Math 266 Chapters 9 review problems

Problem 1. Let \(f : \mathbb{R} \to \mathbb{R} \) be the function defined by \(f(x) = x^2 + 1 \) \(\forall x \in \mathbb{R} \).

a. What is \(|f\{\{-1, 0, 1, 3\}\}| \)?

\[
|f\{\{-1, 0, 1, 3\}\}| = |\{-2, 1, 2, 10\}| = |\{1, 2, 10\}| = 3
\]

b. What is \(f([1, 3]) \)?

\[f([1, 3]) = [2, 10] \]

c. What is \(f((-1, 2)) \)?

\[f((-1, 2)) = [1, 5] \]

d. What is \(f^{-1}([5, 10]) \)?

\[f^{-1}([5, 10]) = [-3, 1] \cup [2, 3] \]

e. What is \(f^{-1}((0, 2)) \)?

\[f^{-1}((0, 2)) = (-1, 1) \]
Problem 2. Let \(f : X \to Y \) be a function and let \(A, B \subseteq X \). Prove that

\[
f(A \cup B) = f(A) \cup f(B)
\]

let \(y \in f(A \cup B) \)

\(\exists x \in A \cup B \) such that \(f(x) = y \)

\(x \in A \) or \(x \in B \)

\[
f(x) \in f(A) \cup f(B)
\]

Hence, \(f(A \cup B) \subseteq f(A) \cup f(B) \)

let \(y \in f(A) \cup f(B) \)

\(\exists x \in A \) or \(\exists x \in B \) such that \(f(x) = y \)

\(f(x) \in f(A) \) or \(f(x) \in f(B) \)

Hence, \(f(A) \cup f(B) \subseteq f(A \cup B) \)

Thus, \(f(A \cup B) = f(A) \cup f(B) \)

Problem 3. Let \(f : X \to Y \) be a function and let \(C, D \subseteq Y \). Prove that

\[
f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)
\]

let \(x \in f^{-1}(C \cap D) \)

\(f(x) \in C \cap D \)

\(f(x) \in C \) and \(f(x) \in D \)

\(x \in f^{-1}(C) \) and \(x \in f^{-1}(D) \)

\(x \in f^{-1}(C) \cap f^{-1}(D) \)

Hence, \(f^{-1}(C \cap D) \subseteq f^{-1}(C) \cap f^{-1}(D) \)

Now, let \(x \in f^{-1}(C) \cap f^{-1}(D) \)

\(x \in f^{-1}(C) \) and \(x \in f^{-1}(D) \)

\(f(x) \in C \) and \(f(x) \in D \)

\(f(x) \in C \cap D \)

\(x \in f^{-1}(C \cap D) \)

Hence, \(f^{-1}(C) \cap f^{-1}(D) \subseteq f^{-1}(C \cap D) \)

Thus, \(f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D) \)
Problem 4. Let $f : X \to Y$ be a function and let $A, B \subseteq X$. Prove that

$$f(A \cap B) \subseteq f(A) \cap f(B)$$

Let $y \in f(A \cap B)$

$\exists x \in A \cap B$ such that $f(x) = y$

$x \in A$ and $x \in B$

$f(x) \in f(A)$ and $f(x) \in f(B)$

$f(x) \in f(A) \cap f(B)$

$y \in f(A) \cap f(B)$

Thus, $f(A \cap B) \subseteq f(A) \cap f(B)$

Problem 5. Give an example of sets X and Y, subsets $A, B \subseteq X$, and a function $f : X \to Y$ such that

$$f(A \cap B) \neq f(A) \cap f(B)$$

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = |x| \quad \forall x \in \mathbb{R}$$

Let $A = \{ -1, 3 \}$ and $B = \{ 1, 3 \}$

$f(A \cap B) = f(\emptyset) = \emptyset$

$f(A) \cap f(B) = f(\{ -1 \}) \cap f(\{ 1, 3 \}) = \{ 1 \} \cap \{ 1, 3 \} = \{ 1 \}$

Thus, $f(A \cap B) \neq f(A) \cap f(B)$
Problem 6. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is one-to-one but not onto.

Prove that f is not onto.

\[
\text{Let } f(x) = e^x \quad \forall x \in \mathbb{R} \\
\text{Since } e^x > 0 \quad \forall x \in \mathbb{R} \\
\text{Thus, } 0 \notin f(\mathbb{R}) \\
\text{f is not onto.}
\]

Problem 7. Give an example of a function $g : \mathbb{R} \to \mathbb{R}$ which is onto but not one-to-one.

Prove that g is not one-to-one.

\[
\text{Let } g(x) = \begin{cases}
\ln(x) & x > 0 \\
0 & x \leq 0
\end{cases} \\
g(-1) = 0 \text{ and } g(-2) = 0 \\
\text{Thus, g is not one-to-one}
\]

Problem 8. Give an example of a function $f : \{a, b, c\} \to \{1, 2, 3, 4\}$ which is one-to-one.

Why does there not exist an one-to-one function from $\{1, 2, 3, 4\}$ to $\{a, b, c\}$?

\[
\text{There does not exist a one-to-one function from } \{1, 2, 3, 4\} \text{ to } \{a, b, c\} \\
because \left| \{1, 2, 3, 4\} \right| > \left| \{a, b, c\} \right|
\]

Problem 9. Give an example of a function $g : \{1, 2, 3, 4\} \to \{a, b, c\}$ which is onto. Why does there not exist an onto function from $\{a, b, c\}$ to $\{1, 2, 3, 4\}$?

\[
\text{There does not exist an onto function from } \{a, b, c\} \text{ to } \{1, 2, 3, 4\} \\
because \left| \{a, b, c\} \right| < \left| \{1, 2, 3, 4\} \right|
\]
Problem 10. Let $f: \mathbb{Z}_6 \to \mathbb{Z}_6$ be defined by

$$f([x]) = [3x] \quad \forall x \in \mathbb{Z}.$$

Prove that f is a bijection and find f^{-1}.

