1. Lee Exercise 1.118. Given smooth \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \), show the graph of \(f \) is a regular submanifold of \(\mathbb{R}^m \times \mathbb{R}^n \).

Solution: Define \(\varphi : \mathbb{R}^m \times \mathbb{R}^n \rightarrow \mathbb{R}^m \times \mathbb{R}^n \) by \(\varphi(x, y) = (x, y - f(x)) \). Clearly, \(\varphi(x, y) = (x, 0) \) if and only if \((x, y) \) is in the graph of \(f \), i.e. \(f(x) = y \). Next, if \(\varphi(x', y') = \varphi(x, y) \) then \(x = x' \) and so \(y - f(x) = y' - f(x) \), and so \(y = y' \), which shows \(\varphi \) is injective. Finally,

\[
D\varphi = \begin{pmatrix} I & 0 \\ -Df & I \end{pmatrix}
\]

which is nonsingular, so \(\varphi \) is a diffeomorphism. Thus \(\varphi \) is a single-slice chart for the graph of \(f \), making graph \(f \) a regular submanifold of \(\mathbb{R}^m \times \mathbb{R}^n \).

2. Lee Exercise 1.119. The main point of this exercise is to show that every regular submanifold \(M \) of \(\mathbb{R}^n \) is locally the graph of a function.

Solution: Note this problem requires the Implicit Mapping Theorem. See Hebda’s notes or Appendix C. It’s not hard to prove, given the Inverse Function Theorem.

Call the standard coordinates on \(\mathbb{R}^n (u_1, \ldots, u_n) \). For \(p \in M \), choose single slice coordinates \(x_1, \ldots, x_n \) on a neighborhood \(U \) of \(p \), so that \(M \cap U = \{(x_1, \ldots, x_k, 0, \ldots, 0) \} \).

Consider each \(x \) coordinate as a function \(x_i = x_i(u_1, \ldots, u_n) \). The matrix \(\left(\frac{\partial x_i}{\partial u_j} \right)_{i,j=1 \ldots n} \) is invertible (it’s the derivative of the change of coordinates function), so the bottom \(n-k \) rows form a rank \(n \) matrix \(\left(\frac{\partial x_i}{\partial u_j} \right)_{i=k+1 \ldots n,j=1 \ldots n} \). This matrix has \(n-k \) independent columns, and by renumbering the \(u_i \) we may assume that the \(n-k \times n-k \) matrix \(\left(\frac{\partial x_i}{\partial u_j} \right)_{i=k+1 \ldots n,j=k+1 \ldots n} \) is invertible. The coordinate plane \(P \) we’re looking for has now been chosen as the plane spanned by \(u_1, \ldots, u_k \), after the renumbering.

Define \(f : U \rightarrow \mathbb{R}^{n-k} \) by \(f(u_1, \ldots, u_n) = (x_{n-k+1}, \ldots, x_n) \). Then \(M \cap U \) is the zero set of \(f \), i.e. \(M \cap U = f^{-1}(0) \).

By the Implicit Mapping Theorem, there is a smooth function \(g : \mathbb{R}^k \rightarrow \mathbb{R}^{n-k} \) so that \(f(u_1, \ldots, u_k, g(u_1, \ldots, u_k)) = 0 \) if and only if \((u_{k+1}, \ldots, u_n) = g(u_1, \ldots, u_k) \). Then \((u_1, \ldots, u_k) \rightarrow (u_1, \ldots, u_k, g(u_1, \ldots, u_k)) \) gives a smooth parameterization of \(M \cap U \), showing that \(M \) is locally the graph of a function over the coordinate plane \(P \), and so projection to \(P \) gives a coordinate chart on \(M \).

3. For a real number \(a \), define \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) by \(f(x, y) = x^3 - 3ax - y^2 \). Find all values of \(b \) so that \(f^{-1}(b) \) is a manifold. Graph \(f^{-1}(b) \) for a variety of \(a \) and \(b \), including the critical values of \(b \). These manifolds are called elliptic curves.
Solution: \(Df \) either has rank 1 or is identically zero, and if it has rank 1, then \(f^{-1}(b) \) is a manifold. Solve \(Df = \begin{pmatrix} 3x^2 - 3a \\ -2y \end{pmatrix} = 0 \). First, \(y = 0 \), and we must have \(a \geq 0 \) and then \(x = \pm \sqrt{a} \). Then \(f(\pm \sqrt{a}, 0) = \pm a^{3/2} \mp 3a^{3/2} = \pm 2a^{3/2} \). So the singular values for a given \(a > 0 \) are \(\pm 2a^{3/2} \).

At \(b = -2a^{3/2} \), the surface \(f(x,y) \) has a saddle point, causing a crossing, and at \(b = 2a^{3/2} \) there is a local maximum, causing an isolated point.

When \(a = 0 \), there is a single critical point \(b = 0 \) which is a cusp.

4. Lee Ch 3 Problem 28. For a homogeneous polynomial \(p \) of \(n \) variables, show \(p^{-1}(c) \) is a submanifold of \(\mathbb{R}^n \) for all \(c \neq 0 \).

Solution: For \(x \in p^{-1}(c) \), define a curve \(\sigma(t) = (1 + t)x \). Then \(p \circ \sigma : \mathbb{R} \to \mathbb{R} \). I will show \(p \circ \sigma \) has rank 1 at \(t = 0 \) and therefore \(p \) has rank 1 at \(x \).

\[
T_0(p \circ \sigma) = \frac{d}{dt} p(\sigma(t)) \bigg|_{t=0} = \frac{d}{dt} (1 + t)^m p(x) \bigg|_{t=0} = mc \neq 0.
\]

Since \(p \) has rank 1 at \(x \) for all \(x \in p^{-1}(c) \), \(c \) is a regular value for \(p \) and therefore \(p^{-1}(c) \) is a manifold.

5. Lee Ch 3 Problem 3. Show if \(M \) is compact and \(N \) is connected, then a submersion \(f : M \to N \) must be surjective.

Solution: We’ll show \(f(M) \) is both open and closed in \(N \). First, if \(y \in f(M) \) then \(y = f(x) \) for some \(x \). In local coordinates near \(x \) and \(y \), \(f \) has the form \(f(x_1, \ldots, x_m) = (x_1, \ldots, x_n) \), so an open set around \(x \) maps to an open set around \(y \), and \(f(M) \) is open. Now suppose
there is a sequence y_1, y_2, \ldots converging to y in N, with $y_i = f(x_i)$. Since M is compact, by passing to a subsequence $y_i \to x \in M$. Since f is continuous, $f(y_i) \to f(x)$, so $y = f(x)$ and $f(M)$ is closed.

Since N is connected, $f(M) = N$ and f is surjective.

6. Define the map $H : \mathbb{R}^4 \to \mathbb{R}^3$ by

$$H(x, y, z, w) = (2(xy + zw), 2(xw - yz), x^2 + z^2 - y^2 - w^2).$$

Check that restricting H to $S^3 \subset \mathbb{R}^4$ defines a map from S^3 to S^2, the Hopf map. Show that the Hopf map is a submersion. What are the fibers of the Hopf map (i.e. what manifold is $f^{-1}(q)$ for $q \in S^2$)?