mpedial be the feathery submap of
N that is bounded by (1171)(272) "t Let Mpottom and Niop be the feathery

submaps of NV that are bounded by axr(Toai A7) ™! and (Tow; )\5w27'2)w;/1.
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Aftop

T2

Nmedial

T0 T1

Append a region D} to the top of Npoettom, identifying the short side of D}
with Ajas to obtain a feathery map Ni. Write the top side of D} as Aju5i)
where A3 = A3,p2 = pf and 7,/)1 = wl Append the feathery submap Npyedial
to the tops side of N along ¥|7; to obtain a feathery map N5. Append a
region E) to the top side of Ny along N5ubtba, to obtain a feathery map Ns.
Here, D), F, < is a coinitial z-pair. Write the top side of Ej as Ajw}
where )\_5 = )\_’ and wy = w_g Since @7 = wy we can identify the bottom side of
Niop With the top side of A3 to obtain a feathery map Ny which has |N| — 2
regions. Then a7, = Wy, by induction on |V, so oy = W

case(b)

Sublemma 4.17.4

Sublemma 4.17.5. IfN contains at least two z-pairs and there are no proper
feathery submaps of N with x-free boundary, then there is a coinitial x-pair
>Dy, Fy < and an x-pair >Dsy, Eo < with at least two coherence bonds
between >D1, By < and >Ds, By <.

If N contains at least two x-pairs and there are no proper feathery submaps
of N with x-free boundary, then there is a coterminal x-pair >D1, E1 < and
an x-pair >Do, Fo << with at least two coherence bonds between >Dq, B <
and >Ds, Fy < .

Proof of the fifth sublemma.
Sublemma 4.17.5
Sublemma 4.17.6. If >D1, E < is a coinitial z-pair in N', >Dq, Fy K

is an x-pair in N, and there are two coherence bonds between >Dq, F1 <
and >Dy, B> <, then the lemma is verified for N.

If >D;, E1 < is a coterminal z-pair in N, >Ds, B3 < 1is an z-pair in
N, and there are two coherence bonds between >D1, E1 < and >Dq, Ey <,
then the lemma is verified for N.

Proof of the sixth sublemma.
Sublemma 4.17.6

TO BE COMPLETED
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Lemma 4.18. Suppose that r is an achievable (s, £) relator, that the letter x occurs
inr, and that J(x,r) = {i1,i2 }, where s < i1 < ia. Let N be a derivation diagram
over (X;r) which contains no {i1,iz}-edges. If neither @n nor Wy contains an
occurrence of x, then G = Whr.

Proof. Since J(x,r) = {1i1,42 } and N contains no {i1, is}-edges, [2i,]pp # [2is] prr
and J([2i,]pn, A7) = {41 }. Write ¢ for the labelling on N which corresponds to
r and write ¢’ for the labelling on A” which corresponds to ras. Since x occurs in
neither ¢(an) nor ¢(wpr), [2i,]p, cannot occur in ¢'(apr) or ¢'(wyr). By Lemma
4.17, we have ¢'(an) = ¢'(wnr). By Lemma 3.2, vy < r. Define a function f from
(X;rar) to (X; R) by f([#i]pn) = [#4]p. By Proposition 2.9, this is a well-defined
homomorphism. Since f¢'(e) = ¢(e) for every edge e, we have ¢p(apn) = Pp(wn).

Lemma 4.19. Suppose that r is an achievable (s, ) relator, that the letter x occurs
in r, that J(xz,v) = {i1,i2}, where s < i1 < i9, and that M is an x-inceptive
(s,€) map forr. Then no edge of M is x-reflective.

Proof. We return to the notation for M that was introduced following Lemma 4.8.

Li3]

(L g

il

By (horizontal) symmetry, it will suffice to prove that no edge on ps or vy is
x-reflective and that no interior edge of M, is a-reflective. By (vertical) symmetry,
we may assume that e has index i; with respect to T and has index i5 with respect
to B. Let f be the edge on the bottom side of T" which has index iy with respect
to T.

The only edges on the top side of B which can have label x are those which
have index i1 or io with respect to B. Since e has label is with respect to B and v5
follows e on wp, no edge of vo can be z-reflective or even have label x.

The edge f must occur on po rather than on ~s: it has label  so it cannot follow
e on the top side of B. Suppose, for the sake of contradiction, that f is x-reflective
in M. Then Lemma 4.14 applies to f and e as edges of M — B and e must be an z-
reflective edge in M — B, also. This is impossible since e is the unique {i1, 2 }-edge
of M.

We need finally to show that no interior edge of M, can be x-reflective. We
show that every edge of M, which has label z must occur on the bottom side of

M.

TO BE COMPLETED
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Lemma 4.20. Suppose thatr is an achievable (s, £) relator, that the letter x occurs
in v, that J(z,r) = {i1,i2}, where s < i1 < iz, and that M is an x-inceptive
(s,£) map forr. Then |IM| < L.

Theorem 4.21. Suppose that r is an achievable (s,l) relator, that the letter x
occurs in v, that |J(x,r)| = 2, and that M is an x-inceptive (s,£) map for r. Then

M| < ¢

Proof. This summarizes Lemmas 4.9, 4.12, and 4.20.

5. LocaAL COMPUTATIONS: THE INDUCTION STEP

Theorem 5.1. Suppose that r is an achievable (s, £) relator, that the letter x occurs
inr, that |J(x,r)| = j, and that M is an z-inceptive (s,£) map for r. Then |M| <
(7 —1e.

Theorem 5.2. Suppose that r is an achievable (s,{) relator and that M is an
inceptive (s,€) map for r. Then |[IM| < L(s+ ¢ —2).
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