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Abstract. In his thesis, Remmers [R], introduced semigroup derivation di-

agrams and used them to prove that the word problem for finitely presented
C(3) semigroups was solvable. In this article we introduce the annular analog

of semigroup derivation diagrams and use them to demonstrate the solution
to a conjugacy problem for finitely presented C(3) semigroups.
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0. Introduction

As part of his thesis, Remmers [R] proved that if superfluous vertices are re-
moved, then for any semigroup derivation diagram, over a C(3) semigroup, the
number of edges along the diagram’s left boundary is the same as the number of
edges along its right boundary. The solution to the word problem for such finitely
presented semigroups immediately followed. A complete proof can be found in the
textbook [H], and we will often cite this source. In an analogous fashion, we will
demonstrate that if we remove superfluous vertices, then in any feathered coannular
diagram, over a C(3) semigroup, the number of edges along its inner boundary is
the same as the number of edges along its outer boundary. The solution to the
conjugacy problem will then be shown to immediately follow for such finitely pre-
sented semigroups. In Section 1 we construct feathered coannular diagrams and
show how they model conjugacy, i.e. the equivalence relation determined by the
transitive closure of the relation xy ∼p yx. In Section 2 we provide all the geometric
arguments needed to solve the conjugacy problem.

1. Feathered Coannular Diagrams and Conjugacy

The annular and coannular maps we first introduce below are meant only to
serve as vehicles to introduce notation and provide a context for the construction
of feathered coannular maps, a proper subclass of coannular maps as well as the
featured maps of this article. Other than this and except for a few innocent com-
parative remarks, annular maps and coannular maps will play no roles in any proof.
Those roles will be reserved for feathered coannular maps.

A map M is a finite connected 2-complex in the plane. If p is a walk in the
one-skelton of M, then |p| will denote the number of edges traversed along the walk
p, V ert(p) will denote the set of vertices incident with p, and |V ert(p)| will denote
the number of vertices incident with p. So when p is a path, a simple cycle, or a
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walk that returns to multiple vertices then |V ert(p)| = |p| + 1, |V ert(p)| = |p|, or
|V ert(p)| < |p|, respectively.

M is annular if the complement of M in the plane has exactly two components.
Since M is finite, one of these two components is bounded, while the other is
unbounded. We will refer to the bounded component of the complement of an
annular map M as the hole of M. For any annular map M, there will be closed
walks in the one-skeleton of M which bound the hole of M and closed walks in the
one-skeleton of M which bound M together with its hole. A closed walk of minimal
length which bounds the hole of M is an inner boundary of M. A closed walk of
minimal length which bounds M together with its hole is an outer boundary of
M. Cyclic permutations of inner boundaries are also inner boundaries and cyclic
permutations of outer boundaries are also outer boundaries. We make a choice for
an inner boundary and borrowing notation from [GuS] we denote it as inn(M).
Similarly we make a choice for an outer boundary and denote it by out(M). We
denote the initial and terminal vertex of inn(M) by vinn(M) and similarly we denote
the initial and terminal vertex of out(M) by vout(M).

We assign a direction of flow to each edge in M’s one-skeleton, so that in this
fashion we can think of the one-skeleton as also being a directed graph and we will
denote this directed graph by ΓM. So when we say p is a directed walk, it’s to be
understood that p is a walk in ΓM. If D is a two-cell of M, we will say that D is
two-sided if D has a boundary walk of the form pq−1 where p and q are directed
walks. If p and q are minimal then we will call them sides of D. If vertex v0 is the
initial vertex of p then we also deem it as the initial vertex of the two-sided two-cell
D and denote it as v0D . Similarly if vertex v1 is the terminal vertex of p then we
also deem it as the terminal vertex of D and denote it as v1D . Following Higgins’
textbook [H, page 70], a vertex v in a directed graph Γ is a source if for any other
vertex w in Γ there is a directed path p that begins at v and terminates at w. A
sink is the dual concept. A vertex v in a directed graph is a transmitter if v has
indegree 0 and is a receiver if v has outdegree 0. A vertex v is a singularity if it
is either a transmitter or a receiver. We won’t be concerned with sources and sinks
in this work. We mention them only because transmitters and receivers are called
sources and sinks in some places in the literature.

We will call M a coannular map if M is an annular map without singulari-
ties, whose two-cells are all two-sided, where both inn(M) and out(M) are simple
directed cycles, and both inn(M) and out(M) are directed in the plane with coun-
terclockwise orientations.

