Math 5220–Complex Analysis: Problem Set 5

Gill

Due: Friday February 23

Problem 1

Let $z \in \mathbb{C} \setminus \{0\}$ and $w \in \mathbb{C}$. Then the set z^w has one of four possible forms:

1. n distinct poits on a circle, where n is a positive integer.

- 2. Infinitely many points on a circle.
- 3. Infinitely many points which lie on infinitely many different rays through the origin, so that the points spiral around the origin at 0 and ∞ .

4. !*#

(a) What is $!^*#?$

(b) Take z = i. Give examples of w for which (1)-(4) occur, with n = 3 in (1), and sketch the sets i^w .

Problem 2

Let $f(z) = \exp(e^z)$. Find $\Re f(z), \Im f(z), |f(z)|$, and all solutions in \mathbb{C} of f(z) = 1. Sketch this solution set in the plane. It is a two parameter family. Your final description may contain real terms of the form log x for x > 0, but may not use terms of the form log z where z is not a positive real.

Problem 3

Let $f(z) = \tan z$. Define $f(z) = \infty$ at points where $\cos z = 0$.

(a) Find a formula for the set $f^{-1}(w) = \arctan w$ in terms of sets log.

(b) $f(\mathbb{C}) = \mathbb{C}^* \setminus \{a, b\}$. What are the omitted values a and b?

(c) Describe and sketch the set $\arctan e^{i\theta}$ when $0 < \theta < \pi/2$. The rules of description are the same as in Problem 2. For maximal conciseness, the answer can contain $\log(\cot(\frac{\theta}{2} + \frac{\pi}{4}))$ or $\log(\tan(\frac{\pi}{4} - \frac{\theta}{2}))$.

Problem 4

Let $a \in \mathbb{C}, R > 0$, and P denote a polynomial. Find a formula for $\int_{|z-a|=R} P(z)d\overline{z}$ in terms of a, R, and the values of P and or its derivatives. Make the formula as simple as you can. To start, let a = 0.