The Greatest Integer function.

Definition. For a real number x, denote by $\lfloor x \rfloor$ the largest integer less than or equal to x.

A couple of trivial facts about $\lfloor x \rfloor$:

- $\lfloor x \rfloor$ is the unique integer satisfying $x - 1 < \lfloor x \rfloor \leq x$.
- $\lfloor x \rfloor = x$ if and only if x is an integer.
- Any real number x can be written as $x = \lfloor x \rfloor + \theta$, where $0 \leq \theta < 1$.

Some basic properties, with proofs left to the reader:

Proposition 1. For x a real number and n an integer:

1. $\lfloor x + n \rfloor = \lfloor x \rfloor + n$.
2. $\lfloor -x \rfloor = \begin{cases} -\lfloor x \rfloor & \text{if } x = \lfloor x \rfloor, \\ -\lfloor x \rfloor - 1 & \text{if } x \neq \lfloor x \rfloor. \end{cases}$
3. $\lfloor x/n \rfloor = \lfloor \lfloor x \rfloor /n \rfloor$ if $n \geq 1$.
4. $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$. More generally,

$$\lfloor nx \rfloor = \sum_{k=0}^{n-1} x + \frac{k}{n}.$$

The Legendre formula gives the factorization of $n!$ into primes:

Theorem 1 (Legendre Formula). For n a positive integer,

$$n! = \prod_{pprime,p \leq n} p^{\alpha(p)}$$

where

$$\alpha(p) = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor.$$

Note that the sum for $\alpha(p)$ is finite, and that $\alpha(p)$ is the highest power of p that divides $n!$.

Proof. Among the first n positive integers, those divisible by p are $p, 2p, \ldots, tp$, where t is the largest integer such that $tp \leq n$; in other words, t is the largest integer less than or equal to n/p, so $t = \lfloor n/p \rfloor$. Thus there are exactly $\lfloor n/p \rfloor$ multiples of p occurring in the product that defines $n!$, and they are

$$p, 2p, 3p, \ldots, \left\lfloor \frac{n}{p} \right\rfloor p.$$
With the same reasoning, the numbers between 1 and \(n \) which are divisible by \(p^2 \) are
\[
p^2, 2p^2, \ldots, \left\lfloor \frac{n}{p^2} \right\rfloor p^2
\]
and there are \(\left\lfloor n/p^2 \right\rfloor \) of these. Generally, \(\left\lfloor n/p^k \right\rfloor \) are divisible by \(p^k \) and so the total number of times \(p \) divides \(n! \) is
\[
\alpha(p) = \sum_{k=1}^{\infty} \left\lfloor n/p^k \right\rfloor.
\]

All of this material can be found in a good book on number theory, for example Burton, Elementary Number Theory. A deeper treatment is in Apostol, Introduction to Analytic Number Theory.

Exercises

1. Prove the statements in Proposition 1.
2. If \(0 < y < 1 \), what are the possible values of \(\lfloor x \rfloor - \lfloor x - y \rfloor \)?

 Solution. Always 1 is possible, and also 0 unless \(x \) is an integer. \(\square \)

3. Let \(\{x\} = x - \lfloor x \rfloor \) denote the fractional part of \(x \). What are the possible values of \(\{x\} + \{-x\} \)?

 Solution. 0 if \(x \) is an integer, 1 otherwise. \(\square \)

4. Prove that \(\lfloor 2x \rfloor - 2 \lfloor x \rfloor \) is either 0 or 1.
5. Prove that \(\lfloor 2x \rfloor + \lfloor 2y \rfloor \geq \lfloor x \rfloor + \lfloor y \rfloor + \lfloor x + y \rfloor \).
6. For an integer \(n \geq 0 \), prove that \(\lfloor n/2 \rfloor - \lfloor -n/2 \rfloor = n \).
7. For an integer \(n \geq 1 \), the number of digits (in base ten) of \(n \) is \(1 + \lfloor \log_{10}(n) \rfloor \).

Problems

1. How many zeros does the number 1000! end with?
Solution. One must find out how many factors of 10 are in 1000!. There will be more factors of 2 than 5, so compute the number of factors of five:

$$\left\lfloor \frac{1000}{5} \right\rfloor + \left\lfloor \frac{1000}{25} \right\rfloor + \left\lfloor \frac{1000}{125} \right\rfloor + \left\lfloor \frac{1000}{625} \right\rfloor = 200 + 40 + 8 + 1 = 249.$$

There are 249 zeros at the end of 1000!.

2. If n is a positive integer, prove that $\left\lfloor \sqrt{n} + \sqrt{n + 1} \right\rfloor = \left\lfloor \sqrt{4n + 2} \right\rfloor$.

Solution. First, $(\sqrt{n} + \sqrt{n + 1})^2 = 2n + 2\sqrt{n^2 + n} + 1$. Now, $n^2 < n^2 + n < (n + 1/2)^2$ so that $n < \sqrt{n^2 + n} < n + 1/2$. Then,

$$\sqrt{4n + 1} < \sqrt{n + \sqrt{n + 1}} < \sqrt{4n + 2}.$$

Squares are always odd or divisible by 4, so $4n + 2$ is never a square. Then $\left\lfloor \sqrt{4n + 1} \right\rfloor = \left\lfloor \sqrt{4n + 2} \right\rfloor$ and so $\left\lfloor \sqrt{n} + \sqrt{n + 1} \right\rfloor = \left\lfloor \sqrt{4n + 2} \right\rfloor$.