Since all the two-cells will be two-sided from this point forward in the article,
we may simply refer to them as cells. Now for each coannular map M we assign a
counterclockwise orientation to M’s hole, the unbounded component, and each cell
D of M. So if D is a cell of M with sides p and q and the walk v0D ·p ·v1D ·q−1 ·v0D
traces out the boundary of D in a counterclockwise sense then we will call the side
p the positive side of D and we will call side q the negative side of D. Of
course, if the walk v0D ·p ·v1D ·q−1 ·v0D traces out the boundary of D in a clockwise
sense then we would call p the negative side of D and q the positive side of D.
Henceforth we will denote the positve side of a cell D by βD and its negative side
by αD. So if a directed edge e lies in M’s interior and lies on αD for some cell D
then because the plane is orientable e would also lie on βE for some cell E.
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We borrow the following notation from Remmers [R] also found in [H]. Let
e be a directed edge along αD or βD. We then call e an initial edge of αD or
βD, respectively, if the initial vertex of e is also the initial vertex v0D of D. We
call e a terminal edge of αD or βD, respectively, if the terminal vertex of e is
also the terminal vertex v1D of D. We call e an intermediate edge of αD or
βD, respectively, if e is neither an initial edge nor a terminal edge of αD or βD,
respectively.

A vertex v of M is superfluous if its degree in M is 2 and the directed edge e1
with terminal vertex v is distinct from the directed edge e2 with initial vertex v. If
v is superfluous then we could “coalesce” v with e1 and e2 so as to form a single
edge e whose initial vertex is the initial vertex of e1 and whose terminal vertex is
the terminal vertex of e2. We then assign a positive direction to the new edge e
that is consistent with both of the positive directions initially assigned to e1 and e2.
In this way we say we removed the superfluous vertex v from M. Clearly if the
superfluous vertex v is removed from M then the resulting map is still coannular.

We now present a process for appending the negative side of a cell to the outer
boundary of coannular map that will form the basis for the construction of feath-
ered coannular maps. So let M′ be a coannular map and let D be a cell in the
plane that is not a cell of the original complex M′ but where αD is either a proper
directed subpath of one of out(M′)’s cyclic permutations or else αD is itself one
of out(M′)’s cyclic permutations, where βD is either a simple directed path or a
simple directed cycle when αD is, and where the interiors of both D and βD lie in
the unbounded region of M′’s complement. If this is the case, then we say D has
been appended to M′ and we denote the new complex consisting of M′ and D as
M′#D. It is easy to see that no singularities are introduced after appending D to
M′ and that the inner and outer boundaries of M′#D are directed cycles oriented
counterclockwise. So M′#D is also a coannular map. The two examples, in Figure
1 on the next page, where M′ is a simple directed cycle C, will make this appending
operation much clearer.

On the left side of Figure 1, the initial coannular map M′ is a simple directed
cycle C, where |C| = 5. For the appended cell D we have |αD| = 2, so that in C#D
we see that αD is a proper subpath of one of out(C)’s cyclic permutations. On the
right side of Figure 1, the initial coannular M′ is again the same simple directed
cycle C. For the appended cell E we have |αE | = 5, so that in C#E we now see
that αE is one of out(C)’s cyclic permutations.

The examples of Figure 1 lead to our formal definition of feathered coannu-
lar maps. They are our annular version of the simply connected feathery maps
constructed in [CJ], hence the reason for the modifier feathered. They are also
equivalent to the annular maps constructed by Guba and Sapir in [GuS] but they
use these maps for purposes which are different from ours.

Definition 1.1. A coannular map is a feathered coannular map C if

(1) C is a simple directed cycle C0

or (2) C = ((· · · ((C0#D1)#D2)# · · · )#Dn−1)#Dn, where each Di is a
two-sided two-cell.

Remark 1.1. It is clear by construction that if an interior edge e of C lies on some
αD then it also lies on some βE where E and D must be distinct. In other words no
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Figure 1. In the left figure αD is a proper simple subpath of
out(C) or one of its cyclic permutations. The vertices v0D and
v1D are distinct. In the right figure αE is either out(C) or one of
its cyclic permutations. The vertices v0E and v1E are identified to
one another.

edge e in a feathered coannular map can ever be traversed twice as one completely
traces out a minimal boundary walk along the boundary of a cell that e lies on.

Remark 1.2. We had indicated at the beginning of Section 1 that the class of
feathered coannular maps is a proper subclass of coannular maps. To verify this,
we ask the reader to simply draw an annulus in the plane and orient both its
boundaries counterclockwise, then draw a directed edge e with initial vertex v0 on
the inner boundary and terminal vertex v1 on the outer boundary and such that the
interior of e lies within the interior of the annulus. This annular complex is clearly a
coannular map M whose only cell D has as its negative side αD ≡ v0 · inn(M) ·e ·v1
and has as its positive side βD ≡ v0 · e · out(M) · v1. Hence edge e is traversed
twice as one traces out the boundary of D but this cannot happen for feathered
coannular maps according to Remark 1.1 above.

Besides appending cells to the outer boundaries of maps we could just as easily
append them to inner boundaries. We make precise this dual appending construc-
tion to the inner boundary in what follows. So let M′ be a coannular map and let
E be a cell in the plane that is not a cell of the original complex M′ but where βE is
either a proper directed subpath of one of inn(M′)’s cyclic permutations or else βD
is itself one of inn(M′)’s cyclic permutations, where αD is either a simple directed
path or a simple directed cycle when βD is, and where the interiors of both D and
αD lie in M′’s hole. If this is the case, then we also say E has been appended to
M′ and we denote this new complex consisting of M′ and E as E#M′. Clearly
E#M′ is also a coannular map and clearly we obtain the following proposition.