- $f([0]) = [3 \cdot 0] = [0]$
- $f([1]) = [3 \cdot 1] = [3]$
- $f([2]) = [3 \cdot 2] = [1]$
- $f([3]) = [3 \cdot 3] = [4]$
- $f([4]) = [3 \cdot 4] = [2]$
- $f([5]) = [3 \cdot 5] = [0]$

Thus, f is a bijection and $f^{-1}([x]) = [\frac{x}{3}] \quad \forall x \in \mathbb{Z}$.

Problem 11. Let $g: \mathbb{Z}_6 \to \mathbb{Z}_6$ be defined by

$$f([x]) = [3x] \quad \forall x \in \mathbb{Z}.$$

Prove that g is not a bijection.

- $f([0]) = [3 \cdot 0] = [0]$
- $f([2]) = [3 \cdot 2] = [6] = [0]$

Thus, $f([0]) = f([2])$ but $[0] \neq [2]$. f is not an injection, and hence is not a bijection.
Math266 Chapters 10 review problems

Problem 1. Give a bijection $f : [2, 4] \rightarrow [1, 5]$

\[f(x) = 2x - 2 \]

\[f(2) = 2 \]
\[f(4) = 5 \]

\[\Delta y = \frac{f(4) - f(2)}{4 - 2} = \frac{5 - 1}{2} = 2 \]

\[f(x) = mx + b \]
\[f(2) = 2m + b \]
\[5 = 4m + b \]
\[b = -3 \]

Problem 2. Give a bijection $f : (-1, 0] \rightarrow [0, 3]$

\[f(x) = 3x + 3 \]
\[f(0) = 3 \]
\[\Delta y = \frac{3 - 0}{-1 - 0} = -3 \]

\[f(x) = mx + b \]
\[f(0) = -3 \]
\[b = 0 \]

\[f(x) = -3x \]

Problem 3. Give a bijection $f : (0, \infty) \rightarrow \mathbb{R}$

\[f(x) = \ln(x) \]

Problem 4. Prove that there is a bijection from $[0, 1]$ to $(0, \infty)$. (You do not need to give the bijection, just prove that it exists.)

Let $f : [0, 1] \rightarrow (0, \infty)$ be defined by

\[f(x) = x + 1 \]

f is an injection

Let $g : (0, \infty) \rightarrow [0, 1]$ be defined by

\[g(x) = \frac{1}{1 + x} \]

g is an injection

There exists an injection from $[0, 1]$ to $(0, \infty)$ and there exists an injection from $(0, \infty)$ to $[0, 1]$. Thus, there exists a bijection from $[0, 1]$ to $(0, \infty)$ by the Schroder-Bernstein Theorem.
Problem 5. Let \(X \) be a countable set. Prove that if \(Y \subseteq X \) then \(Y \) is countable. (Hint: \(Y \) is finite or \(Y \) is infinite)

If \(Y \) is finite, then \(Y \) is countable.

Assume that \(Y \) is infinite. Then \(X \) is infinite.

\(X \) is countably infinite is equivalent to \(X \) being able to be written as a sequence \(\{ x_i \}_{i=1}^{\infty} \).

\(Y \subseteq X \) implies that for each \(y \in Y \), \(y = x_k \) for some \(k \in \mathbb{N} \).

Thus, \(Y = \{ x_i \}_{i=1}^{\infty} \) and hence \(Y \) is countable.

Problem 6. Let \(X \) and \(Y \) be countably infinite sets. Prove that \(X \cup Y \) is countable.

Note: The text in the image is partially legible. It appears to be a sketch or a rough draft.

\[X = \{ x_i \}_{i=1}^{\infty}, \quad \text{and} \quad Y = \{ y_i \}_{i=1}^{\infty}, \quad \text{because} \quad X \text{ and } Y \text{ are countable} \]

\[X \cup Y = \{ x_1, y_1, x_2, y_2, x_3, y_3, \ldots \} \]

Hence, \(X \cup Y \) is countable.

Problem 7. Let \(X \) be an uncountable set and let \(Y \subset X \) be a countable subset. Prove that \(X - Y \) is uncountable.

Assume that \(X - Y \) is countable.

\[X = (X - Y) \cup Y \]

Thus, \(X \) is the union of two countable sets and hence \(X \) is countable by Problem 6.

This is a contradiction.

Thus, \(X - Y \) is uncountable.
Problem 8. Prove that \(\mathbb{Z} \) is countable.

\[
\mathbb{Z} = \{ 0, 1, -1, 2, -2, 3, -3, \ldots \}
\]

Hence, \(\mathbb{Z} \) is countable.

Problem 9. Prove that \(\mathbb{N} \times \mathbb{Z} \) is countable.

We can order \(\mathbb{N} \times \mathbb{Z} \) as a sequence.
Thus, \(\mathbb{N} \times \mathbb{Z} \) is countable.

Problem 10. Prove that \(\mathbb{Q} \) is countable by either giving an injection from \(\mathbb{Q} \) to a countable set or giving a surjection from a countable set to \(\mathbb{Q} \).

Let \(f : \mathbb{N} \times \mathbb{Z} \to \mathbb{Q} \) be defined by

\[
f(m, n) = \frac{n}{m}
\]

\(f \) is a surjection because \(\mathbb{Q} = \{ \frac{a}{m} \mid a \in \mathbb{Z}, m \in \mathbb{N} \} \).

Thus, \(\mathbb{Q} \) is countable because \(\mathbb{N} \times \mathbb{Z} \) is countable.