1. Lee Exercise 1.118. Given smooth \(f : \mathbb{R}^n \to \mathbb{R}^m \), show the graph of \(f \) is a regular submanifold of \(\mathbb{R}^m \times \mathbb{R}^n \).

2. Lee Exercise 1.119. The main point of this exercise is to show that every regular submanifold \(M \) of \(\mathbb{R}^n \) is locally the graph of a function.

3. For a real number \(a \), define \(f : \mathbb{R}^2 \to \mathbb{R} \) by \(f(x, y) = x^3 - 3ax - y^2 \). Find all values of \(b \) so that \(f^{-1}(b) \) is a manifold. Graph \(f^{-1}(b) \) for a variety of \(a \) and \(b \), including the critical values of \(b \). These manifolds are called elliptic curves.

4. Lee Ch 3 Problem 28. For a homogeneous polynomial \(p \) of \(n \) variables, show \(p^{-1}(c) \) is a submanifold of \(\mathbb{R}^n \) for all \(c \neq 0 \).

5. Lee Ch 3 Problem 3. Show if \(M \) is compact and \(N \) is connected, then a submersion \(f : M \to N \) must be surjective.

6. Define the map \(H : \mathbb{R}^4 \to \mathbb{R}^3 \) by
\[
H(x, y, z, w) = (2(xy + zw), 2(xw - yz), x^2 + z^2 - y^2 - w^2).
\]
Check that restricting \(H \) to \(S^3 \subset \mathbb{R}^4 \) defines a map from \(S^3 \) to \(S^2 \), the Hopf map. Show that the Hopf map is a submersion. What are the fibers of the Hopf map (i.e. what manifold is \(f^{-1}(q) \) for \(q \in S^2 \))?