Proposition 1.1. If C is a feathered coannular map then C is either

(1) a simple directed cycle C0

or (2) C = En#(En−1#(...(E2#(E1#C0))...)), where each Ei is a two-sided
two-cell. �
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Remmers in [R] made a keen observation concerning how the directions of edges
vary about vertices in the underlying maps of semigroup derivation diagrams, vary
in the sense of when they point toward a vertex and point away from the same
vertex. He had shown that as one makes a “complete circle” about any such vertex
then the changes in edge directions one encounters from pointing toward the vertex
to pointing away from the same vertex occurs at most twice. Precisely, Remmers
defined a vertex v in a map M to be hyperbolic if there exists a subgraph Γ′M
of M’s directed one-skeleton ΓM such that the degree of v in Γ′M is four and
if there exists both a small open neighborhood U in the plane about v and a
homoemorphism f of the plane such that f preserves the directions assigned to
M’s edges and such that the image of Γ′M ∩ U under f is that found in Figure
2 below. Remmers then demonstrated that the underlying maps of semigroup
derivation diagrams admit no hyperbolic vertices.

•ṽ
6

-

?

�

Figure 2. A degree four vertex ṽ, the image of v under f . The
edges alternate between pointing toward ṽ and pointing away from
ṽ.

Proposition 1.2. Feathered coannular maps admit no hyperbolic vertices.

Proof. The proof follows easily by the definition of feathered coannnular maps and
by induction on the number of their cells. �

Remark 1.3. It can also be shown that coannular maps admit no hyperbolic
vertices.

We now define our diagrams. First recall that a semigroup presentation P =
〈X|r1 = s1, r2 = s2, r3 = s3, ...〉 consists of a positive alphabet, namely the set X,
and collection of equalities, namely the ri = si’s. Each such equality ri = si is a
defining relation and the individual ri’s and sk’s are relators. By the semigroup
S defined by P we mean the quotient semigroup F [X]/ρ where F [X] is the free
semigroup generated by P ’s alphabet X and ρ is the congruence generated by P ’s
collection of defining relations. So in all of what follows, when we introduce a
semigroup S, it will always be understood that S is defined in this fashion by some
semigroup presentation P . So that P ’s alphabet X, collection of defining relations,
and relators now become S’s alphabet, collection of defining relations, and relators.
Now let M be a coannular map whose directed edges are labeled by non-empty
words from the free semigroup F [X] generated by S’s alphabet X. So if p is a
directed walk in ΓM, then p will denote the word one reads as one traverses p and
|p| will denote the number of letters comprising the word p. If for each cell D of M
we have that the equality αD = βD or the equality βD = αD is one of S’s defining
relations then we will call such a labeled coannular map a coannular diagram M
over S. If such a labeled map is a feathered coannular map C then we will call it a
feathered coannular diagram C over S.
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We assume the reader is familiar with semigroup derivation diagrams, a thorough
treatment can be found in the textbook [H]. We present a brief survey of them in
what follows and then explain their connection to feathered coannular diagrams.
A semigroup derivation diagram F over a semigroup S is a labeled, connected,
simply-connected two-complex in the plane whose underlying one-skeleton ΓF is a
directed graph, where F’s interior contains no singularities, where F’s boundary is
two-sided as well as all of its two-cells, and whose edges and boundaries along its
two-sided two-cells are labeled in the same fashion as those in coannular diagrams.
As a consequence, F contains both a unique source vertex v0F and a unique sink
vertex v1F that both lie on F’s boundary. If we denote the negative side of F by αF

and its positive side by βF, then both αF and βF begin at v0F and both terminate
at v1F . The key fact about semigroup derivation diagrams is that two words u
and w are equal in S if and only if there is a semigroup derivation diagram F over
S such αF ≡ u and βF ≡ w. Another important fact about semigroup derivation
diagrams, this time what they share in common with feathered coannular diagrams,
is that they can also be constucted by inductively appending cells. But in their
case, the negative sides of cells are appended only to simple directed paths along
the positive sides of the diagrams where those positive sides are themselves simple
directed paths in contrast to feathered coannular diagrams where the negative sides
of cells are inductively appended either to simple directed paths or simple directed
cycles along outer boundaries, see [H] or [CJ] for the details. We are now in a
position to make a few observations connecting semigroup derivation diagrams to
feathered coannular diagrams that we gather in Propositions 1.3 and 1.4 below.
But we need one more definition before we can begin their proofs. If x and y are
words, in the alphabet X, at least one of which is non-empty and u and w are
two non-empty words where u ≡ xy and yx ≡ w then we say u and w are cyclic
permutations of each other.

