Math 320 Homework 5 Due Wednesday, March 19

Read BF Chapter 3.3, 3.5

Exercises

Chapter 3.3 # 1*, 3*, 7a, 10, 11, 16, 17
* You should know how to do this sort of problem, but I recommend you do A, B, C below and then skip 1 and 3, since the numbers in 1 and 3 are horrible.

Problem A: Find the Newton form of the fourth degree polynomial interpolating $n!$ at $n = 0, 1, 2, 3, 4$.

Problem B: This example was first computed by James Gregory in 1670. The Newton forward-difference formula is sometimes known as Newton-Gregory interpolation.

Use the forward difference method to interpolate $f(x) = x^3$ at $x = 10, 15, 20, 25, 30$ and use it to compute 23^3.

Problem C: Compute $\ln 1.09$ correct to five decimal places by interpolating natural logarithms for $1, 1.1, 1.2, 1.3$.

Chapter 3.5 # 3a, 13

Problem D: Compute the natural cubic spline through $(0, 0), (1, 10)$, and $(2, 4)$.

Problem E: Explain why the following function is not a spline:

$$f(x) = \begin{cases}
-x^2 + 1 & \text{if } 0 \leq x \leq 1 \\
(x - 1)^3 + 2(x - 1) & \text{if } 1 \leq x \leq 2 \\
2(x - 2) + 3 & \text{if } 2 \leq x \leq 3
\end{cases}$$
MATLAB/Octave

1. In this question, you investigate the interpolating polynomial for \(f(x) = \frac{1}{x} \) with nodes at \(1, 2, \ldots, n \).
 (a) Find (by hand, with exact fractions) the Newton form of the interpolating polynomial for \(f(x) = \frac{1}{x} \) with nodes at 1, 2, 3, 4. Repeat with nodes 1, 2, 3, 4, 5.
 (b) (Optional, challenging) Prove the interpolating polynomial for \(\frac{1}{x} \) with nodes 1, 2, 3, \ldots, \(n \) takes the form:

 \[
 p_n(x) = 1 - \frac{1}{2!}(x - 1) + \frac{1}{3!}(x - 1)(x - 2) - \frac{1}{4!}(x - 1)(x - 2)(x - 3) + \cdots + \frac{1}{n!}(x - 1)(x - 2) \cdots (x - (n - 1))
 \]

 (c) From part (b), rewrite \(p_n(x) \) in the nested form:

 \[
 p_n(x) = 1 - \frac{1}{2}(x - 1) \left[1 - \frac{1}{3}(x - 2) \left[1 - \frac{1}{4}(x - 3) \left[\cdots \frac{1}{n}(x - (n - 1)) \right] \cdots \right] \right]
 \]

 Write a Matlab function \texttt{harmonicpoly(n,x)} that computes \(p_n(x) \) using the nested form.
 (d) The interpolating polynomial \(p_n(x) \) converges to \(\frac{1}{x} \) as \(n \to \infty \). However, it makes a big difference how you compute it:
 i. Use \texttt{polyinterp} to graph \(p_n(x) \) for \(x \in [1, 4] \). Increase \(n \) until it starts to go wrong.
 ii. Use \texttt{newtoninterp} to graph \(p_n(x) \) for \(x \in [1, 4] \). Increase \(n \) until it starts to go wrong.
 iii. Use \texttt{harmonicpoly} to graph \(p_n(x) \) for \(x \in [1, 4] \). Increase \(n \), it should stay near \(\frac{1}{x} \).

 For this part, you can write down the values of \(n \) at which things break down, and describe what each graph does. Or, print out pictures of the graphs when they begin to fail.

2. Using Matlab’s \texttt{spline} function, create a script that draws a (rough) picture of the Billiken.