Problems:

1. The number 99 was multiplied by an integer \(k \) to obtain an integer of seven decimal digits, but two of the digits got blotted out on the paper. The product was 62ab427, but the digits \(a \) and \(b \) are illegible. Determine all possible values of \(a \) and \(b \).

2. Find the sum of the series

 \[
 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} + \cdots,
 \]

 where the terms are the reciprocals of the positive integers whose only prime factors are twos and threes.

3. Notice that 73 can be written as a sum of two consecutive positive integers, 73 = 36 + 37. Prove that no longer sum of consecutive positive integers equals 73.

4. Suppose that the function \(f \) satisfies \(f'(x) = 1 + f(x) \) for all \(x \). If \(f(2) = 3 \) find:

 (a) \(f^{(10)}(2) \) where \(f^{(10)} \) denotes the 10th derivative of \(f \);
 (b) \(f(3) \).

5. For real \(a > 0 \) define the sequence \(\{x_n\} \) by

 \[
 x_{n+1} = a(x_n^2 + 4), \quad x_0 = 0.
 \]

 Determine necessary and sufficient conditions on \(a \) for \(\lim_{n \to \infty} x_n \) to exist and be finite.

1. Since the product ends in 27, the product is 73 less than a multiple of 100.
 This means \(k \equiv 73 \mod 100 \).

 Also,
 \[
 \frac{62626}{99} = \frac{620000}{994} \quad \text{so} \quad k \geq 62626 \quad \text{and} \quad \frac{62514}{99} = \frac{630000}{994}.
 \]

 Therefore, \(62626 \leq k \leq 63514 \).

 The first possibility is 62673
 \[
 \begin{align*}
 62673 & \div 99 \quad = 664 \text{ remainder } 97, \\
 569057 & \div 6204627 \quad = 91 \text{ remainder } 97.
 \end{align*}
 \]

 Other possibilities are 100, 200, etc., to which increases the product by 9900 each time:
 \[
 \begin{align*}
 6204627 & \times 6254127, \\
 6214527 & \times 6264027, \\
 \underline{6224427} & \times 6273927, \\
 6234327 & \times 6283827, \\
 6244227 & \times 6293727.
 \end{align*}
 \]

 Only 6224427 fits, so \(ab \) can only be 24.

2. Let \(S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} + \ldots \).

 Then
 \[
 \frac{S}{n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{12} + \frac{1}{16} + \frac{1}{18} + \frac{1}{24} + \ldots,
 \]

 which includes any terms in \(S \) except reciprocals of \(3^k, \ k \geq 0 \).

 Hence,
 \[
 \frac{S}{n} = S - \left[\left(\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \ldots \right) \right] = S - \frac{\frac{1}{2}}{1 - \frac{1}{3}} = \frac{3}{2}
 \]

 which implies
 \[
 \frac{S}{n} = \frac{3}{2} \quad \text{and} \quad S = 3.
 \]
If 73 is a sum of k consecutive positive integers starting with x then
\[x + (x+1) + \ldots + (x+k-1) = kx + \frac{(k-1)k}{2} = 73 \]
If this equation holds then $73 - \frac{(k-1)k}{2} \equiv 0 \pmod{k}$, which we can check without knowing x.

Notice if k is odd then $kx + \frac{(k-1)k}{2} \equiv 0 \pmod{k}$, while $73 \not\equiv 0 \pmod{k}$ for $k \geq 3$ because 73 is prime. So odd $k \geq 3$ is impossible.

Notice if $k=1$ and $k=2$ then $kx + \frac{k-1}{2}k = 78 > 73$. So only $k \leq 10$ need be considered.

Finally, we compute $73 - \frac{(k-1)k}{2} \equiv 0 \pmod{k}$ for $k = 4, 6, 8, 10$:

<table>
<thead>
<tr>
<th>k</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{mod}(73 - \frac{(k-1)k}{2}, k)$</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

Since none are zero, 73 cannot be written as a sum of k consecutive positive integers for any $k \geq 2$.

4. Let $y = f(x)$ and rewrite the DE as $\frac{dy}{dx} - y = 1$.

The characteristic equation is $r - 1 = 0$ so e^x is a homogeneous solution. Using the method of undetermined coefficients, we assume $y(x) = b$ is a particular solution.

\[(b)' = b \rightarrow b = -1 \]

Thus the general solution is $y(x) = Ae^x - 1$.

Since $y(2) = 3$, we find that $3 = Ae^2 - 1$ so $A = 4e^{-2}$.

(a) Since $f(x) = 4e^2e^x - 1 \Rightarrow f(0)(x) = 4e^{-2}e^x \Rightarrow f(0)(2) = 4$.

(b) $f(3) = 4e^2e^3 - 1 = 4e^{-1}$.

5. If a limit exists then $x = 2x^2 + 4a \Rightarrow 2x^2 - x + 4a = 0$ has a real solution.

Thus a necessary condition is $1 - 16a^2 > 0$ or $a^2 < \frac{1}{16}$ or $0 < a < \frac{1}{4}$.

If $0 < a < \frac{1}{4}$ then the solutions are $x = \frac{1}{2a} \pm \sqrt{\frac{1 - 16a^2}{2a}}$ so $0 < x < \frac{1}{a}$.

1. $x_{n+1} - x_n = a(x_n^2 - x_{n-1}^2) \Rightarrow x_n - x_0 = 4a \geq 0$ so induction implies $x_{n+1} \geq x_n$.

2. $x_1 = 4a < 2 \Rightarrow x_{n+1} = a(x_n^2 + 4) \leq 2(4 + 4) = 16 \Rightarrow x_n \leq 2$.

Since x_n is bounded, monotonic it must converge.