Proposition 1.3. Let F be a semigroup derivation diagram over a semigroup S
then there exists a feathered coannular diagram C over S such that

(1) C contains the same number of cells as F,

(2) |inn(C)| = |αF| and |out(C)| = |βF|,
and (3) inn(C) and out(C) are cyclic permutations of αF and βF, respectively.

Proof. If we identify F’s source vertex v0F with its sink vertex v1F and name this
identification as vertex v then we obtain a labeled annular map M in the plane with
no singularities, whose two-cells are two-sided, whose inner and outer boundaries
can be traced out by simple directed cycles, and whose inner and outer boundaries
share at least one vertex in common, namely vertex v. It’s easy to see that one
can identify v0F with v1F so that not only are inn(M) and out(M) both oriented
counterclockwise but that their directed edges are those belonging to αF and βF,
respectively. Now by the discussion above concerning how semigroup diagrams can
be constructed by appropriately appending cells, it’s easy to convince oneself that
M is in fact a feathered coannular diagram C. It’s now clear that we obtain (1),
(2), and (3) of the proposition’s conclusion. �

The next proposition “undoes” the identification process of the previous. We
obtain similar conclusions but we insert one extra, numbered as (4) concerning the
absence of superfluous vertices.
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Proposition 1.4. Let C be a feathered coannular diagram over a semigroup S
that shares a vertex v on both inn(C) and out(C), then there exists a semigroup
derivation diagram F over S such that

(1) F contains the same number of cells as C,

(2) |αF| = |inn(C)| and |βF| = |out(C)|,
(3) αF and βF are cyclic permutations of inn(C) and out(C), respectively,

and (4) if it is the case that C contains no superfluous vertices then neither does F.

Proof. If we “cut” the feathered coannular diagram C at the vertex v common on
both inn(C) and out(C) so as to “split” v into two separate vertices say v0 and v1,
then we obtain in this manner a labeled, connected, simply-connected two-complex
in the plane with no interior singularities and whose boundary as well as all of its
two-cells are two-sided. In other words we have “undone” the identification process
of the previous proposition. This new labeled two-complex is therefore a semigroup
derivation diagram F where v0 and v1 play the roles of F’s source and sink vertices,
respectively. Its sides αF and βF correspond to inn(C) and out(C), respectively.
It’s now clear that we obtain (1), (2), and (3) of the proposition’s conclusion. It is
also easy to see that we obtain conclusion (4) as well. �

The following definition for conjugacy can be found in [KM]. We say two non-
empty words u and w are primarily conjugate to each other in S and write
u ∼p w if there exist words x and y, allowing for one of x or y to be empty but
not both, such that u = xy and w = yx in S. We say u is conjugate to w in S
and write u ∼ w if there exists a finite sequence of non-empty words u1, u2, ...., un
such that n ≥ 2, u ≡ u1, w ≡ un, and ui ∼p ui+1 for 1 ≤ i < n. Clearly ∼ is an
equivalence relation on S. We note that if u and w are cyclic permutations of each
other then clearly they are also primarily conjugate to each other as well.

We now demonstrate how feathered coannular diagrams model the equivalence
relation ∼.

Theorem 1.1. Two non-empty words u and w are conjugate to each other in
S ⇔ there exists a feathered coannular diagram C over S such that u is a cyclic
permutation of inn(C) and w is a cyclic permutation of out(C).

Proof. ⇒ Let u1, u2, ...., un be a finite sequence of non-empty words where n ≥ 2,
u ≡ u1, w ≡ un, and ui ∼p ui+1 for 1 ≤ i < n. Consider the first two words in this
sequence, u1 and u2. We therefore have u1 = xy and yx = u2 in S for words x and
y, not both empty. Hence there must exist two semigroup derivation diagrams F1

and F2 such that u1 ≡ αF1 , xy ≡ βF1 , yx ≡ αF2 , and u2 ≡ βF2 . Correspondingly,
by Proposition 1.3’s conclusion (3), there are two feathered coannular diagrams

C1 and C2 such that u1 and xy are cyclic permutations of inn(C1) and out(C1),

respectively, and where yx and u2 are cyclic permutations of inn(C2) and out(C2),

respectively. Since out(C1) and inn(C2) are both cyclic permutations of xy, we can
then identify out(C1) with inn(C2) in the obvious fashion to form a new feathered

coannular diagram C1 where clearly u1 is a cyclic permutation of inn(C1) and u2
is a cyclic permutation of out(C1). Similarly for each subsequent pair of words
ui and ui+1 of the sequence, construct a feathered coannular diagram Ci where

ui is a cyclic permutation of inn(Ci) and ui+1 is a cyclic permutation of out(Ci).
Hence we have a sequence of feathered coannular diagrams C1, C2, ..., Cn−1 where
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out(Ci) is a cyclic permutation of inn(Ci+1) for 1 ≤ i ≤ n − 2. Lastly form a
feathered coannular diagram C composed from this sequence by identifying, in the
obvious fashion, out(Ci) with inn(Ci+1) for 1 ≤ i ≤ n−2. Since u and w are cyclic

permutations of inn(C1) and out(Cn−1), respectively, then clearly u and w are also

cyclic permutations of inn(C) and out(C), respectively.

