FOR THIS EXAM
COMPUTERS AND CALCULATORS ARE NOT ALLOWED.

(1) 36 Points. Let \(\mathbf{v} = 3\mathbf{i} - \mathbf{j} - 4\mathbf{k} \) and \(\mathbf{w} = 5\mathbf{i} + 3\mathbf{j} - \mathbf{k} \).
(a) Find \(2\mathbf{w} - 3\mathbf{v} \).
(b) Find \(||\mathbf{w}|| \).
(c) Find \(\mathbf{v} \cdot \mathbf{w} \).
(d) Find \(\mathbf{v} \times \mathbf{w} \).
(e) Find \(\cos \theta \) where \(\theta \) is the angle between \(\mathbf{v} \) and \(\mathbf{w} \).
(f) Find the direction cosines for the vector \(\mathbf{w} \).

(2) 16 Points. Match the following equations with their contour diagrams on the graphics page:
(a) \(z = 4 - x^2 \)
(b) \(z = \sqrt{\frac{x^2}{4} + \frac{y^2}{9}} \)
(c) \(z = 3\sqrt{\frac{36 + 9x^2 - 4y^2}{36}} \)
(d) \(3x - 2y + 4z = 24 \)

(3) 12 Points. Describe in words the surfaces which are the graphs of the 4 equations in question (2) above.

(4) 12 Points. Find an equation for the ellipse which has center at \((-3, 1)\) and vertices at \((-7, 1), (1, 1), (-3, 2)\) and \((-3, 0)\).

(5) 14 Points. Sketch a graph of the equation \(y - 3 = \frac{x^2}{4} + \frac{z^2}{4} \) and identify this surface by name.

(6) 10 Points. Are the following statements true or false?
(a) A function \(f(x, y) \) can be a decreasing function of \(x \) with \(y \) held fixed, and be an increasing function of \(y \) with \(x \) held fixed.
(b) The graph of the equation \(2y + 3z = 6 \) is a plane that is parallel to the \(z \)-axis.
(c) The length of the vector \(-3\mathbf{v} \) is three times the length of the vector \(\mathbf{v} \).
(d) If \(\mathbf{v} \) and \(\mathbf{w} \) are any two vectors, then \(||(\mathbf{v} \times \mathbf{w}) + (\mathbf{w} \times \mathbf{v})|| = 0 \).
(e) If the contours of \(f(x, y) \) are all parallel lines, then the surface for \(z = f(x, y) \) is a plane.