Theorem 1.1 (Generalized Pigeonhole Principle). For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if $k < n/m$, then there is some $y \in Y$ such that y is the image of at least $k + 1$ distinct elements of X.

Theorem 1.2 (Generalized Pigeonhole Principle (Contrapositive)). For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if for each $y \in Y$, $f^{-1}(y)$ has at most k elements, then X has at most km elements; in other words, $n \leq km$.
(1) There are 42 students who share 12 computers. Each student uses exactly 1 computer, and no computer is used by more than 6 students. Show that at least 5 computers are used by 3 or more students.
2. Chapter 9.5: Counting Subsets of a Set: Combinations

Definition. Let \(n \) and \(r \) be nonnegative integers with \(r \leq n \). An \(r \)-combination of a set of \(n \)-elements is a subset of \(r \) of the \(n \) elements. The total number of \(r \)-combinations of a set of \(n \)-elements is denoted:

\[
\binom{n}{r}
\]

This notation is called \(n \) choose \(r \).

Example: What are all the 2 combinations of \(\{a, b, c, d\} \)?

Example: What are all the 3 combinations of \(\{a, b, c, d\} \)?

Theorem 2.1. For all \(n, r \in \mathbb{N} \) with \(r \leq n \):

\[
\binom{n}{r} = \frac{n!}{r!(n-r)!}
\]
In class work:

(1) How many ways are there to choose 6 people from a group of 10 to work as a team?

(2) How many ways are there to choose 6 people from a group of 10 to work as a team if there are 2 who insist on being together? That is the team must contain both of them or neither.

(3) How many ways are there to choose 6 people from a group of 10 to work as a team if there are 2 who insist on not working together? That is the team must not contain both of them.