⇐ We induct on n the number of appended cells D1, D2, ..., Dn such that
C = (C0#D1)#D2)#...)#Dn−1)#Dn, where C0 is a simple directed cycle. If n = 0
then C is the simple directed cycle C0. Hence inn(C0) and out(C0) are cyclic

permutations of each other and therefore the label inn(C0) is a cyclic permutation

of the label out(C0). Now by assumption u and w are a cyclic permutations

inn(C0) and out(C0), respectively. Hence u and w must be cyclic permutations of
each other and therefore u and w are also primarily conjugate to each other. So
the result follows for the case n = 0.

Suppose n > 0, so C = C′#D for some feathered coannular diagram C′ containing
n − 1 cells. First observe that there must exist a simple directed path q, possibly
empty, along out(C) such βD ·q is a cyclic permutation of out(C). By assumption w

is a cyclic permutation of out(C). Hence w is a cyclic permutation of βD · q. Hence
w ∼p βD · q. Since either the equality αD = βD or the equality βD = αD is one of

S’s defining relations, we then have that βD · q = αD · q in S. Hence w ∼p αD · q.
Now clearly αD · q is a cyclic permutation of out(C′). Hence w ∼ out(C′). By

induction we have that out(C′) ∼ inn(C′). Hence w ∼ inn(C′). Clearly inn(C′)

is a cyclic permutation of inn(C). Hence w ∼ inn(C). Since u, by assumption, is

a cyclic permutation of inn(C) we therefore have that w ∼ u and the induction is
complete. �

Remark 1.4. Goldstein and Teymouri, in [GT], introduced a notion of conjugacy
that properly contains that notion under review in this article. It can be shown
that coannular diagrams model their notion when S’s presentation P contains no
cycles in either it’s left or right graphs or when S’s congruency classes (determined
by S’s defining relations) are all finite in size such as in the cases when S is a finitely
presented C(3) semigroup or a finitely presented C(2) & T (4) semigroup. For the
general case, coannular diagrams can be shown to model their notion when the
conjugate elements being modeled are not also null conjugate as defined in [CJT],
a note currently under preparation.

2. A Solvable Conjugacy Problem

Recall that a word z is a piece if z appears as a factor in two distinct locations
of a single relator or z appears as a factor in two distinct relators. Also recall that
S satisfies C(n) if no relator of S can be written as a product of fewer that n pieces.
The following three theorems due to Remmers appear as Theorems 5.2.13, 5.2.14,
and 5.2.15 in [H]. We will essentially re-translate his theorems and arguments to
obtain the analogous Theorem 2.4, Corollary 2.1, and Theorem 2.5, respectively.

Theorem 2.1. (Remmers) If F is a semigroup derivation diagram, without super-
fluous vertices, over a semigroup S satisfying C(3) then |αF| = |βF|.
Theorem 2.2. (Remmers) Let S be a C(3) semigroup, let δ be an upper bound for
the lengths of S’s relators, and let u and w be two non-empty words. If u = w in
S then |w| ≤ δ · |u|.
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Theorem 2.3. (Remmers) If S is a finitely presented C(3) semigroup, then S has
a solvable word problem.

In the second half of Theorem 2.4’s proof, it will be more convenient for us to
argue that |V ert(inn(C))| is the same as |V ert(out(C))|. If we can show this, then
as inn(C) and out(C) are simple directed cycles, we would then have the theorem’s
result |inn(C)| = |out(C)|. We introduce the following notation and briefly survey
the vertex counting strategy. If v is a vertex of C = C′#D and is neither v0D nor v1D
but otherwise is incident with αD, then we say D covers vertex v. Now the theorem
assumes that C = C′#D contains no superfluous vertices. However the vertices v0D
and v1D maybe superfluous in C′, so in order to revert successfully to the inductive
case of C′ they would have to be removed. After their removal, we re-append D but
now observe that v0D and/or v1D may contribute new vertices along out(C) if they
had been removed as superfluous vertices along out(C′). The strategy is to show
that when v0D and v1D contribute new vertices along out(C) then D must cover
at least as many vertices as were newly contributed. So we will argue that the net
effect from appending cells, in the crucial case, is that |V ert(out(C))| could never
exceed |V ert(out(C′))|.

Theorem 2.4. If C is a feathered coannular diagram, without superfluous vertices,
over a C(3) semigroup, then |inn(C)| = |out(C)|.

Proof. We induct on n the number of cells of C. For n = 0, C is a simple directed
cycle C. By assumption C contains no superfluous vertices and therefore |inn(C)| =
1 = |out(C)|.