3. Determine all positive integers n such that $\left\lfloor \sqrt{n} \right\rfloor$ divides n.

Solution. When $n = k^2$, $n = k(k + 1)$, or $n = k(k + 2) = (k + 1)^2 - 1$.

4. If n is a positive integer, prove that

$$\left\lfloor \frac{8n + 13}{25} \right\rfloor - \left\lfloor \frac{n - 12 - \frac{17}{25}}{3} \right\rfloor$$

is independent of n.

Solution. Bring the first term inside, get a common denominator. Check that it’s periodic mod 25, then check for $n = 0, \ldots, 24$.

5. Prove that

$$\sum_{k=1}^{n} \left\lfloor \frac{k}{2} \right\rfloor = \left\lfloor \frac{n^2}{4} \right\rfloor.$$

Solution. Easy to do in two cases, n even or n odd, using $1 + \cdots + m = \frac{m(m+1)}{2}$.

6. A sequence of real numbers is defined by the nonlinear first order recurrence

$$u_{n+1} = u_n(u_n^2 - 3).$$

(a) If $u_0 = 5/2$, give a simple formula for u_n.
(b) If $u_0 = 4$, how many digits (in base ten) does $\lfloor u_{10} \rfloor$ have?
Solution. Prove by induction that if \(u_0 = \frac{d^2+1}{d} \) then \(u_n = \frac{d^{2n+1}}{d} \). In particular, for \(u_0 = 5/2, u_n = \frac{4^{n+1}}{2} \). For part (b), there are \(\left\lfloor 3^{10} \log_{10}(2 + \sqrt{3}) \right\rfloor + 1 \) digits. (MIT 18.S34 F’07).

7. Which positive integers can be written in the form \(n + \lfloor \sqrt{n} + 1/2 \rfloor \) for some positive integer \(n \)?

Solution. Looks like all but the squares. Haven’t proved it yet. (MIT 18.S34 F’07).

8. Prove that the sequence \(\left\lfloor (\sqrt{2})^n \right\rfloor \) contains infinitely many odd numbers.

Solution. \((\sqrt{2})^n \) is even (a power of 2) when \(n \) is even. When \(n = 2k+1 \) is odd, \((\sqrt{2})^n = 2^k \sqrt{2} \). Now \(2^k \sqrt{2} \) is odd exactly when the \(k \)th binary digit of \(\sqrt{2} \) is 1. Since \(\sqrt{2} \) is irrational, its binary expansion must have infinitely many 1’s. (Original, inspired by the Graham-Pollak sequence).

9. Determine whether the improper integral

\[
\int_0^\infty (-1)^{\lfloor x^2 \rfloor} \, dx
\]

converges or diverges, where \(\lfloor \cdot \rfloor \) is the greatest integer function.

Solution. It converges. For \(\sqrt{n} \leq x < \sqrt{n+1} \), we have \(\lfloor x^2 \rfloor = n \), so that

\[
\int_0^\infty (-1)^{\lfloor x^2 \rfloor} \, dx = \sum_{n=0}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n}).
\]

Since the series is alternating and its terms approach zero, it converges. Source: Youngstown State Calculus Competition, 2005.

10. Let \(\{x\} \) denote the distance between the real number \(x \) and the nearest integer. For each positive integer \(n \), evaluate

\[
F_n = \sum_{m=1}^{6n-1} \min \left(\left\{ \frac{m}{6n} \right\}, \left\{ \frac{m}{3n} \right\} \right).
\]

(Here \(\min(a, b) \) denotes the minimum of \(a \) and \(b \).)

Solution. Putnam 1997 B1

11. Let \(a, b, c, d \) be real numbers such that \(\lfloor na \rfloor + \lfloor nb \rfloor = \lfloor nc \rfloor + \lfloor nd \rfloor \) for all positive integers \(n \). Prove that at least one of \(a + b, a - c, a - d \) is an integer.
12. Define a sequence $a_1 < a_2 < \cdots$ of positive integers as follows. Pick $a_1 = 1$. Once a_1, \ldots, a_n have been chosen, let a_{n+1} be the least positive integer not already chosen and not of the form $a_i + i$ for $1 \leq i \leq n$. Thus $a_1 + 1 = 2$ is not allowed, so $a_2 = 3$. Now $a_2 + 2 = 5$ is not allowed, so $a_3 = 4$. Then $a_3 + 3 = 7$ is not allowed, so $a_4 = 6$, etc. The sequence begins:

$$1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, \ldots$$

Find a simple formula for a_n. Your formula should enable you, for instance, to compute $a_{1000000}$.

Solution. (MIT 18.S34 F’07)

13. For a positive real number α, define

$$S(\alpha) = \{ \lfloor n\alpha \rfloor : n = 1, 2, 3, \ldots \}.$$

Prove that $\{1, 2, 3, \ldots\}$ cannot be expressed as the disjoint union of three sets $S(\alpha), S(\beta), \text{ and } S(\gamma)$.

Solution. Very hard! (Putnam 1995 B6)