1. Chapter 4 review

1) Prove using the definition of even: For all integers \(n \), if \(n \) is even then \((-1)^n = 1\).

2) Prove using the definition of odd: The product of any two odd integers is odd.
3) Prove: For each integer \(n \) with \(1 \leq n \leq 5 \), \(n^2 - n + 11 \) is prime.

4) Show that: \(.123123123... \) is a rational number.

5) Prove using the definition of divides: For all integers \(a, b, \) and \(c \), if \(a \) divides \(b \) and \(b \) divides \(c \) then \(a \) divides \(c \).
6) Evaluate 50 \text{ div } 4 and 50 \text{ mod } 4.

7) Prove using the definition of \text{ mod}: For every integer \(p \), if \(p \text{ mod } 5 = 2 \) then \(4p \text{ mod } 5 = 3 \).

8) Prove: For all integers \(n \), \(n^2 - n \) is even.
9 a) How do you prove a statement by contradiction?

9 b) Prove: There is no greatest negative rational number.

9 a) How do you prove “∀x ∈ D, if P(x) then Q(x)” by contraposition?

9 b) Prove: For all integers a, b, and c, if a ∤ bc then a ∤ b.
2. Chapter 5 review

1) a. Compute: \(\sum_{i=2}^{5} i^2 \)

b. Compute: \(\prod_{i=-5}^{-1} i \)

c. Compute: \(\sum_{i=1}^{100} (i)^2 - (i - 1)^2 \)

d. Compute: \(\prod_{i=2}^{50} \frac{i(i-1)}{(i+1)(i+2)} \)
2) a. Compute $5!$.

b. Compute $\binom{100}{99}$

c. Compute $\binom{10}{8}$

d. Expand $(x - 1)^5$.
3 a) What are the steps for proving “For all integers \(n \) such that \(n \geq a \), \(P(n) \) is true” using mathematical induction?

3 b) Prove: For all integers \(n \geq 1 \),

\[
\sum_{i=1}^{n} i = \frac{n(n + 1)}{2}.
\]
4) Prove: For all integers \(n \geq 0 \),
\[
\sum_{i=1}^{n+1} i2^i = n2^{n+1} + 2
\]
6 a) What are the steps for proving “For all integers \(n \) such that \(n \geq a \), \(P(n) \) is true” using strong mathematical induction?

6 b) Prove: If \(s_0 = 0 \), \(s_1 = 4 \), and \(s_k = 6s_{k-1} - 5s_{k-2} \) \(\forall k \geq 2 \), then \(s_n = 5^n - 1 \) for all integers \(n \geq 0 \).