Assuming n > 0, we have that C = C′#D for some feathered coannular map
C′ with n − 1 cells. We examine two cases. Case (i): inn(C) and out(C) are not
disjoint. Case (ii): inn(C) and out(C) are disjoint.

Case (i): By Proposition 1.4’s conclusion (2) there exists a semigroup derivation
diagram F where |αF| = |inn(C)| and |βF| = |out(C)|. Since C contains no super-
fluous vertices then, by Proposition 1.4’s conclusion (4), F contains none as well.
Therefore by Remmers, Theorem 2.1, |αF| = |βF|. Hence |inn(C)| = |out(C)|.

Case (ii): We will first show that |inn(C)| ≥ |out(C)|. The reverse inequality
will be easily obtained by dual arguments provided in the final paragraph of this
proof.

So first, if v0D and v1D are identified with each other on out(C) then the positive
side of D, βD, is out(C). Hence out(C) consist of a single edge, namely βD and
since inn(C) contains at least one edge, then |inn(C)| ≥ |out(C)|.

Let’s now assume that v0D and v1D are distinct on out(C). This is where our
vertex counting comes into play. Now the degrees of v0D and v1D are both at least
3 in C. We examine three subcases. Subcase(a): both their degrees exceed 3 in C.
Subcase(b): exactly one has a degree 3 while the other exceeds 3 in C. Subcase(c):
both have degree 3 in C. The accompanying Figures 3, 4, and both of 5 and 6
greatly simplify and concisely capture the spirit of the geometric arguments found
in subcases (a), (b), and (c), respectively.

Subcase(a): As the degrees of both v0D and v1D exceed 3, it’s then clear that
the sub-diagram C′ contains no superfluous vertices. By our inductive hypothesis
|inn(C′)| = |out(C′)|, hence |V ert(inn(C′))| = |V ert(out(C′))|. As we are under
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the assumption of case(ii) that inn(C) and out(C) are disjoint then it is easy to con-
vince oneself that V ert(inn(C)) = V ert(inn(C′)) and therefore |V ert(inn(C))| =
|V ert(inn(C′))|. Combining we now have

(1) |V ert(inn(C))| = |V ert(inn(C′))| = |V ert(out(C′))|.

Clearly by re-appending D to C′ we see that v0D and v1D contribute no new
vertices along out(C). Hence |V ert(out(C′))| ≥ |V ert(out(C))|. Combining this
with (1), we obtain |V ert(inn(C))| ≥ |V ert(out(C))|. Hence |inn(C)| ≥ |out(C)|.
The inequality may even be strict if D could possibly cover any vertices as in Figure
3 below.

out(C)

IβD
D

αD

iv1D
•
�
�
�

�
�
��

Y

v4
•��� �

��
�
�
�

Y

v3
•�

�� �
�� I

v2

•�
�� �
��
�
�
�

I
v0D•�

��
o

Figure 3. Vertices v0D and v1D contribute no new vertices along
out(C). But if D could cover vertices such as v2, v3, and v4, then
|V ert(out(C′))| > |V ert(out(C))|.

Subcase(b): Suppose v0D is the degree 3 vertex in C, the argument for v1D
being the degree 3 vertex is similar and so is left to the reader. Clearly v0D is
a superfluous vertex of the sub-diagram C′. We remove it and concatenate edge
labels in the obvious manner to obtain a new feathered coannular diagram without
superfluous vertices. In the interest of reducing notation we will keep the same name
C′ for this new diagram. Just as in subcase(a) we still obtain the same equalities
for the new C′ found in (1).

Since v0D is a degree 3 vertex in C and has been removed as a superfluous
vertex from the new C′, we see that after we re-append D to the new C′ then v0D
contributes exactly one new vertex to out(C). Of course if D covers at least one
vertex then clearly |V ert(out(C′))| ≥ |V ertout(C)| and by combining this with (1)
we would again that |V ert(inn(C))| ≥ |V ertout(C)| and therefore we would have
obtained our desired inequality |inn(C)| ≥ |out(C)|. We will argue by contradiction
that D in fact must cover at least one vertex. So suppose D cover no vertices then,
as inn(C) and out(C) are disjoint, αD must nowhere be incident with inn(C).
Hence there must be some cell E of C such that αD lies along a subarc of βE , the
positive side of E, see Figure 4 on the next page. In Figure 4, edge e, incident with
vertex v1D , also lies along the boundary of E. Now since the degree of v0D is 3 in C,
it must be the case that αD is either an intermediate or a proper terminal edge of
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βE , depending on the direction of edge e. In either case we would have that αD is a
proper subword of βE . Hence αD would be a piece, contradicting C(3). Therefore
D must cover at least one vertex.

out(C)

	

K
βD

D

K

αD

•
v1D

•v0D

E
B
B
BB

e

I•hole

�
�
��

HH�
�

Figure 4. αD is a piece

Subcase(c): First, suppose that D covers no vertices. Hence, as both v0D and
v1D are degree 3 vertices in C, it must be that αD is an intermediate edge along
the positive side βE of some region E, by reasons similarly outlined in subcase(b).
Hence αD would be a proper subword of βE and therefore αD would be a piece,
contradicting C(3). Therefore D must cover at least one vertex, say v2. Clearly
both v0D and v1D are superfluous vertices in the sub-diagram C′ and since D covers
v2 we see that we can remove both v0D and v1D from C′ and concatenate edge
labels in the obvious manner to obtain a new feathered coannular diagram without
superfluous vertices whose name we keep as C′ in the interest of reducing notation.
As in subcases (a) and (b) we still obtain the equalities for the new C′ found in (1)
above.

