Math 52201–Complex Analysis: Problem Set 6

Gill

Due: Friday, March 9

Problem 1

Suppose that f is an entire function, and that there exist positive constants A, B, α , not necessarily integers, such that

$$|f(z)| \le A + B|z|^{\alpha}, \quad z \in \mathbb{C}$$

Prove that f is a polynomial. What is the largest possible (integer) value of its degree?

Problem 2

Suppose that f is an entire function, and that there exist positive constants B and α such that

$$|f(z)| \le Be^{|z|^{\alpha}}, \quad z \in \mathbb{C}$$
(1)

(a) If $f(z) = \sum_{n=0}^{\infty} c_n z^n$, prove that

$$\limsup \frac{n \log n}{\log \frac{1}{|c_n|}} \le \alpha.$$
⁽²⁾

Suggestion: For each n, pick a good r. Then use a problem from the (relatively near) future.

(b) If α is a positive integer, then $f(z) = e^{z^{\alpha}}$ is entire. Show that this f satisfies (1), and that equality holds in (2). Thus (2) is sharp for integral α . Later, we may show that (2) is sharp for all positive real α .

Problem 3

Suppose that f(z) is holomorphic in $\mathbb{D} = \mathbb{D}(0, 1)$.

(a) Prove that if $\sup_{\mathbb{D}} |f| \leq 1$, then $|c_n| \leq 1$ for each $n \geq 0$. The functions $f_n(z) = z^n$ show that these inequalities are sharp for each n.

(b) Suppose that $f \in H(\mathbb{D})$ satisfies

$$|f(z)| \le (1 - |z|)^{-\alpha}, \quad z \in \mathbb{D}.$$
(3)

Find a constant $C(\alpha)$, which may depend on α but not on n and f, such that

$$|c_n| \le C(\alpha)(n+1)^{\alpha}, \quad n \ge 0.$$
(4)

Even better, find an absolute constant C which works for all n, f, and α .

Problem 4

The Riemann zeta function is defined in $D = \{s \in \mathbb{C} : \Re s > 1\}$ by

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}.$$

(a) Show that the series converges, and represents a holomorphic function in D.

(b) State and prove a series representation for $\zeta^{(k)}$, for $k \in \mathbb{Z}^+$.

Problem 5 Do not turn in.

Prove the following variant of Morera's Theorem: If $f \in C^1(D)$, where D is an open set, and if $\int_{\partial\Delta} f(z) = dz = 0$ for all disks Δ with $\overline{\Delta} \subset D$, then $f \in H(D)$. You may use Green's Theorem or Pompeiu's Formula. Can you relax the hypothesis from $f \in C^1(D)$ to $f \in C(D)$?

Problem 6 Do not turn in.

For $x \in (0,\infty)$, let $g(x) = x^{-\beta} e^{x^{\alpha}}$. There is a unique point $x_0 \in (0,\infty)$ at which g achieves a minimum value on $(0,\infty)$. Find x_0 and $g(x_0)$.

Problem 7 Do not turn in.

For each of the following functions, determine the order of the zero at $z_0 = 0$.

(a)
$$z^2(e^{z^3}-1)$$
 (6) $6\sin(z^4) + z^4(z^8-6)$.

Problem 8 Do not turn in.

In (4), is the exponent α best possible? Or does there exist $\beta < \alpha$ such that (4) holds with β in place of α , for all f satisfying (3) an for all n?