1. Show that every manifold has a nonzero complete vector field.

Solution: Let \(x \in M \) be any point, and choose a coordinate neighborhood \(U \) of \(x \) and a cutoff function \(f \) on \(M \) which is 1 at \(x \) and has compact support in \(U \). Let \(Y \) be any nonzero vector field defined on \(U \) (for example, \(Y = \frac{\partial}{\partial x^1} \), where \(x^1 \) is the first coordinate function). Define \(X = fY \) on \(U \), and extend to all of \(M \) by zero. Then \(X \) is a nonzero, smooth vector field on \(M \). Because \(X \) is compactly supported, it is complete.

2. Let \(f : M \to N \) be a smooth map of smooth manifolds, let \(\sigma : [a,b] \to M \) be a curve in \(M \), and let \(\omega \) be a one-form on \(N \). Show that

\[
\int_{\sigma} f^* \omega = \int_{f \circ \sigma} \omega.
\]

Solution:

\[
\int_{\sigma} f^* \omega = \int_a^b (f^* \omega)(\sigma'(t)) dt \\
= \int_a^b \omega(Tf \sigma'(t)) dt \\
= \int_a^b \omega((f \circ \sigma)'(t)) dt \\
= \int_{f \circ \sigma} \omega.
\]

3. Suppose \(\sigma \) is a locally conservative 1-form on \(S^2 \). Show there is \(f \in C^\infty(S^2) \) with \(\sigma = df \).

Solution: Since \(S^2 \) is simply connected, any closed curve \(\gamma \) on \(S^2 \) is homotopic to a point. Because \(\sigma \) is locally conservative, path integrals are homotopy invariant so that \(\int_\gamma \sigma = 0 \). Then \(\sigma \) is conservative, hence exact, hence equal to \(df \) for some \(f \). More specifically, one could fix \(x_0 \in M \) and define \(f(x) = \int_\gamma \sigma \) where \(\gamma \) is any curve joining \(x_0 \) to \(x \).

4. Let \(M \) be a manifold, and \(x, y \in M \). Show that for any \(D > 0 \), there is a Riemannian metric \(g \) on \(M \) with \(d_g(x, y) = D \).
5. Define a helix $H \subset \mathbb{R}^3$ parametrically by $(r \cos(\theta), r \sin(\theta), \theta)$ for $r \in [0, \infty]$ and $\theta \in \mathbb{R}$. Calculate the induced metric on H.

Solution: $dx = \cos(\theta)dr - r\sin(\theta)d\theta$, $dy = \sin(\theta)dr + r\cos(\theta)d\theta$, and $dz = d\theta$, so

$$dx^2 + dy^2 + dz^2 = dr^2 + (1 + r^2)d\theta^2$$

which gives the metric on H.

6. Given a Riemannian metric g on the circle S^1, define the $L(g)$ to be the length (using g) of the curve that goes once around the circle. Show that any two metrics g, h on S^1 with $L(g) = L(h)$ are isometric.

Hint: map to the canonical circle C of length L, where $C = [0, L]/(L \sim 0)$ with metric dt^2.

Solution: Consider S^1 with parameter $\theta \in [0, 2\pi)$. Write $g = c(\theta)d\theta^2$ for some smooth function $c(\theta)$ which is periodic with period 2π. Since g is positive definite, c is positive, so put $f(\theta) = \sqrt{c(\theta)}$, a positive, smooth periodic function with $g = f(\theta)^2d\theta^2$. Define

$$F(\theta) = \int_0^\theta f(t)dt.$$

Then

$$F(\theta + 2\pi) - F(\theta) = \int_\theta^{\theta+2\pi} f(\theta)d\theta = \int_0^{2\pi} f(\theta)d\theta = \int_0^{2\pi} \sqrt{g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta})}d\theta = L(g) = L$$

which shows that $\theta \rightarrow t = F(\theta)$ gives a well defined map from S^1 to C. Now

$$dt = dF(\theta) = F'(\theta)d\theta = f(\theta)d\theta$$

which shows that F takes g to dt^2, so that (S^1, g) and (C, dt^2) are isometric. Since (S^1, g) and (S^1, h) are both isometric to (C, dt^2), they are isometric to each other.

7. Given a one form $\omega \in \mathcal{T}^1(M)$ and a vector field X, define $\mathcal{L}_X \omega$ by

$$\mathcal{L}_X \omega(Y) = \omega([X, Y]) - X(\omega(Y)).$$
Show that $\mathcal{L}_X\omega$ is a tensor.

Solution: For any vector field Y and $f \in C^\infty(M)$, we have:

\[
\mathcal{L}_X\omega(Y) = \omega([X, fY]) - X\omega(fY) = \omega(X(fY) - (fY)X) - X(f\omega(Y))
\]

\[
= \omega((Xf)Y + fXY - fYX) - (Xf)\omega(Y) - fX\omega(Y)
\]

\[
= (Xf)\omega(Y) + f\omega([X,Y]) - (Xf)\omega(Y) - fX\omega(Y)
\]

\[
= f\mathcal{L}_X\omega(Y)
\]

Since $\mathcal{L}_X\omega$ is $C^\infty(M)$–linear, it’s a tensor.

8. Define an r-covariant tensor σ on \mathbb{R}^2 by summing 2^r terms:

\[
\sigma = dx \otimes dx \otimes \cdots \otimes dx \otimes dx + dx \otimes dx \otimes \cdots \otimes dy \otimes dx + \cdots + dy \otimes dy \otimes \cdots \otimes dy \otimes dy
\]

where the sum is over all possible choices of dx and dy in each r-fold product term.

Find $\iota^*(\sigma)$, where ι is the inclusion map $S^1 \to \mathbb{R}^2$.

Solution: Replace $dx = \cos \theta d\theta$ and $dy = \sin \theta d\theta$, then use the binomial theorem to get $(\cos(\theta) + \sin(\theta))^r d\theta \otimes \cdots \otimes d\theta$. A similar approach is to notice that $\sigma = (dx + dy)^r$.