Since both v0D and v1D are degree 3 vertices in C and since they have both been
removed as a superfluous vertex from the new C′, we see that after we re-append D
to the new C′ then v0D and v1D contribute exactly two new vertices to out(C). Of
course if D covers at least two vertices then again |V ert(out(C′))| ≥ |V ertout(C)|
and combining this with (1) we have |V ert(inn(C))| ≥ |V ertout(C)| and therefore
|inn(C)| ≥ |out(C)|.

We will argue again by contradiction that D must cover at least two vertices.
So suppose D covers only the one vertex v2. Now vertex v2 is either incident with
inn(C) or not. So we now break up subcase(c) into two further subcases to handle
these two possibilities.

Subcase(c1): v2 is not incident with inn(C). Now since neither v0D , v1D , nor
v2 is incident with inn(C) then αD factors as v0D · e · v2 · f · v1D where edge e lies
along the positive side βE of some cell E and where edge f lies along the positive
side βF of some cell F . We will examine the situations where E and F are distinct
and when there are the same. As v2 is not superfluous, we will also examine the
situations where its degree is greater than 3 or exactly 3.

We will use Figure 5 located on page 13 as our guide for all of these situations
even though Figure 5 seems to imply that E and F are distinct and that the degree
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of v2 exceeds 3. So we take as our first situation that implied by Figure 5, the other
situations will be handled similarly. Now the edges g and h in Figure 5 belong to
the boundaries of cells E and F , respectively. It ought to be clear from Figure 5
that edge e is clearly an initial edge but not a terminal edge of αD and again it
ought to be clear that e is either a terminal edge or an intermediate edge of βE
depending on the direction of edge g. Hence e must be a piece. Similarly edge f is
a terminal edge but not an initial edge of αD and from Figure 5 again it ought to
be clear that f is either an initial edge or an intermediate edge of βF , depending
on the direction of edge h. Hence f must be a piece. Therefore αD is the product
of two pieces e · f , contradicting C(3). Hence D covers at least two vertices. If
E and F are distinct but the degree of v2 is exactly 3, then g and h must be the
same edge. Nevertheless, the same type of argument applies to produce the same
contradiction. If E and F are the same but the degree of v2 exceeds 3, then again
the same type of argument produces the same contradiction. Lastly we note that
that if E and F are the same then the degree of v2 must exceed 3 for otherwise g
and h would not only be the same edge but then this same edge would be traversed
twice when tracing out the boundary of the cell E which by our observation in
Remark 1.1 cannot happen in feathered coannular maps.

Subcase(c2): v2 is incident with inn(C). See Figure 6 on the next page. We
argue the same as in subcase(c1) but because v2 is not hyperbolic, by Proposition
1.2, and since inn(M) and out(M) are both directed counterclockwise we must
have that edge e is proper terminal edge of βE . Since e is also a proper initial edge
of αD then e must be a piece. Similarly edge f must be a proper intial edge of βF
and since f is also a proper terminal edge of αD then again we must have that f is
a piece. Therefore αD is he product of two pieces e · f , contradicting C(3).

To obtain the reverse inequality |out(C)| ≥ |inn(C)|, we first note, by Proposi-
tion 1.1, that C = E#C′′ for some feathered coannular map C′′ containing n − 1
cells. We then argue dually as in case(ii) subcases (a), (b), and (c) to obtain
|V ert(inn(C′′))| ≥ |V ert(inn(C))|. Then combine this with the dual version of (1),
namely

(1′) |V ert(out(C))| = |V ert(out(C′′))| = |V ert(inn(C′′))|

to obtain the desired reverse inequality.
�

Corollary 2.1. Let S be a C(3) semigroup, let δ be an upper bound for the lengths
of S’s relators, and let u and w be two non-empty words. If u and w are conjugate
to each other in S then |w| ≤ δ · |u|.

Proof. By Theorem 1.1 there is a feathered coannular diagram C where u and w are
cyclic permutations of inn(C) and out(C), respectively. WLOG we can assume that
C contains no superfluous vertices. Case(i): inn(C) and out(C) are not disjoint.
Case(ii): inn(C) and out(C) are disjoint.

