Math 5220–Complex Analysis: Problem Set 8

Gill

Due: Friday April 6, 2018

Problem 1

Suppose that f is holomorphic in a neighborhood of 0, and that f has a zero of order $n \geq 2$ at 0. True or false: There exist arbitrarily small values of ϵ for which $f|_{\mathbb{D}(0,\epsilon)}$ is, taking multiplicity into acccount, an *n*-to-1 mapping of $\mathbb{D}(0,\epsilon)$ onto $f(\mathbb{D}(0,\epsilon))$. Suggestion: Study squares of simple functions.

Problem 2

Suppose that f is meromorphic in \mathbb{C}^* . Prove that f is rational.

Problem 3

Suppose that f is holomorphic in some domain which contains $\overline{\mathbb{D}}(0,1)$, and that $\sup_{|z|=1} |f| < 1$.

a. Prove that the equation $f(z) = z^n$ has exactly *n* solutions in \mathbb{D} , counting multiplicity. Meaning, for n = 1 show that *f* has a fixed point, and so on.

b. True or false? The same conclusion holds if instead of $\sup_{|z|=1} |f| < 1$ we assume $\sup_{|z|=1} |f| \le 1$.

Problem 4

Let f and g be entire functions. Suppose that there exists a constant C such that $|f(z)| \leq C|g(z)|$ for all $z \in \mathbb{C}$. True or false? There exists a constant C_1 such that $f(z) = C_1g(z)$ for all $z \in \mathbb{C}$.

Problem 5

A holomorphic function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ in the unit disk \mathbb{D} is called a Bloch functon if

$$||f||_{\mathcal{B}} := \sup_{|z|<1} (1-|z|^2)|f'(z)| < \infty.$$

a. Find a constant C_1 such that

$$\sup_{n\geq 1}|a_n|\leq C_1\|f\|_{\mathcal{B}}.$$

Thus, Bloch functions have bounded coefficients.

b. Find a constant C_2 such that

$$||f||_{\mathcal{B}} \le C_2 \sup_{|z|<1} |f(z)|.$$

Thus, bounded holomorphic functions in \mathbb{D} , aka H^{∞} functions, are Bloch functions.

Problem 6 You may substitute this problem for one of Problems 1-4, but not 5

Prove that the lacunary series $f(z) = \sum_{n=0}^{\infty} z^{2^n}$ is a Bloch function, but is not in H^{∞} .