Case(i): Split C at a vertex v common to both boundaries as in Proposition 1.4
to obtain a semigroup derivation diagram F where αF is a cyclic permutation of

inn(C) and therefore a cyclic permutation of u and where βF is a cyclic permutation

of out(C) and therefore a cyclic permutation of w. Since αF = βF in S then by
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out(C)
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Figure 5. αD is a product of two pieces e · f

out(C)
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D

•v2
K

αD
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F
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Yf

E e









�ghole	

Figure 6. αD is a product of two pieces e · f

Remmers, Theorem 2.2, we have
∣∣βF∣∣ ≤ δ · |αF|. Since αF and βF are cyclic

permutations of u and w, respectively, then |αF| = |u| and
∣∣βF∣∣ = |w| and we have

our result.
Case (ii): By Theorem 2.4 |inn(C)| = |out(C)|. Let integer n = |inn(C)| =

|out(C)|. Hence there are two finite sequences of directed edges e1, e2, ..., en and
f1, f2, ..., fn where inn(C) ≡ vinn(C) · e1 · e2 · ... · en · vinn(C) and out(C) ≡ vout(C) ·
f1 · f2 · ... · fn · vout(C). Now each such edge ei and fi must lie on some αEi and

βDi
, respectively, for some cells Ei and Di, respectively. Therefore ei and fi are

subwords of relators and hence |ei| ≤ δ and
∣∣fi∣∣ ≤ δ. Therefore we have

∣∣∣out(C)
∣∣∣ =

∑n
i=1

∣∣fi∣∣ ≤ n · δ = δ · |inn(C)| ≤ δ ·
∣∣∣inn(C)

∣∣∣.
Since u and w are cyclic permutations of inn(C) and out(C), respectively, then

|u| =
∣∣∣inn(C)

∣∣∣ and |w| =
∣∣∣out(C)

∣∣∣ and the proof is complete.

�
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Corollary 2.2. Let S be a finitely presented C(3) semigroup, let |X| denote the
size of its finite alphabet X, and let δ equal the length of S’s longest relatior. If u

is a non-empty word then there are at most
∑δ·|u|
i=1 |X|

i
distinct non-empty words

conjugate to u.

Proof. The sum
∑δ·|u|
i=1 |X|

i
gives the count of distinct non-empty words whose

lengths do not exceed δ ·|u|. By Corollary 2.1, if w is conjugate to u then |w| ≤ δ ·|u|.
Hence the number of words conjugate to u cannot exceed

∑δ·|u|
i=1 |X|

i
.

�

Theorem 2.5. If S is a finitely presented C(3) semigroup, then S has a solvable
conjugacy problem.

Proof. Let u be some non-empty element of S and let δ denote the length of the
longest defining relator in the given presentation for S. If u1 is another non-empty
element of S where u1 = u in S, then u1 is also conjugate to u in S. Hence the
number of words equal to u in S cannot exceed the number of words conjugate to

u in S and so by Corollary 2.2 there can be at most
∑δ·|u|
i=1 |X|

i
words equal to u in

S. Therefore, since S’s set of defining relations is finite, one could apply a standard
algorithm to find all those words equal to u in S as did Remmers when he solved the
word problem, Theorem 2.3. We now re-apply that same standard algorithm to find
all pairs of words (x1, y1) such that u = x1y1 in S and allowing for one of x1 or y1
to be empty but certainly not both. Clearly there are only a finite number of such
pairs. Next, apply the same algorithm to find all words w1 such that y1x1 = w1 in
S for at least one of the previous pairs of (x1, y1)’s. The collection of all such w1’s
is also clearly finite and clearly any word primarily conjugate to u must be one of
these w1’s. Now re-iterate this procedure to find all such w2’s that are primarily
conjugate to at least one of the preceding w1’s. Continuing this process indefinitely,
we see that any word w conjugate to u must lie among the collection of such wi’s.
By Corollary 2.2, we see that this procedure can produce no new words conjugate

to u after the
(∑δ·|u|

i=1 |X|
i
)th

iteration. Hence the conjugacy problem is solvable.

�

Corollary 2.3. If S is a finitely presented C(n) semigroup where n ≥ 3, then S
has a solvable conjugacy problem.

Proof. Clearly any C(n) semigroup is a C(3) semigroup when n ≥ 3. �

Using Remmers’ geometric methods, it was shown in [CG] that if F is a minimal
semigroup derivation diagram over a C(2) & T (4) semigroup whose set of defining
relations is transitively closed, then |βF| ≤ 2 · |αF| when F contains no superfluous
vertices. The solution to the word problem immediately followed for such finitely
presented semigroups. We believe that the geometric methods developed in this
article will produce identical bounds, namely |out(C)| ≤ 2 · |inn(C)|, when C is
a minimal feathered coannular diagram, without superfluous vertices, over such a
finitely presented semigroup. So we conjecture the following.

Conjecture 2.1. If S is a finitely presented C(2) & T (4) semigroup whose set of
defining relations is transitively closed, then S has a solvable conjugacy problem.
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